
I J C T A, 9(7), 2016, pp. 3085-3093
© International Science Press

Static analysis of Firefox OS privileged
applications to detect permission policy
violations
Shahanas P.* and Jevitha K.P.**

ABSTRACT

There is an emerging trend to use web browsers as mobile operating systems initiated by big market players such as
Mozilla Firefox and Google Chrome. The applications for Firefox OS are basically web applications developed
using HTML, CSS, JavaScript and other technologies. Firefox OS uses a Linux kernel and boots into Gecko runtime
engine. It provides security features like sandboxed execution for applications, Content Security Policy and permission
management system. In this paper, we present a study on the permission management system in Firefox OS through
static analysis of its applications. The results of the study on 16 privileged applications downloaded from Firefox
OS marketplace shows that about 7% of the permissions accessed by these applications are unauthorised. 13% of
the permissions were requested but not used, 14% of the permissions were never requested but the equivalent
WebAPI calls were being made in the application source code. Finally 66% of permissions were requested and
used. The results reveal that many code reviewed privileged applications hosted on the Firefox marketplace do not
conform to the Firefox OS permission policies and could cause potential threats to the system.

Keywords: Firefox OS;Application security; manifest analysis; Permission system

1. INTRODUCTION

Mozilla launched Firefox OS, an entirely web-based Linux mobile operating system in July 2013. The
Firefox OS architectural stack has four layers namely Gaia, Gecko, Gonk and the Mobile device [1]. The
Gaia layer is the user interface; Gecko is the application runtime that implements the WebAPIs [2] and
provides framework for application execution; Gonk has underlying Linux kernel, system libraries, firmware,
and device drivers; and finally the mobile device running the Firefox OS. Applications can access the
underlying mobile hardware functionalities only if Gecko accepts the permission request.Gecko is the
intermediary layer that enforces the security policies and it prevents unauthorised requests to access the
Web APIs.

Firefox OS applications are mainly of three types [3]-certified, privileged and web applications. Certified
applications are those that comes along with the mobile phone itself. These can request security sensitive
permissions in the application manifest file as they are considered trusted. Privileged applications are
developed by third party developers and submitted to the Firefox OS marketplace for code review. After
performing the code review, the marketplace digitally signs the applications in contrast to Android OS,
where the applications are signed using the developer’s certificate. Firefox OS internal/certified applications
are signed by device manufacturers or operators. In addition, privileged applications will be having a
Content Security Policy [4] that specifies the trusted domains from which the content can be loaded to the
application. The third category is the normal web applications whose content is hosted elsewhere. A web

* Dept of Computer Science and Engineering Amrita School of Engineering, Coimbatore Amrita Vishwa Vidyapeetham University
India, Email: shahanasp00@gmail.com

** Dept of Computer Science and Engineering Amrita School of Engineering, Coimbatore Amrita Vishwa Vidyapeetham University
India, Email: kp_jevitha@cb.amrita.edu

ISSN: 0974-5572

3086 Shahanas P. and Jevitha K.P.

application can be installed from any website and it does not require any further verification. When one
installs this kind of application, only the application manifest file will be downloaded and stored on the
mobile device. The application will appear as a shortcut which will load its content from remote host once
the user launch the application. The application delivery can be in two ways-either packaged or hosted [2].
Certified and privileged applications are usually packaged while the web applications are hosted.

2. LITERATURE SURVEY

Marta Piekarska [5] et al., studied on the security architecture of Firefox OS and pointed out its shortcomings.
Further they presented a threat model with possible attacks such as web attacks, usability based attacks and
mobile network based attacks for the web based OS. The paper explained in detail about the permission
system, application vetting and distribution process, sandboxing, vendor customization, fragmentation,
and advertisements.

Daniel DeFreez [6] et al., have analysed Firefox OS from the perspective of application security
considering two important factors which included code review in the Firefox marketplace and Content
Security Policy. The paper used lightweight static analysis to detect applications that failed to validate
message origin after registering the event handler. Attacks like Cross Site Scripting were also tested along
with SSL certificate caching problems.

Olga Gadyatskaya [7] et al., compared the security architecture in Firefox and Tizen OS and
concluded that both Firefox and Tizen security architectures were drawn from Android. They compared
the operating systems based on memory management features like ASLR and DEP. According to their
studies, Android provides address space layout randomization (ASLR) and data execution prevention
(DEP) techniques as memory management security enhancements while Firefox OS had not
implemented these techniques.

Borting Chen [8] et al., proposed an anomaly detection module for the Firefox OS. The paper addressed
the two main drawbacks of Firefox OS which include consumption of abnormal amount of resources by
applications and WebAPI being called with unusual frequency. These two internal anomalies were detected
by the Anomaly Detection Module (ADM) by running a semi-supervised machine learning algorithm.
They initially trained the input for normal behaviour and used this input in analysis phase to detect anomalies.
A predefined threshold was used to differentiate normal and abnormal behaviour.

Marta Piekarsha [9] et al., addressed the privacy issues in Firefox OS through a tool called Privacy
Dashboard. The tool provided features like remote privacy protection, guest mode for secondary users,
permission control, backup and adjustable location accuracy. The tool followed a user centric approach in
which initially data was collected based on the privacy awareness of an average user. A prototype solution
was defined and then another study was conducted to analyse the impact of the prototype solution on users.
The tool was refined with the changes thus solving the privacy concerns.

Mohd Najwadi Yusoff [10] et al., proposed an approach for forensic analysis in Firefox OS so as to
investigate on any criminal intentions. The approach comprised three procedures namely Preparation
and preservation procedure, Acquisition procedure and Examination/Analysis procedure.In the first phase
after acquiring sufficient knowledge about the Firefox OS, forensic hardware and software was set up.
After preparing the relevant and irrelevant data list, integrity of data was verified. In the second phase,
they acquired the relevant forensic and imaging data and documented it. In the third phase, analysis
using forensic tools was performed to determine the origin of data, how and when it was created, modified,
accessed, etc.

AnthonyV´erez [11] et al., studied on the security model of the Firefox OS. The paper explained in
detail about the security architecture of Firefox OS, applications, manifest file and security implementation

Static analysis of Firefox OS privileged applications to detect permission policy violations 3087

in OS. The paper summarised that information flow leakage problems could be handled in Firefox OS
through sandboxing techniques. They also explained about buffer overflow and memory corruption which
could be addressed through techniques like ASLR and build-flags hardening respectively.

3. PROPOSED SYSTEM

3.1. Static Analysis of Manifest and Javascript Files

Every Firefox OS application regardless of its type (certified, privileged or web app) will be having a
manifest file[12] through which it request permissions to access WebAPIs related to specific hardware
or other drivers. The Firefox OS marketplace can allow, deny or grant the permission on prompt [13]
(i.e. ask user whether to grant or deny permission each time the app is launched). Almost all permissions
can be accessed by the certified applications as their trust level is high. The privileged applications are
having medium trust level and have access to fewer permissions. The web applications are having the
lowest trust level and so most of permissions are denied for them. They can access least number of
permissions. i.e., each kind of application is having a certain trust level anddepending on that there is
restriction on the type of permissions that they can access. Every WebAPI has a required level of permission
to be accessed. Whenever a WebAPI is called, Gecko performs a check on the permission requirements
based on:

• Permissions that are associated with the calling app (as requested in the manifest file and based on
the type of application).

• Permissions that are required to execute the requested operation (Web API call.)

For static analysis, a mapping is done between the permissions requested in the manifest file and
corresponding Web API calls in the javascript file of the application.The proposed system architecture is
depicted in Figure I. Firefox OS applications have HTML, XML, JavaScript, CSS and manifest files. In
addition, they may also include json and signature files. The static analysis concentrates on the manifest
and JavaScript files only, as they contain information related to permissions.Application manifest file follows
a json structure. So, the set of permissions are retrieved initially from manifest using the key called
“permissions”. The javascript files are analysed to find out the permissions used, by performing a check on
the WebAPI calls made by the applications. “mapper.json” file has the permission and WebAPI call mappings
which can be used to correlate the requested and used permissions. Table I shows the mapping of all
permissions with its equivalent WebAPI calls.All the permissions are accessed using “navigator” object
that is retrieved by “window.navigator” property [14]. It is observed that in some cases, applications should
specify individual permissions to access a specific Web API. For e.g. applications requesting permissions
like “device-storage” should specify in manifest file what storage it want to access (i.e. apps, crashes,
video, pictures, music, sdcard) though all these are accessed using “get Device Storage” or “get Device
Storages” Web API calls. For some permissions like “contacts” there is a one to mapping i.e. “contacts”
accessed using “mozContacts”. Now considering the WebAPI calls, same permission may make different
calls in different contexts in some cases. For e.g. “alarms” uses “mozAlarms” or “mozSet Message Handler”.
The table also shows the type of application which can request these permissions [15]. For each application,
based on the permissions requested in the manifest file and Web API calls in JavaScript file, the following
four permission classifications are done.

1. Unauthorised permissions accessed (depending upon the trust level of application).

2. Permissions requested and used.

3. Permissions requested but never used.

4. Permissions never requested but used.

3088 Shahanas P. and Jevitha K.P.

Figure 1: Proposed System Architecture

HTML

Others (JSON,
 signature files etc.)

Manifest file

CSS

Javascript

XML

Manifest and
Javascript analyser

Mapper.json

JSON parser

Unauthorised permissions
accessed

Permissions requested
but never used

Permissions requested
and used

Permissions never
requested but used

Permission Classification

Firefox OS application

Table 1
Permission Mapping

Permission WebAPI call Allowed access

Web Privileged Certified

geolocation geolocation, getCurrentPosition, watchPosition, clear Watch User User User
prompt prompt prompt

geolocation-noprompt geolocation, getCurrentPosition, watchPosition, clear Watch No No Yes

alarms mozAlarms, mozSetMessageHandler Yes Yes Yes

camera mozCamera, mozCameras No User prompt Yes

tcp-socket mozTCPSocket No Yes Yes

udp-socket mozUDPSocket No Yes Yes

contacts mozContacts No User prompt Yes

device-storage:apps getDeviceStorage, getDeviceStorages No No Yes

device-storage:crashes getDeviceStorage, getDeviceStorages No No Yes

device-storage:pictures getDeviceStorage, getDeviceStorages No User prompt Yes

device-storage:videos getDeviceStorage, getDeviceStorages No User prompt Yes

device-storage:music getDeviceStorage, getDeviceStorages No User prompt Yes

device-storage:sdcard getDeviceStorage, getDeviceStorages No User prompt Yes

Sms mozMobileMessage, mozSMS No No Yes

telephony mozTelephony No No Yes

bluetooth mozBluetooth No No Yes

mobileconnection mozMobileConnections No No Yes

(contd...)

Static analysis of Firefox OS privileged applications to detect permission policy violations 3089

mobilenetwork mozMobileConnections No Yes Yes

power mozPower No No Yes

push push Yes Yes Yes

settings mozSettings No No Yes

settings-clear mozSettings No No No

permissions mozPermissionSettings No No Yes

fmradio mozFMRadio No Yes Yes

browser mozbrowser No Yes Yes

desktop-notification mozNotification, Notification Yes Yes Yes

networkstats-manage mozNetworkStats No No Yes

systemXHR XMLHttpRequest No Yes Yes

idle addIdleObserver, removeIdleObserver No No Yes

time mozTime, onmoztimechange No No Yes

embed-apps mozapp, mozApps No No Yes

webapps-manage mozApps.mgmt No No Yes

wifi-manage mozWifiManager No No Yes

voicemail mozVoicemail No No Yes

cellbroadcast mozCellBroadcast No No Yes

audio-channel-normal mozAudioChannelManager Yes Yes Yes

audio-channel-content mozAudioChannelManager Yes Yes Yes

audio-channel-notification mozAudioChannelManager No Yes Yes

audio-channel-alarm mozAudioChannelManager No Yes Yes

audio-channel-telephony mozAudioChannelManager No No Yes

moz-audio-channel-telephony mozAudioChannelManager No Yes Yes

audio-channel-ringer mozAudioChannelManager No No Yes

moz-audio-channel-ringer mozAudioChannelManager No Yes Yes

audio-channel-publicnotification mozAudioChannelManager No No Yes

open-remote-window window.open No No Yes

input mozKeyboard No Yes Yes

audio-capture getUserMedia User prompt User prompt Yes

audio-capture:3gpp getUserMedia No Yes Yes

video-capture getUserMedia User prompt User prompt Yes

nfc mozNfc No Yes Yes

nfc-share mozNfc No No Yes

nfc-manager mozNfc No No Yes

nfc-hci-events mozNfc No No Yes

network-events moznetworkupload, moznetworkdownload No No Yes

firefox-accounts mozId No No Yes

moz-firefox-accounts mozId No User prompt Yes

(Table 1 contd...)

Permission WebAPI call Allowed access

Web Privileged Certified

3090 Shahanas P. and Jevitha K.P.

4. RESULTS AND ANALYSIS

Static analysis is performed on set of privileged applications downloaded from Firefox OS marketplace.
The analysis is explained using an example privileged application named “WhatsApp”. The permissions
requested by “Whatsapp” application is presented in Figure II.

The results after analysis of “Whatsapp” is shown in Figure III.

The permission “settings” can be accessed through mozSettings API call by certified applications only.
The privileged “Whatsapp” app access this permission without even specifying it in manifest file. The code
snippet from Whatsapp application trying to use “settings” permission is shown in Figure IV.

The Firefox OS source code contains Permission Table [15] corresponding to Firefox OS API permissions
and the code snippet corresponding to “settings” from the table is represented in Figure V.

Figure 2: Whatsapp manifest file Figure 3: Whatsapp analysis results

Figure 4: Code snippet from Whatsapp Javascript file Figure 5: Permission table code snippet for “settings”

Static analysis of Firefox OS privileged applications to detect permission policy violations 3091

For privileged application the action specified in the Permission table of Firefox OS is DENY_ACTION
but the application is trying to use the permission by making a WEBAPI call. This indicates that application
bypassed the code review process without getting detected. For certified applications the action is
ALLOW_ACTION.The manifest analyser is run on 16 different applications downloaded from Firefox OS
marketplace and the results are summarised in Table II.

Table 2
Application Statistics based on Manifest Analysis

Application Description Unauthorised
name permissions Permissions Permissions Permission never

accessed by requested requested and requested but
privileged and accessed never accessed accessed

applications

Battery Notifier Notify battery level alarms, desktop-
notification

BirthDay App Birthday reminder alarms desktop-notification

Contacts++ Smarter way to contacts, system
add face to XHR
contacts

Fire Wallet Manage income
and expenses systemXHR

Frases y citas Knowledge system XHR
célebres – Nex sharing
Cono

Hawk File manager geolocation device-storage

Net Tools Penetration and tcp-socket, system browser
security testing XHR

Sección Amarilla Hotel list for gps geolocation, system
location XHR

Whats App Messaging Settings alarms, tcp-socket, feature-detection Settings
application device-storage,

contacts, desktop-
notification, moz-
external-app,
external-app

Telegram Social networking open-remote- contacts, device- geolocation,
app window storage, push, system XHR,

desktop-notification embed-apps/moz-
external-app/
external-app

Jongla IM Free messaging settings contacts, device- browser, audio- geolocation,
app storage, storage, channel, mobile- embed-apps/moz-

desktop-notification, connection/mobile- external-apps/
systemXHR, push network external-app

Skater Kid Game app in which Storage
players should
avoid obstacles

Wish Buddy Reminder app storage, alarms,
about special desktop-notification
events of loved
ones

Authorised permissions accessed by privileged applications

3092 Shahanas P. and Jevitha K.P.

The percentage distribution for the four categories is depicted in Figure VI. Total number of permissions
coming under the category “Permissions requested and used” is high which is about 66%. Permissions
never requested but used accounts to 14% and about 7% of permissions accessed by the Firefox OS test
applications are unauthorised. Permissions requested and never used comes with 13%. The unauthorised
permissions requested and requested but never used permissions are the attacker targets for launching code
injection attacks like cross site scripting. The permissions never requested but used shows the inefficiency
of the code review process to detect the security violations. Figure VI. Permission Distribution

5. CONCLUSION

Firefox OS is an attempt made by Mozilla foundation to merge the web and mobile experiences. The web
applications are portable across heterogeneous platforms and therefore both application developers and
attackers concentrate on developing web applications rather than native applications. The results of the
analysis shows that privileged applications are violating the permission manager policies and requesting
unauthorised permissions. Also, the applications requesting more permissions than required could potentially
be exploited by the attackers, to cause damage to the users of these applications. Firefox OS marketplace
code review process is not detecting such security violations before the applications are digitally signed
and released into the marketplace. Hence, there is more scope for the development of tools that uses static
and dynamic analysis techniques to test the applications which violate the policies and this could help the
marketplace reviewers and users in assessing the applications.

Macaw Open source micro- open-remote- geolocation, system embed-apps/moz-
blogging client app window XHR, desktop- external-app/

notification external-app

zMaps Allows users to
view maps geolocation, storage

Viewfinder for Instagram client system XHR,
Instagram browser

Figure 6: Permission Distribution

Static analysis of Firefox OS privileged applications to detect permission policy violations 3093

REFERENCES

[1] “Firefox OS architecture”, https://developer.mozilla.org/en/docs/Mozilla/Firefox_OS/Platform/Architecture

[2] “Web API”, https://en.wikipedia.org/wiki/Web_API

[3] “Firefox OS security overview”, https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Security/Security_model

[4] “CSP (Content Security Policy)”, https://developer.mozilla.org/en-US/docs/Web/Security/CSP

[5] M. Piekarska, B. Shastry and R. Borgaonka, “What Does the Fox Say? On the Security Architecture of Firefox OS,”
IEEE 9th International Conference on Availability, Reliability and Security, pp. 172177, 8-12 Sept. 2014

[6] D. Defreez, Shastry B., Chen H. and Seifert J.P., “A First Look at Firefox OS Security,” Mobile Security Technologies
(MoST), San Jose, CA, USA, May 17. 2014

[7] O. Gadyatskaya., Massacci F., Zhauniarovich Y., “Security in the Firefox OS and Tizen Mobile Platforms,” IEEE Journals
and Magazines, vol. 57, pp. 5763, June 18. 2014.

[8] B. Chen, M. Shih, Y. Huang, “An Anomaly Detection Module for Firefox OS,” Eighth International Conference on
Software Security and Reliability-Companion, pp. 176184, July 2014.

[9] M. Piekarsha, Y. Zhou, D. Strohmeier, A. Raake, “Because We Care: Privacy Dashboard on FirefoxOS”, arXiv preprint
arXiv:1506.04105, 2015.

[10] M. N. Yusoff, R. Mahmod, A. Dehghantanha, M. T. Abdullah, “An approach for forensic investigation in Firefox OS”,
“Third International Conference on Cyber Security, Cyber War Fare and Digital Forensic(Cyber Sec), May 2014.

[11] A. Vérez, G. Hugues, “Security Model of Firefox OS”, 2013.

[12] “App manifest”, https://developer.mozilla.org/en-US/Apps/Build/Manifest

[13] “App permissions”, https://developer.mozilla.org/en-US/Apps/Build/App_permissions

[14] “Navigator”, https://developer.mozilla.org/en-US/docs/Web/API/Navigator

[15] “Permission Table”, https://mxr.mozilla.org/mozilla-b2g32_v2_0/source/dom/apps/src/PermissionsTable.jsm

