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Wiener Polynomial for Tensor
Product of Graphs
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Abstract: Wiener Index is a graph invariant introduced originally for molecular
graphs of alkanes. All structural formulas of chemical compounds are molecular
graphs where vertices represent the set of atoms and edges represent chemical
bonds. The construction and investigation of topological indices that could be
used to describe molecular structures is one of the important directions of
mathematical chemistry. The Wiener Index W(G) of a graph G is defined as the
half of the minimum distances between every pair of vertices of G. As such there
is no exact formula to determine the value of W(G) though there are some for
particular classes of graphs. In this paper we determine Wiener index and
polynomial for some Tensor product graphs.
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1. Introduction

The Wiener number or Wiener Index W(G) is originated from the work of H.
Wiener [4] as a topological index to study the relation between molecular structure
and physical and chemical properties of certain hydrocarbon compounds. It is
employed to predict boiling point, molar volumes and large number of physico-
chemical properties of alkanes. Itis defined as the half-sum of the distances between
all ordered pairs of vertices of the graph G.

W(G) =1 > dw.y)
2u,v€V(G)

Where d (u, v) is the number of edges in a shortest path connecting the vertices
uand vin G.

This number is widely used in computational chemistry to measure some
topological properties and in the study of Quantitative Structure Property
Relationship (QSPR). When G is a path graph P, W(G) = (n’ — n)/6 where n
denotes the number of vertices of graph G.

Definition 1.1: Tensor product of two graphs G, and G, is a graph G (V, E)
with vertex set V= {v,v,,...,v ,u,u, ..., u } and edge set E = {w w,/uuck 6 &
vv,,eE } where w = (u,, v) and w, = (u,, v,).
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Tensor product of P _and C is (2, 4) biregular graph, tensor product of Cand
C is 4-regular and tensor product of P, and K is a n— 1 regular graph. In this paper
we consider some tensor product graphs suchas P, A C,, C, A C and P, A K and
find Wiener index for them.

2, Construction of Graphs

P, A\ C graphisa(2,4) biregular connected graph when 7 is odd and a disconnected
graph with two components when 7 is even and each component is a (2, 4) biregular
graph. The biregular graph P, A C is a connection of n cycles with 4 vertices and
each cycle has one common vertex with the other cycle.

Algorithm 2.1:
Input: 'The path graph with 3 vertices and cycle graph with odd number of vertices.
Output: A (2, 4) biregular graph with 3# vertices.

Begin
for i=1ton
V.={v}
for j=1to2n
V,={u}
for (=1,j=1i++j=2)
E={(v,u) O ,u, )Y, v, )V, v, )}
E=E U{(v,u, JYUH,u, )}
End

Figure 2.1: P, A C, Figure 2.2: One Component of P, A C,
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The construction of a tensor product of C, and C, contains two parts
(i) Construction of a cycle with 3#n vertices

(ii) Drawing lines with in the cycle.

Figure 2.3: C, N C,

Algorithm 2.2:
Input: Cycle graph with 3 vertices and Cycle graph with n vertices.
Output: A (2, 4)biregular graph with 3#n vertices.

Begin
for i=1to3
for j=1ton
V={w/}
E={w Lw)Houmw ,wHuw ", wH}
for k=nto3
E={wlwiHhouw  wiHumw2wrD}
E ={(wXw)umw ,wh}
E ={(w/ ,w)oumw;,w)}
for k=2ton-2

E5 — {(Wik’ Wk+ 1) U (W.kH Wk+2) U (W.k+2 Wik+1)}

i+l i+l 2 T2 i+2



38 J. BASKAR BABUEE & A. JosHr

E = {(w), w)) U w), wHU W, w)Uw, w)uw],w)}
E=E UE UE,UE,UE UE,
End

3. Calculation of Wiener Index and Wiener Polynomial
Theorem 3.1: The Wiener Index of a graph P, A C is %(9n2 + 7), nis odd.

Proof: The vertices of P, A C_ can be divided into three categories
(i) Vertices of degree four

(ii) Inner vertices of degree two

(iii) Outer vertices of degree two

The general term of distances between vertices of degree four and all the
vertices is

n4(1+3+5+...+n-2)+2Q2+4+...+(n-1)+2n]= % [3n% + 1]
The general term of distances between outer vertices of degree two and inner
vertices is

n2A+2+3+...+(n=D+nl=n°
The general term of distances between inner vertices and outer vertices is

2
n{3(2) +4(2+ 3+ .+ ’lglﬂ _ n(n2+ 3)

The general term of distances between inner vertices and inner vertices is
nd4+2QC+3+..+m-D+nl=nm+2)
The general term of distances between outer vertices of degree two and outer
n (n2 -1
T2

vertices of degree two is r{4(1 +24+..+ " ; 1)}

1 2 2
W(P,AC)= 5{3(3n2+1)+n3+n(n2+3)+n(nz+2)+n(n2 1)}

WP, AC)= %(9;12 +7)
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Theorem 3.2: The Wiener polynomial for tensor product of P, and C  is
WP NC)=4n(g+ @+ ... +q" )+ 6ng* + 5n(qg*+ ¢° +...+¢" ") + 2nq"

Proof: Since P, A C, (2, 4)biregular graph with n vertices of degree 4 and 2n
vertices are of degree 2. A vertex of degree 4 gives 4 pair of vertices of distance
one and a vertex of degree two gives 2 pair of vertices of distance one, hence the

1
coefficient of ¢ is 5 [4n + 2(2n)] = 4n.
A vertex of degree 4 gives 2 pair of vertices of distance two and a vertex of
degree 2 gives five pair vertices of distance two including opposite vertices of

degree two, hence the coefficient of ¢ is % [2n+ 52n)] = on.

A vertex of degree 4 gives 4 pair of vertices of distance three and a vertex of
degree two gives 2 pair of vertices of distance three, hence the coefficient of ¢° is

1
5 [4n + 2 (2n)] = 4n.
A vertex of degree 4 gives 2 pair of vertices of distance four and a vertex of
degree 2 gives four pair vertices of distance four, hence the coefficient of ¢* is
1
5 [2n+ 4 (2n)] = 5n.
Similarly the odd powers of g have coefficient 4n and even powers of g have
coefficient Sn except the coefficient of ¢* and the coefficient of ¢".

In P, A C, the maximum distance between vertices is n, hence the highest
degree in the Wiener polynomial is n.

A vertex of degree 4 gives 2 pair of vertices of distance » and a vertex of
1
degree two have exactly one vertex of distance n, hence 5 2n + 2n(1)] =2n.
Hence WP, AC),q)=4n(g+q +... +q* ) +6ng*+5n(q* +¢° +.. .+ q* ")+ 2ng"

Corollary 3.1: Since W[G] = W[G; 1], where W denotes the derivative of
Wiener polynomial

WP,NC)=4n(1+3+...+(n-2)+ 12n+5n(4+6+...+(n-1))+2n?

2
n(n—1y7° +5r{n -1 _2}+12n+2n2
4

4’ +52n+5n° =450 n(9n* +7)
4 4
Theorem 3.3: The Wiener Index for a tensor product of cycle graphs C, and C is

W({C,NC)= 37”{nz—2n—4+§mod(3n—5,8)}, n >4 and nis even
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3 —
W(C,AC)= Tn{nz—4n—l+n71mod(3n—5,8)}
n>5Sandnisodd & mod B3n -5, 8)#0

2 —
W(C,AC)= w . 3n—5isamultiple of 8.

Proof: Since C, A C is a 4-regular graph, each vertex of C, A C is connected
directly to four different vertices. The four different vertices are connected to eight
different vertices and these eight vertices are connected to other 8 vertices and so
on. In this way we can go from starting vertex to all other vertices of C, A C .
Except the first five vertices all the other vertices are divided into group of eight
vertices and each group of distances

i) 2,3,(n-2)2ifnisevenandn >4,
(i) 2,3, ...,(n—-13)2ifnis odd and mod (3n — 5, 8) is not equal to zero and
(iii) 2, 3, ..., (n— 1)/2 if 3n — 5 is a multiple of 8.

W, NC )= %{4+8(2+3+...+

(n_z)j+mod(3n—5,8)ﬁ}
2 2

W({C,NC)= %{nz—2n—4+§m0d(3n—5,8)},ﬂ>4andﬂis even

If nis odd and n > 5 then

3n

W(C,AC)= 7{4+8(2+3+...+’”‘_3

)+ nT_lmod (3n -5, 8)}

3 -
W(C,AC)= Tn{nz—4n—l+n71mod(3n—5,8)}
n>5andnisodd & mod (3n -5, 8) #0 or

W(C,AC)= %{4+8(2+3+...+n7_1ﬂ

2 —_—
W(C,AC)= w . 3n—5isamultiple of 8.
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Corollary 3.2: From Wiener index can get Wiener polynomial

W(C,NC)= n 4+8(2+3+...+("2;2)j+m0d(3n—5,8)ﬂ

2
371_ n-2 n
W((C,AC), q)= — 2 2
(C,ANC), @) 5 _4q+8(q2+q3+...+q 2 j+m0d(3n_5’8)q2}

n>4 and n is even

W({C,NC)= %{4+8(2+3+...+n;3)+n2_1m0d(3ﬂ—5,8)},

n>5Sandnisodd & mod B3n-5,8)=0

W ACy =] n-3 n-1
’ = 2 |4g+38 q2+q3+...+q 2 J+mod(3n-58)qg 2
3| n—1 . .
W, NC )= 7 4+8(2+3+... + 5 , 3n—5is amultiple of 8
3| n—1
WHC,NC), q)= By 4g + 8[6]2 +q3 totq J:|

Figure 3.1: P, AN K,

Theorem 3.4: The Wiener Index of a tensor product of path graph P, and the
complete graph K is 3n°.

Proof: The tensor product of P, and K is a n — 1 regular graph. Any vertex
of (P, A K ) can reach n — 1 vertices with distance one. These n — 1 vertices can
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reach other n — 1 vertices with distances two. Hence from a starting vertex one can
cover 2n — 2 vertices. The remaining one vertex can reach by three edges from the

1
starting vertex. Therefore, W(P, A K ) = 5 Ru(n-D+m-1)2+3)]=3n%

Theorem 3.5: The Wiener polynomial of tensor product of path graph P, and
complete graph K is W[(P, NK), ql=n(n—- 1) g+nn-1)g°+ng.

Proof: Since (P, AK))isa(n— 1)-regular graph and it is a bipartite graph with
vertex sets V| and V, with n vertices each.

Each vertex W' in V, is connected to n — 1 vertices W/, in V, by an edge and
when i = j the distance between W' and W' is 3. The distance between vertices in
V| is two, similarly in V.

Hence W[(P,AK),ql=n(n—1)g+nn-1)qg*+ng.
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