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An observer based dynamic output
feedback controller for discrete
system with input saturation and
time varying delay

Vipin ChandraPal, RichaNegi and Jeetendra K umar

Abstract: This paper is concerned with the stability analysis of discrete system subjected to input saturation and
timevarying state delay. An observer based dynamic output feedback controller isused to deter mine observer and
controller gain for stabilizing the above system. A delay dependent Lyapunov function, based on reciprocal convex
approach, isused to derivethe sability criterion. An optimization algorithm is & so proposed to maximizethedomain
of attraction for discrete systems with input saturation and interval like time varying delay using linear matrix
inequality (LMI). A numerical exampleis also provided to show the effectiveness of the proposed theory.
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1. INTRODUCTION

Timedelay isinevitablein practica, industrial and engineering systemswhich deterioratesthe performance and
causesingability. Delay often occursdueto limited speed of information processing and datatransmitting among
different partsof physical sysem[1-4]. The stability analysis of time delay discrete systemshas been extensively
investigated inliterature[5-10]. Delay dependent stability conditionsbased on LMI technique have been derived
in[5-9] whileanew less conservativereciprocal convex approach hasbeen discussedin[34-36].

Inindustry and red time applications, controller desgnisvery chalenging issuefor the sysems subjected to
actuator saturation. Saturation nonlinearity leadsto degradation of system stability and responsible for poor
performance of closed loop system. An anti-windup technique which isused to tackle saturation nonlinearity has
received the great momentum in literature [11-19]. In[18] convex hull approach has been used to tackle the
saturation nonlinearity which isless conservative as compared to existing techniques. Theissue of stability analysis
and control synthesis problemsincorporated with actuator saturation and time delay has appeared in[20-26] using
LMI technique. Someredl timeapplication oriented resultsfor jet engine compressor; flight control system, autometic
train etc. arereported for facilitating the expostion [27-30].

However, inreal time systems, it isnot necessary that all state variablesare available while aforementioned
workspresumethat al states of sysemsareavailable. In contrast, much less attention has been paid on observer
based techniqueto deal withtime delay and saturation nonlinearity [ 31-32]. In[31] an observer has been gopended
with anti-windup compensator to diminish theeffect of saturation nonlinearity in continuous sysemwhile[32] has
designed arobust observer based output feedback controller for continuoustime delayed syssemwith saturation.

This paper presentsan observer based output feedback controller for discrete systemswith time delay and
saturation nonlinearity. A delay dependent Lyapunov functionisused for stability analysisusing reciprocal convex
approach. Thegtahility conditionsarederived intermsof LMI. Thesaturation behavior isdescribed by convex hull
s0 thisapproachisless conservative. The domain of attractionisalso estimated.
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Therest of the paper isorganized asfollows. In Sect. 2 problemisformulated and some useful Lemmasare
given. In Sect. 3 an observer based dynamic output feedback controller isdesigned for asymptotic stability of
underlying system and new condition for stahility isderived for the system subjected to interval typetime varying
delay and actuator saturation using LM technique. The domain of attractionisalso estimated. The numerical
exampleisgivenin Sect. 4 to show the validity of proposed approach.

2. PROBLEM FORMULATIONAND PRELIMINARIES
The notationsused inthis paper are:

Notations

R set of m x n red matrices

R set of m x 1 real matrices

0 null matrix or null vector

1 identity matrix of gppropriate dimension

A (Q) maximum eigenvalue of any given matrix Q
diag{a, a,, ...,a} diagonal matrix with diagonal elementsa,, a,, ..., a,
* symmetric termsin symmetric matrix

|-l normof matrix or vector

Consider adiscretetime systemin presence of actuator saturation and delay

x(k+1)=A,x(k) +A,,x(k—d(k)) +B, sat(u(k)) (18

y(k) = C,x(k) + D, sat(u(k)) (1b)

where

k € z, and z,_ denotesthe set of nonnegativeintegers. Thex(k) € R”isthestate vector of thegiven system. The
u(k) € Mrisinput vector whiley(k) e R?isoutput vector.

Matrices4, € ™", 4, € R™", B € R, C e R and D, e R areknown constant matrices.
Thetimevarying delay satisfies
d, <d(k) <d, )
whered, and d,are constant nonnegative integers representing thelower and upper delay bounds respectively.
Note- It isassumed that (Ap +4,, Bp) must be stablizable and (4 ” Cp) must be detectable.
A linear observer based dynamic output feedback controller for system (1) isproposed as

X (k+1) = A4,x, (k) + B sat(u(k)) - L( y(k) - p(k)) (39)
y(k) = C,x.(k)+ D, sat(u(k)) (3b)

To gahilizethe system (1) an observer based dynamic output feedback controller isproposedin thefollowing
form

u(k) =K %, (k) 4
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where x. (k) e®" isestimate of x(k) state vector. The observer output, controller gain and observer gain are
Pk)eRY, K e and L e R respectively.

Theegtimationerror isgivenas

e(k) = x(k) - x. (k) ©®)
Now, defining the extended state vector
_| x(k)

0| 1 o ©

Using (1)-(5), the closed loop systemiswritten as
S(k+1) = AS(k) + A;€(k—d(K)) + B sat(K¢ (k)) ()

where
|4 0 B _ 44 O

A{op Ap+LCJ’B{op]K:[K ‘KJ’Ad{AdZ o} 8

To establishthe proposed criteriain thiswork following preliminariesare required-

Lemma 1 [33]. For any constant matrix w e ®™" with y _w7 - o, integers [, < [,, vector function

o:{h,h+1..5} > R" suchthat the sums concerned arewell defined, then

<zz—zl+1>’iaf<f>Ww<z'>z(’zzwo)fw[’iwo)j 9

i=ly i=l i=h

Lemma 2[34-36]. For any vectorsc,, 6, matrices 7, S and real numbersa, > 0, a., > 0, satisfying

T S
{* T}Zo,al+a2=l, (10a)
c,=0ifc,=0(k=1,2) (10b)
then
T
Lofre-Logre | 2] |T 1] 7] (100
aq ay (o)) * T (op))

Lemma 3: [18]. To embed the saturation nonlinearity within convex hull the set isdefined as

sat(Kg(k))eco{(DxK+D;H)§(k), x=12,., 2!’} (11)

where
H —s" row of thematrix H

N

co{ .} - convex hull.
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Takingaset ¥ € R7Pcomprisesof diagonal matriceswith diagonal eementsare 1 or 0. For exampleif p =2,

then¥ ={D, D, D,, D}
o oo e olle 3 2

Theset ¥ contains2” elements D_foreveryx=1,2,...,2and D; =1, - D, isalsoanelement in V'
Anédlipsoid g(P, 1) ischaracterized asfollowingfor g < p ¢ g2
e(P)) = {f(k) e R 1 &7 () PE(K) < 1} (12b)
A polyhedra set ¢(H)iscongtrued as
U(H) = {f(k) e R :|H E(K)|< p s=12,.., p} (120)
H isthes” row of thematrix H and p representsthelevel of saturation.
When ¢é(k) e ¢(H), it followsfrom Lemma3that
sat(KE(k)) e co{(DxK +DLH)ER), x=12,.., zp} (13)

Next, usng (11-13), the closed loop system given by (7) can berepresented as

E(k+1) = A (k) + A& (k—d(k)) (14)
where
A=A+BD K+BD_ H for x=1 2. 27
An egtimate of domain attractionisrepresented by £; — ' where
Ey 2{p(k), —dy <k <0:max g, (k)] < 5 (153)

withinitial condition &, = ¢ (k) -d, < k <0be ¢(k,&,) and domain of attraction of theoriginis

T 2{g.(k), —dy <k<0:lim;_,, ¢, (k&) =0} (15b)

3. MAINRESULTS
Themainresultsof the paper are stated asfollows.

3.1. Robust Stabilization without External Disturbances
Theorem 1. For given scalars d., d,satisfying 0 < d, < d,, if there exist symmetric matrices 0 < P
R 0<Q (k=1,2,3) e B>, 0<Z (k=1,2) € R, controller gain matrix K e R"*", observer gain

matrix Le®R™, matrix H e RP?" and matrix S with appropriate dimension satisfying the following set of
LMIs (16-18)

zZ, S
]2 2
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P OHD|
{* le >Y s=12..,p @

_ﬂll 0 Z; 0 A Dl(f‘]_I)T Dlz(f‘l_l)T

* o Hy Z,-S" Z,-S Ay DA, Dy, A,

* * O -Z-Z, S 0 0 0

* * * -0,-27, 0 0 0 <0

M x x  —2X,+X,PX, 0 0 (18)

* * * * ¢ -2X,+X,Z, X, 0
| = * * * * * —2X;+X,Z,X, |

with

k=1

A 0
— p — —
A_{ 0 Ap+LCJ’ K:[K _KJ’ dip=dy—dy, Dy=dI, Dy, =d,l (20)

then the system given by (14) is stabilized by the observer based output feedback controller and observer
given by K and L respectively.

The estimated domain of attraction for (14) is represented by T 5 <1

where
Ts = (v (P) + 1 Jrex (@) + ey (Q2) +05(dy — ly +1)(d +6ly ) A (@) + 05(dy )
A+ dy ) A (Z1) +0.5(dy —dy )2 (dy +1+ dy ) A (Z5))] (21)
Pr oof:
Define
n(k) = &(k+1) - &(k) (22)

Congder aquadratic Lyapunov functiond

5
V(E(K) = D v(E(K) (23)
k=1
w(ER) =& (K)PER) (24)
k-1
E) = D & (0L (25)
r=k—d,
k-1
E) = Y &N (0 () (26)

r=k—d,
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-4 k-1

ANEOED WS IAGCI G 27)
s=—dy r=k+s
0 k-1 —d, k-1
€N =dy Y Y 0 (VZn(r) +dy Y, n' (r)Zon(r) (29)
O=—d,+1 r=k-1+6 0=—d,+1 r=k-1+0

Theforward differenceof Lyapunov functiona along trgjectoriesof syssem (14) isgiven as

Av(&(k))=v(&(k+1)) - v(&(k)) (29)
where

Av(E(K)) = ET (k+ D PE(k +1) - & (k) PE(K) +&T () E(k) — &7 (ke —dy) Q& (k—dy)
+&T ()Q28 (k) — & (k — d ) Q28 (k — dy) +(dyp +DET (K)QsE (k)
—d;
=2, &k +5)0sE (k+5) +din” (K)Zyn(k) +dn” (K)Z,n(k)
s=—d,
—d,

—d; ZO: n' (k+0-0)Znyk+6-1) —dy, Z 7' (k+0-0)Zyn(k+6-1) (30)
——d,

7 1+l 0=-d,+1

Notethat theterm

,dl
= 2 €T (k+5)Qs (k+5) < ¢ (k ~d(K))Qa& (k —d (k) (31)

s=—d,

FromLemmal, we havethefollowing relation

0
~dy Y, ' (k+0-DZyn(k+0-1)< -[¢" () - ¢" (k- dy) | Zy[ &) - &k — )] (32
O=-d +1
Alsotheterm
—d, —d;
~di, Y, 0 (k+0-DZpk+0-1) =-d, Y., n' (k+0-1)Zynk+06-1)
O=—d,+1 O=—d (k)+1
—d(k)
~di, Y., 1" (k+0-1)Zynk+06-1) (33)
0=-d,+1

Employing Lemmal on (33)

— <G T _ _ _dlZ —d; r ~ —d, .
d129:_22d2+1n (k+0-1)Z,n(k+6 DS—(d(k)—dl) S onlk+0-1 |z, > gk+o-1

6=—d(k)+1 O=—d (k)+1
dp, R —d(k)
(dp—d (k) g:_zdzﬂn kro-D)|2 9:_Zdz+1 o= (349
e SRR IO AU CARECIO)

dip
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iy [ ) =¢ - d3) ] Zo[ ek~ d() - £k~ )] (34b)
i
Define,
2(0) =k —dy) ~& (k- d(K)) (359)
220 = (k- d(R) ~ &k —d) (35b)
From (34) and (35), it isclear that (k) =0, if (d(k;—_dl)= oand 22(k)=0 ijf %: O In view of

12

Lemma2 and (34), if amatrix § satisfy (16) then

—dyp i 0 (k+0-DZynk +6-1) < {ll(")T Vl(k)} 36
O=—d,+1 Z22(k) ? (k) ( )
Employing (29)-(36), we have thefollowing inequality
AV(E(K)) < 9T (k)& (k)
where
HtEy Epp Z, 0
= * Hpt 5 z,-8" -§+2,
* * -0.-72,-2, S (37)
* * * -0,-2,
and
S (k) =[e" k) ¢ (-d) &"(k—dy) & (k-dy)] (39
E,=A"PA+D}(A-1)" Z(A-I)+D%(A-1)" Z,(A-1) (393
E,=A"PA,+D*(A-1)"Z,A, + D5(A-1)" Z,A, (39b)
Ey = AVPA, + D?ATZ, A, + D5AL Z,A, (40)
Applying Schur’s complement on (37), we obtain
(O z 0 A" D(A-I)" D,(A-I)"
R ) z,-S" Z;-S 4] DA} D, A}

* * -Q-Z,-Z, A 0 0 0

Z, =] * * * -0,-7, 0 0 0
* * * * _pt 0 0 (4]_)

* * * * * —Zfl 0

i % % % * % % _ZZ*1 |

For any matrices 0< X, (k =1, 2, 3),[19] wehave
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~P<-2X, + X,PX,
-7, <-2X,+X,Z,X, (42)
~Z, <-2X,+ X, Z,X,
Inview of (42), itisclear that (41) orientsto (18).

Itisrequired to pay atentionto theconditionof =, < 0, whichimplies Av(¢(k)) < 0for &(k) = 0. Sothe condition
=, < 0aongwith (16)-(17) are sufficient condition for asymptotic stability of the system (14).
Thestidactionof conditionstatedin(17) Sgnifiesthet theset & (P) = {é’ eR¥; TP E< l} isincludedin polyhedra

set ¢(11) asdefined in (120). It can be proventhat « (P) = {¢ e %™ & P & <1 isequivalent to (Boyd et al., 1994)
P—H(S)TH(S)/D*2 >0,s=12,..,p (43)

Pre and post multiplication of (43) by ¢7and ¢ respectively, it followsthat ¢ e ¢(7) foral ¢ee(P). The
relation (17) isobtained by using Schur’s complement on (43).

3.2. Maximization of Domain of Attraction
Anoptimization procedureto maximize the estimate of domain of attractionis presented inthis section.

Congder the closed loop system (14) withtheinitia conditions (15b) then the maximized domain of attraction
can be estimated from thefollowing convex optimization problem

Minimizer
where
r=wytdyw,+dyw; +0.5(d, —d;+1)(dy+d;)wy +0.5d7 (1+dy ) ws+ 0.5(dy — dy)? (dp+dy+1) g (44)
subject to (16)-(18) and
wil—P>0, wol =0, 20, weI -0, >0, wyd —03>0, wsl —Z; >0, wegl —Z, >0 (45)
has a feasible solution for the weighting parameters w, >0, k=1, 2, ...,6 postive definite symmetric matrices
PeR™2 0 (k=123 eR™"?, Z, (k=12) e R, 0<X,, (k=1 2, 3),controller gainmatrix K < ®”" obsarver
ganmatrix L e ™, marix g e %7 and marix.S.

1
Fromtheaboveoptimizationtechnique, themaximized estimeteof domain of atractionisgiven by Smax = F with

ﬂr = ﬂ’mwc (P) + dlﬂ‘max (Ql) + dZJ‘max (QZ) + OS(dZ - dl+l) (dZ +dl)ﬂ‘max (Q3) + 05d12 (1+d1)/1max (Zl) +
0.5(d —dy)*(dy+dy +1) Ay (Z5) (46)

Proof: Thesatisfaction of relation (45) impliesthat wi > 4, (P), woI > 2,,,.(Q)), wyI > 4,,,.(05), waI > 4, (05),
wsl > 2, (Z)) and wel > 4,,,.(Z,) .

max max

Thus, if we minimize (44), estimate of region is being maximized. I n other words, the above optimization
procedure orientsthe solutions of (16)-(18) inorder to obtainthe domain of attraction aslarge as possible.
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4. NUMERICAL EXAMPLE
Theeffectivenessof the proposed approachisillustrated by the given Example.
Example 1 Consider thediscretetime state delayed systemisfollowing

, _[08 0] ~ _[-0015 -001] . [1
Lo o7l M= o _oois| B T|os| €» =[-00018 -0.0018] (47)

Using Matlab LMI toolbox [37-38] the LMI conditions (16-18) stated in Theorem 1 and (45) is solved for
optimization programto maximize the domain of attraction. The controller gain k, observerganL ands = are
obtained asfollowing after solving theabove LMIs

Tablel
Computational results

Delay Range d, < d(k) < d, - Controller gain [ Observer gain L

[-105.0112]]
1<d(k) <21 0.0012 [0.1277 0.0784] _123.6960

[ —48.7253
1<d(k) <15 0.0016 [0.0795 0.0426] ~116.1249

[ —45.6324 |
1<d(k) <10 0.0029 [0.0690 0.0321] ~107.3030

[ —44.3869 |
1<d() <5 0.008L [0.0661 0.0286] 100.2890

Figure 1(a)-1(b) depictsthe statetrajectoriesof discrete sysem givenby (1) and their estimated states. The

0.01 0.005}

—o.oe} and (k) = {0.013

initial conditionsaregivenas x(k) = {

FromFgure 1it isshownthat the actua state of the plant isestimated by observer given by (3) and the control
effort is shown in Figure 2 for control bound-10<, <10. It can be seen from the Figure 1 that the error

e(k) = x(k) - x, (k) isconvergesto e(k) = 0.

0.01
0.009¢

Actual State x1
0.008} - — — Estimated State x1cap

0.007¢{

0.006{
$0.005} - -
IS

i
0.004¢
0.003} RN

0.002} AN

0.001f T
0

0 5 10 15 20 25 30 35 40 45 50
Sample

Figure 1: (a) Plant state xland estimated state by Observer



1392 Vipin Chandra Pal, Richa Negi & Jeetendra Kumar

0.02 T T T
Actual State x2

— — — Estimated State x2cap ||

0.01f \

-0.01f

-0.02}

States

-0.03f

-0.041

-0.05f

-0.06 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Sample

Figure 1 (b) Plant state x2 and estimated state by Observer

x 10

Control Effort u
i
1

O 1 1 1 1 L 1 I 4 |
0 5 10 15 20 25 30 35 40 45 50
Sample

Figure 2: Control Effort

5. CONCLUSION

Inthis paper, an observer based output feedback approachisusedfor discrete systems subjected to input saturation
andtimevarying delay. Thestahility conditionsare obtained by usng L MI technique with delay dependent Lyapunov
functional based on reciprocal convex approach. The gain of observer and controller are obtained from delay
dependent LMI conditionsto stabilize the system. A less conservative method, based on convex hull approach, is
used for representing theinput saturation nonlinearity. Thereiscongderableincrement indelay range as compared
to previousexiging results[ 19]. An algorithmis givento maximizethedomain of attraction. To validate the proposed
technique anumerica exampleisaso provided.



An observer based dynamic output feedback controller... 1393

(1]
(2
(3]
[4]

(8]
[9]
(19
(1
[12]
[13]

[14]

[16]
[17]
(18]
(19
[20]
(1]
(2]
[23]

[24]

Reference
H. Changchun, P. X. Liu and G Xinping, “Backstepping contral for nonlinear systemswith time delaysand applicationsto
chemical reactor systems,” IEEE Transactionson Industrial Electronics. Vol. 56. pp. 3723-3732, 2009.

V. Dolocan, “ Spatial distribution of radiative recombination rate, time delays, and Q switching in single heterostructure
lasers,” IEEE Journal of Quantum Electronics Val. 14. pp. 872- 882, 1978.

X. Li and H. Gao, “A new model transformation of discrete-time systemswith time-varying delay and its application to
stability analysis,” |EEE Transactionson Automatic Control. VVol. 56. pp. 2172-2178, 2011.

M. H. Perrott, and R. J. Cohen, “An efficient approach to ARMA modeling of biological systemswith multipleinputsand
ddays,” |IEEE Transactionson Biomedical Engineering. Vol. 43. pp. 1-14, 2014.

E. Fridman and M. Dambrine, “ Control under quantization, saturation and delay: An LMI approach,” Automatica. Vol. 45.
pp. 2258-2264, 2009.

H. Gaoand C. Wang, “ A del ay-dependent approach to robust A, filtering for uncertain discrete-time state-del ayed sysems,”
|EEE Transactionson Signal Processing. Val. 52. pp. 1631-1640, 2004.

L. Zhang, P. Shi and E.-K. Boukas, “ H_ output-feedback control for switched linear discrete-time systemswith time-varying
ddays,” International Journa of Control. Val. 80. pp. 1354-1365, 2007.

H. R. Karimi and H. Gao, “New del ay-dependent exponential /7 synchroni zation for uncertain neural networkswith mixed
timedelays,” |EEE Transactionson Systems, Man, And Cybernetics-Part B: Cybernetics. Vol. 40. pp. 173-185, 2010.

Y.M. LiuandI. K. Fong, “On the control lability and observability of discretetimelinear time-delay systems,” International
Journal of Systems Science. Val. 43. pp. 610-621, 2012.

H. Gaoand T. Chen, “New results on stability of di screte-time systemswith time-varying state delay,” |EEE Transactions
on Automatic Control. Vol. 52. pp. 328-334, 2007.

S. Oucheriah, “Global stabilization of a class of linear continuous time-delay systems with saturating controls,” |EEE
Transactionson Circuits and Systems-1 Fundamental Theory and Applications. Val. 43. pp. 1012-1015, 1996.

J. M. Gomes da Silva Jr., S. Tarbouriech and G. Garcia, “Anti-windup design for time-delay systems subject to input
saturation An LMI-based Approach,” European Journal of Control. VVol. 6. pp. 622-634, 2006.

B. Zhou, H. Gao, Z. Lin, GR. Duan, “Sabilization of linear systemswith distributed input delay and input saturation,”
Automatica. Vol. 48. pp. 712-724, 2012.

J. M. GomesdaSilvaJr., F. Lescher and D. Eckhard, “Design of time-varying controllersfor discrete-timelinear systems
with input saturation,” IET Control Theory and Applications. Vol. 1. pp. 155-162, 2007.

J.M. GomesdaSilvaJr., D. Limon, T. Alamoand E. F. Camacho, “ Dynamic output feedback for discrete-time systemsunder
amplitudeand rate actuator congraints,” |EEE Transactions on Automatic Control. Vol. 53. pp. 2367-2372, 2008.

J.M. GomesdaSilvaJ., E.B. Castdan, J. Cagtelan and D. Eckhard, “ Dynamic output feedback stabilization for systemswith
sector-bounded nonlinearities and saturating actuators,” Journal of the Franklin Institute. Vol. 350. pp. 464-484, 2013.
A.-S. Rohman and R. H. Middleton, “Anti-windup schemesfor discrete time systems: an LMI-based design. 5th Asian
Control Conference2004, pp. 554-561, 2004.

T. Hu, Z. Lin and B. M. Chen, “Analysis and design for discrete -time linear systems subject to actuator saturation”
Systemsand Control Letters. VVol. 45. pp. 97-112, 2002.

R. Negi, S. Purwar and H. Kar, “ Del ay-dependent stability analys s of discretetimedel ay sysemswith actuator saturation,”
Intdligent Control and Automation. Val. 3. pp. 34-43, 2012.

A. Mahjoub, F. Giri and N. Derbel, “Delayed system contral in presence of actuator saturation,” Alexandria Engineering
Journal. Vol. 53. pp. 553-561, 2014.

Y.-Y.Cao, Z. Linand T. Hu, “Stability analysis of linear time-del aysystems subject toinput saturation,” | EEE Transactions
on Circuitsand Systems|: Fundamental Theory and Applications. Vol. 49. pp. 233-240, 2002.

H. Fangand Z. Lin, “A further result on global stabilization of oscillators with bounded ddayed input,” |EEE Transactions
on Automatic Control. Vol. 51. pp. 121-128, 2006.

A. Hmamed, A. Benzaouia, and H. Bensalah, “Regulator problem for linear continuous time-delay systems with
nonsymmetrical constrained contral,” IEEE Transactionson Automatic Contral. Vol. 40. pp. 1615-1619, 1995.

S. Tarbouriech and J. M. Gomesda Silva, Jr., “Synthesisof controllersfor continuous-timedelay systemswith saturating
controlsviaLMI’s,” |EEE Transactionson Automatic Control. VVol. 45. pp. 105-111, 2000.

K. Yakoubi and Y. Chitour, “Linear systems subject to input saturation and time delay: Global asymptotic stabilization,”
|EEE Transactionson Automatic Contral. Vol. 52. pp. 874-879, 2007.



1394 Vipin Chandra Pal, Richa Negi & Jeetendra Kumar

[26]

[27]

[38]

S. Xu, G Feng, Y. Zou, and J. Huang, “Robust controller design of uncertain discrete time-delay systems with input
saturation and disturbances,” |EEE Transactionson Automatic Control. Vol. 57. pp. 2604-2609, 2012.

M. Rehan, A. Ahmed and N. Igbal, “ Static and low order anti-windup synthesis for cascade control systemswith actuator
satjuration: An applicaton to temperature-based processcontrol,” | SA Transaction. Vol. 49. pp. 293-301, 2010.

S. Gao, H. Dong, Y. Chen, B. Ning, G Chen and X. Yang, “ Approximation-Based Robust Adaptive Automatic Train Control:
AnApproach for Actuator Saturation,” |EEE Transactionson Intelligent Transportation Systems. Vol. 14. pp. 1733-1742,
2013,

J. Zheng and M. Fu, “ Saturation control of a piezod ectric actuator for fast settling-time performance,” | EEE Transactions
on Contral Systems Technology. Val. 21. pp. 220-228, 2013.

B. Xiao, Q. Hu and P. Shi, “Attitude stabilization of spacecrafts under actuator saturation and partial lass of control
effectiveness,” |EEE Transactionson Control Systems Technology. Vol. 21. pp. 2251-2263, 2013.

S. K. Yang, “Observer-based anti-windup compensator design for saturated control systems using an LMI approach,”
Computersand M athematicswith Applications. Val. 64. pp. 747-758, 2012.

Y. Wei, W. X. Zheng and S. Xu, “ Robust output feedback control of uncertain time-delay systemswith actuator saturation
and disturbances,” Journal of the Franklin Ingtitute. Vol. 352. pp. 2229-2248, 2015.

J. Qiu, Y. Xia, H. Yang and J. Zhang, “ Robust stabilisation for aclass of discrete-time systemswith time-varying delaysvia
deltaoperators,” IET Control Theory and Applications. Vol. 2(1). pp. 87-93, 2008.

P. Park, J. W. Koand C. Jeong, “ Reciprocally convex approach to stability of systemswith time-varying delays,” Automatica.
Voal.47. pp. 235-238, 2011.

J.Liuand J. Zhang, “Noteon stability of discrete-timetime-varying delay systems,” IET Control Theory and Applications.
Val. 6. pp. 335-339, 2012.

S. K. Tadepalli, V. K. R. Kandanvli and H. Kar, “ A new delay-dependent stability criterion for uncertain 2-D discrete sysems
described by Roesser model under the influence of quantization/overflow nonlinearities,” Circuits, Systems, and Signal
Processing. doi: 10.1007/500034-015-9975-x., 2015.

P. Gahinet, A. Nemirovski, A. J. Lauband M. Chilali, LMI Control Toolbox-for usewith MATLAB. MATHWORKSInc.,
Natic, 1995.

S. P Boyd, L. El Ghaoui, E. Feron, andV. Balakrishnan, Linear Matrix Inequalitiesin System and Control Theory. Philade phia:
SIAM. 1994.





