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ABSTRACT

This paper presents an Extreme Learning Machine (ELM) approach for a fast and accurate estimation of the power
system loading margin for multiple contingencies with reduced input attributes. Active and reactive power flows of
all load buses are chosen as the input features to the ELM. The training data for the ELM model are generated by
using the Continuation Power Flow (CPF) method. The proposed method is Mutual Information (MI) based
dimensionality reduction technique to reduce the input dimension and for improving the performance of the developed
network with less training time, which makes ELM approach applicable to large scale power system. IEEE 30-bus
system and IEEE 57-bus system are considered for the demonstration of an effectiveness of the proposed methodology
under various loading conditions on the single line contingencies. Simulation results validate the proposed ELM
with reduced input features for fast and accurate on-line voltage stability assessment.

Keywords: Extreme learning machine, voltage stability assessment, loading margin, mutual information based
feature selection

1. INTRODUCTION

For online applications, a fast and accurate estimation of the power system loading margin is required to
take decisive actions to avoid voltage collapse in the power system. Voltage stability may be assessed using
static and dynamic methods. Many analytical methods [1–12] have been proposed for the static and dynamic
method of voltage stability assessment that is time-consuming and limits their application for on-line.
Alternatively, many authors [13-19] have proposed Artificial Neural Network (ANN) for an on-line
monitoring of voltage stability. Because of slow gradient-based learning algorithms with all parameters
tuned in an iterative manner, the training time of a feed forward neural network goes higher. Also, traditional
ANN learning algorithms usually suffer from excessive training and/or tuning burden leads to the
unsatisfactory generalization performance.

This paper contributes an accurate and valid prediction model for loading margin estimation that can
overcome the limitations of conventional ANN learning algorithms. In this paper, ELM model [20] is
developed for power system loading margin estimation for multiple contingencies with reduced input features.
For large power systems, the training ELM with all input features consumes large training time. MI-based
feature selection technique is used to reduce the input variables for reducing the training time without
compromising the accuracy. IEEE 30-bus system and IEEE 57-bus system are considered for a demonstration
of an effectiveness of the proposed methodology under various loading conditions on single line
contingencies.
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2. LOADING MARGIN ESTIMATION FOR VOLTAGE STABILITY ASSESSMENT

Voltage stability is concerned with the ability of the power system to maintain acceptable voltage levels at
all buses in the system under different loading conditions, where the system can work normally or subjected
to disturbance, to ascertain the stability limit and margin. Voltage stability is commonly analyzed and
applied either through time-domain (dynamic) simulation or through steady-state analysis to predict voltage
collapse between these two approaches. Time-domain system influencing voltage stability is usually slow.
Therefore, many aspects of the problem along with a wide range of system condition’s examination can be
effectively analyzed by using static methods which can provide a better insight into the nature of the
problem and identifying the key contributing factors. For static voltage stability, system load is increased
incrementally and slowly (in certain directions) to the point of voltage collapse. This condition is called
loading margin, which is the best measure of system voltage stability limit (Fig. 1). At the load-ability limit,
or at the tip of the nose curve, the power flow equations of the Jacobian system will become singular as the
slope of the nose curve becomes infinite. Thus, the traditional Newton-Raphson method of obtaining the
load flow solution will break down and the modification is employed using this Newton-Raphson
continuation method [9]. This method introduces an additional equation and unknown into the basic power
flow equations, an additional parameter is chosen specifically as a continuation parameter to ensure that
the augmented Jacobian is no longer singular at the load-ability limit.

3. PROPOSED APPROACH FOR LOADING MARGIN ESTIMATION

Extreme Learning Machine (ELM) with reduced input features is developed for a fast and accurate estimation
of loading margin on the multiple contingencies. The various steps involved in this proposed approach
using voltage stability assessment are given below:

3.1. Generation of training data

The ELM training data are obtained using the following procedure:

• First, the real and reactive powers of all load buses are randomly varied from the base case value
with proportionate change in real power generation.

• Next the loading margins are obtained by running CPF routine for the specified contingencies.

Figure 1: Loading margin
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3.2. Mutual Information based dimensionality reduction

Dimensionality reduction technique is mandatory to reduce the input variables and thus reduces the
measurement cost. If all the input variables are considered for training the developed network, then the
system size grows larger [18] that results in large training time leading to large scale power system problems.
The main aim of dimensionality reduction is to make the ELM applicable for large scale power systems.
This is done by reducing the number of input measured variables from the actual measured variables to
reduce the size of the network otherwise there is a possibility of the larger size network resulting in more
variable data to be processed by ELM. Since the contingencies are localized nature, all the input variables
cannot provide equal influence over the network and these redundant attributes may complicate the ELM
network structure and they also degrade the performance of the ELM networks. Thus, by selecting the
relevant variables as input features and with smaller computational efforts, higher performance is expected.
With too many input variables, the ELM network suffers from the curse of dimensionality. This paper
proposes a mutual information based feature selection to reduce the dimensionality of the input variables.
The MI-based feature selection method [18] is used to achieve the dimensionality reduction by selecting a
subset feature from an initial set of available features, thereby reducing several network input features.
Thus the MI-based feature selection technique can improve the estimation speed and accuracy.

According to Shannon’s information theorem, the random variable Y uncertainty can be measured
using entropy H(Y). Thus, for these two variables X and Y, conditional entropy H(Y/X) measures the
uncertainty of variable Y, when the variable X is known. Thus, the mutual information I(Y; X) measures the
certainty of the variable Y by resolving the variable X. The relation between H(Y), H(Y/X), I(Y; X) is given
by

( ) ;H Y H Y X I Y X (1)

The main objective of proposing a training classification model is to reduce the uncertainty predictions
on output variable Y, for the given input variable X. Thus, training a classifier is to improve the MI I(Y; X)
as required. If I(Y; X) = 0 then the information contained in the observations may not be useful for determining
the output Y. The goal is to achieve naturally the feature selection process for classification in order to
obtain higher values with the smallest possible size of feature subsets. The prior entropy in the following
section is defined based on Shannon capacity, which is defined as follows.

Consider a stochastic system with input variable X and output variable Y. Let the discrete variable with
variable X has N

x
 number of possible values and the variable Y has N

y 
number of possible values. Now the

initial uncertainty about the variable Y is defined by the entropy H(Y),
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difference between H(Y) – H(Y/X) represents the uncertainty of the system’s output, which can be resolved
by knowing the input. Thus from eqn. (2) we may thus write,
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Thus the mutual information is therefore the amount by which the input variables provided by X reduces
the number of uncertainties about the random variable represented by Y. Mutual information, also called as
a symmetrical measure, which represents the information gained from the output variable Y after observing
the input variable X is equal to the information gained about the variable X after observing Y. For the
contingency selection problem, variable X at load buses refers to the real and reactive power loads and
variable Y represents the post-contingency loading margin.

3.3. Data normalization

To avoid the dominance of higher valued input variables over the smaller ones and to prevent the saturation
of simulation neuron, the input data are normalized by using the following expression:

min

max min
n

x x range
x starting value

x x (5)

where, x
n
 is the normalized value and x

min 
and x

max 
are the minimum and maximum values of the data.

3.4. Network training and testing

The normalized input features are presented to the ELM network for training and tested with a new input
data, which is not previously used for training. The accuracy is evaluated by calculating the root mean
square error (RMSE). Once the network is trained and tested, the developed network is ready for estimating
the loading margin values at different operating conditions.

4. REVIEW OF EXTREME LEARNING MACHINE

The conventional Back Propagation (BP) learning algorithm suffers from slow convergence, local minima
and over-fitting problems as it is a first order gradient method. It also involves too many parameters which
are needed to be tuned randomly. Extreme learning machine (ELM) [20, 21] is a new and promising three-
step tuning free learning algorithm used for training the single hidden layer feedforward neural networks
(SLFNs). Empirical risk minimization theory is adopted in ELM. The whole learning process is done
within a single iteration. The proposed algorithm is able to provide good generalization performance,
robustness, controllability and fast learning rate. ELM is remarkably efficient and tends to reach a global
optimum. The input weights and hidden layer biases of ELM can be assigned randomly. In ELM, the
hidden nodes are randomly initiated and then fixed without iteratively tuning. The weights of the output
layer are calculated using the Moore-Penrose (MP) generalized inverse. ELM uses non-differentiable or
even discontinuous functions as an activation function. Different from traditional learning algorithms, the
proposed learning algorithm not only tends to reach the smallest training error but also the smallest norm of
weights. Therefore, the proposed learning algorithm tends to have good generalization performance for
feedforward neural networks.

4.1. Algorithm of ELM

The steps of ELM algorithm are briefly given below: 

Step 1: Random assignment of input weights and bias for the given activation function and hidden
neurons.

Step 2: Calculation of the hidden layer output vector.

Step 3: Calculation of the output weight vector �:

†H T
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H† Moore–Penrose generalized inverse of matrix H.

5. PERFORMANCE EVALUATION

In this section a detailed simulation study is carried out on both IEEE 30-bus system and IEEE 57-bus
systems. Based on contingency analysis conducted at varying load conditions, severe line outages could be
identified and the ELM model is developed for estimating the loading margin analogous to these
contingencies.

5.1. Voltage stability assessment in IEEE 30-bus system

IEEE 30–bus system consists of 41 transmission lines, 6 generator buses and 24 load buses. For this test
system, severe cases based on the contingency analysis conducted at different loading conditions were
identified, the seven single line outages were 1-2, 2-5, 4-12, 9-10, 27-29, 27-30, and 28-27. To generate the
ELM training data, generator real power outputs and reactive and active powers at the load buses are varied
randomly between the operating conditions that vary between 75% and 125%. Based on the algorithm
given in Section 4.1, thousand input output pairs were generated, with 250 for testing and 750 for training.
Using a data set, a single network for all contingencies is developed.

For illustration, the overall mutual information between the input variables and the output for severe
contingencies is shown in Fig. 2. From this figure, it is evident that only few variables are having necessary
information and the remaining variables have insignificant information. Few variables with overall high
MI values are selected as features for training this proposed ELM, and the remaining variables are neglected
from further observations. The selected features of the ELM model are real power demand at bus 30 and
reactive power demand at buses 3, 4, 18, 20 and 29. The selected seven variables after normalization are
presented to the network. After training, the networks are tested with the test data set to assess the
generalization capability of the developed network.

The performance evaluation of the proposed ELM model is shown in Table 1. From this evaluation it is
clear that the proposed ELM algorithm takes lesser time for training and exhibits better generalized
performance of RMSE with 0.0002 after feature selection.

Figure 2: MI between input and output variables in IEEE 30-bus system
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Table 1
Performance Comparison of ELM before and after Feature Selection

Parameters With all input With MI-based
features feature selection

Number of input variables 42 7

Number of output variables 7 7

Training data 750 750

Testing data 250 250

Training accuracy (RMSE) 0.0029 0.0001

Testing accuracy (RMSE) 0.0035 0.0002

Training time (s) 0.1875 0.0781

Testing time (s) 0.0313 0.0313

Comparison of ELM output with CPF result is presented in Table 2 which shows an agreement between
the rankings based on the output and the actual ranking of the ELM. After providing necessary training, the
voltage stability index is estimated accurately within short duration of time, i.e., 0.0313 seconds, compared
to conventional power flow method which takes 12.575 seconds. This clearly reveals that the proposed
method can provide efficient training in large scale power systems for on-line voltage stability assessment.

Table 2
Comparison of ELM output with CPF result

ELM output CPF result

Line outage Loading margin Rank Loading margin Rank
in p.u in p.u

1 2 0.2612 I 0.2612 I

2 5 2.0411 V 2.0410 V

4 12 2.7010 VII 2.7010 VII

9 10 2.4207 VI 2.4207 VI

28 27 1.4144 II 1.4144 II

27 29 2.0143 IV 2.0143 IV

27 30 1.8089 III 1.8089 III

5.2. Voltage stability assessment in IEEE 57- bus system

Next, the proposed approach was applied for voltage stability assessment in IEEE 57-bus system. The considered
system consists of 80 transmission lines, 7 generators and 50 load buses. The training and test data required to
develop the ELM are generated by adopting the procedure given in Section 3.1. A single ELM model was
developed for ten severe single line outages (22–23), (24–25), (26–27), (27–28), (28–29), (7–29), (30-31), (36-
37), (37-38) and (22–38). Input features of the network are selected using the mutual information based method.

The overall mutual information between the input variables and the output for severe contingencies is
shown in Fig. 3. Table 3 shows the performance of ELM before and after feature selection. The results
presented in the tables show the ability of the proposed model to estimate the voltage stability level even
for a larger test system.

Table 4 shows the comparison between the conventional CPF and ELM load flow for ranking of
contingencies with one particular condition and the result provides an agreement between ELM ranking
and CPF ranking. This clearly proves that ELM is computationally efficient for on-line voltage stability for
multiple contingencies.
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6. CONCLUSION

This paper presents a single ELM model for power system loading margin estimation for multiple
contingencies with reduced input features. For large power systems, training ELM with all input features

Figure 3: Mutual information between input and output variables in IEEE 57-bus system

Table 3
Performance Comparison of ELM before and after Feature Selection

Parameters With all input features MI-based feature selection

Number of input variables 100 36

Number of output variables 10 10

Training data 750 750

Testing data 250 250

Training accuracy (RMSE) 6.7635e-004 9.9704e-006

Testing accuracy (RMSE) 0.0040 6.8198e-004

Training time (s) 0.1250 0.0938

Testing time (s) 0.0313 0.0313

Table 4
Comparison of ELM output with CPF result

ELM output CPF result

Line outaged Loading margin Rank Loading margin Rank
in p.u in p.u

37 38 0.8934 VII 0.8934 VII

36 37 0.9420 VIII 0.9421 VIII

07 29 0.3314 I 0.3314 I

30 31 1.1210 X 1.1210 X

28 29 0.4376 III 0.4375 III

27 28 0.5084 IV 0.5084 IV

22 38 0.5105 V 0.5105 V

24 25 1.1116 IX 1.1117 IX

22 23 0.3819 II 0.3818 II

26 27 0.6027 VI 0.6027 VI
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consumes large training time. Thus, MI- based feature selection technique can reduce the input dimensionality
thereby the training time could be reduced without compromising the accuracy. This proposed ELM model
can be used for fast and accurate contingency ranking and the network training time is reduced considerably
after applying MI dimensionality reduction techniques. IEEE 30-bus system and IEEE 57-bus system are
considered for a demonstration of an effectiveness of the proposed methodology under various loading
conditions on single line contingencies. Finally, our proposed learning algorithm provides extreme fast
learning phase than the conventional feed forward networks using classic algorithms. Also, this proposed
method provides a better generalization performance and easy learning compared with a conventional CPF
algorithm by the factor of a thousand, which is the gradient- based and can face severe issues like learning
rate, over-fitting and local minima. Finally, this work has demonstrated that extreme learning machine can
be used in many applications effectively and thus proving the performance of ELM in high dimensional
network applications. Also loading margins computed using CPF and proposed ELM algorithm is compared
of which ELM provides better results than conventional continuation power flow algorithm.
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