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Fs-Sets, Fs-Points, and A Representation
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Abstract : In this paper, we establish one of the composition of relations [17] between collection of all subsets
of the Fs-points set (FSP(A)) [17] and collection of Fs-subsets of A[17] is identity and other composition
contains identity. Already we observed [17] one of the relations is a meet complete homomorphism and the
other is a join complete homomorphism [17]. Here we search relations between Fs-complemented sets and
complemented constructed crisp sets via these homomorphisms. Also we prove a representation theorem
between Fs-subsets of A and crisp subsets of FSP(A) and lastly study some Categorical properties between
Categories Fs-set with objects- Fs-sets and morphisms-Fs-functions and set.

Keywords : Fs-set, Fs-subset, Fs-complement, Fs-Function, Fs-point, category of Fs-sets, functor between
category of Fs-sets.

1. 1.INTRODUCTION

Ever since Zadeh [8] introduced the notion of fuzzy sets in his pioneering work, several mathematicians
studied numerous aspects of fuzzy sets.

Murthy[19] introduced f-sets in order to prove Axiom of choice for fuzzy sets. The following example
shows why the introduction of f-set theory is necessitated. Let A be non-empty and consider a diamond
lattice L= {0, a || B,1}. Define two fuzzy sets f and g from A into L such that f{x) = a and g(x) = . Here
both f'and g are nonempty fuzzy sets. The Cartesian product of fand g from A into L is given by (f x g)(x)
=fix) Ng(x)=a A B=0.Thatis, fx gis a empty set. Even though both fand g are non-empty fuzzy sets,
their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory
[1]. The collection of all f-subsets of a given f-set with Murthy’s definition [19] f-complement [22] could
not form a compete Boolean algebra. Vaddiparthi Yogeswara , G.Srinivas and Biswajit Rath introduced
the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of
given Fs-set is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The
Fs-sets they introduced contain Boolean valued membership functions . They are successful in their efforts
in proving that result with some conditions. In papers [12] and [13] Vaddiparthi Yogeswara, Biswajit
Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of given Fs-set and
defined an image of an Fs-subset under a given Fs-function. Also they studied the properties of images
under various kinds of Fs-functions.

In the paper [17], we constructed a crisp Fs-points set FSP(A) for given Fs-set A and established
a pair of relations between collection of all Fs-subsets of a given Fs-set A and collection of all crisp
subsets of Fs-points set FSP(A) of the same Fs-set A and proved one of the relations is a meet complete
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homomorphism and the other is a join complete homomorphism and searched some properties between
Fs-complemented sets and complemented constructed crisp sets via these homomorphisms[17].

In this paper we establish a representation theorem between Fs-subsets of A and crisp subsets of
FSP(A) and study some more properties between these -homomorphism and lastly study some Categorical
properties between Categories FSSET with objects- Fs-sets and morphisms-Fs-functions and SET. The
detailed definitions of Fs-point and FSP (A) for given Fs-set A are discussed before defining those relations
mentioned above. For smooth reading of paper, the theory of Fs-sets and Fs-functions in brief is dealt with
in first two sections. We denote the largest element of a complete Boolean algebra L, [1.1] by M, or 1.
We denote Fs-union and crisp set union by same symbol U and similary Fs-intersection and crisp set
intersection by the same symbol M. For all lattice theoretic properties and Boolean algebraic properties
one can refer Szasz [3], Garret Birkhoff[4],Steven Givant ¢ Paul Halmos[2] and Thomas Jech[5]

2. 1. FS-SETS

1. Definition : Let U be a universal set, A U and let A — U be non-empty. A four tuple
is said be an Fs-set if, and only if

(@) A c A

(b) L, is a complete Boolean Algebra

© My, ALy wy,

2. Definition : Fs-subset

Let A= (A, A, A (u]Al ,u,),L,)and B=(B,B, B (W5,> Hyp)> Ly) be a pair of Fs-sets. B is said to
be an Fs-subset of A, denoted by B < A, if, and only if

(@) B.cA,AcCB

(b) L, is a complete subalgebra of L, or L, <L,

(©) Mg, <y, [ B and pp[AZp,,

3. Proposition: Let B and A be a pair of Fs-sets such that B < A . Then Bx < Ax is true for eachx € A

3.1. Remark : For some L, such that L, < L, a four tuple X = (X, X, X(”lx,’ W), L) is not an
Fs-set if, and only if

(@) Xz X, or

(b) py X Z W, x, for some x € X N X,

: A— L,, are functions such that p, A |[A>p,,

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an
Fs-subset of B for any B ¢ A.

4. Definition : An Fs-subset Y = (Y, Y, Y(pwl, W), L) of A, is said to be an Fs-empty set of second
kind if, and only if

(@ Y, =Y

(b) Ij <L,

(c) Y=0

4.1. Remark : We denote Fs-empty set of first kind or Fs-empty set of second kind by @,.
5. Definition : Let B, = (B,,B,, B, (Hyp, > My L)) and

B, = (B, B,, B, (W) Myp.)> Ly, be a pair of Fs-subsets.
We say that B, and B, are equal, denoted by B, = B, if, only if
(a) Bn - B12’ Bl - Bz
(b) LBl = LBz
(©) (@) (1, =Ky, and p,, =p)or (b)) B, =B,
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5.1. Remark : We can easily observed that 3(a) and 3(b) not equivalent statements.
6. Proposition : B, = (B,,B, 1:31 (g, > Mg ) L)
and B, = (B, B, B, (“11312’ MBZ)’ LBZ)
are equal if, only if B, 2 B, and B, € B,
7. Definition of Fs-union for a given pair of Fs-subsets of A:
Let B = (B, B, B, k), L) and
C = (C, G Cu,e 1) L),
be a pair of Fs-subsets of A. Then, the Fs-union of B and C, denoted by B U C is defined as
BuC = D=(D,D, ﬁ(uml, 1), L), where
(@) D=B,UC,D=BnC
(b) L,=L,v L. =complete subalgebra generated by L, U L
(c) Hyp, - D, — L, is defined by
MllDl X = (HIBI v MIICI) X
W, : D — L is defined by
Hop X = Hyg X A Ky X
D: D — L, is defined by
Dx = Hip, X A (M%)
8. Proposition : B U C is an Fs-subset of A.
9. Definition of Fs-intersection for a given pair of Fs-subsets of A:
and C = (Cp C, C(M]cl)a Mzc): Lc)
be a pair of Fs-subsets of A satisfying the following conditions:
(@ BNnC2BUC
(b) wy XA i, X 2 (M,V Wyo)x, for each x € A
Then, the Fs-intersection of B and 7, denoted by B m C is defined as
BNC = ¢=(E,E E (u,, ), L), where
(@) E=BNnC,E=BuUC
(b) L.=L,AL.=L,NL,
(c) Mg, - E,— L, is defined by Mg X = Mg XA X
W, : E— L, is defined by
P X = (K V P )X
E: E — L_ is defined by
Ex = Fag, ¥ A (Mg )
9.1. Remark : If (i) or (ii) fails we define BN C as B n C = ®,, which is the Fs-empty set of first kind.

2.10. Proposition : For any Fs-subsets B, C and D of A= (A, A, A (MlAl, u,,), L,), the following
associative laws are true:

(a) Bu(CuD)=BuC)ubD
(b) BN (CnD)=(BnC)n D, whenever Fs-intersections exist.
11. Arbitrary Fs-unions and arbitrary Fs-intersections:
Given a family (B), _, of Fs-subsets of
A = (A, A, K(MIAI, u,,), L,), where
B, = (B,,B,B, (g, s My )> L), forany i € 1

1
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12. Definition of Fs-union is as follows
Case (1) : For I = @, define Fs-union of (B)), _,, denoted by U, | B, as U, _, B,= ®@,, which is the
Fs-empty set
Case (2) : Define for I # @, Fs-union of (B)) , _, denoted by L. _| B, as follow
UB — B=(B,.B. Bl 1my). L)
where
(a) B] ~ Ve Bli’ B= Mic Bi
(b) L,=v,_,L, =complete subalgebra generated by U L (L. =L,)
My, - B, — lLB is defined by l
Mg, X = (viel HlBli) X = Vet lig X where
[={iellxeB}
Myt B = Ly is defined by pp x = (A, b ) ¥ =4, Moy X
B:B — L, is defined by Bx = Mg, XA (1, X)°
12.1. Remark : We can easily show that (d) B, 2 B and ”131’ B>p,.
13. Definition of Fs-intersection:
Case (1) : For I = @, we define Fs-intersection of (B)), _ |, denoted by N, _ B asn,_ B,=A
Case (2) : Suppose N, | B, 2, | B, and Ay, [ (9 B) 2V, by,
Then, we define Fs-intersection of (B), _, denoted by n,_ B, as follo()vs

(B = =€, C.C ) o L)
(a) C1: mieIB]f’ C= UieIBi
(B) Le=n,. L,
(©) Hic, - Cl - Lc is defined by i, ¥ = (/\ieI M11311‘) XY=Ner Mgy X
Ko C— L isdefined by p, . x = (v, _ M) X =V, _ X U, x, where,] ={iel|[x e B}
C:C— L, is defined by Cx = Hae, X A By xl)C l

Case (3) rWieIBli 2 uieI Bi or /\ieIM]Bli‘(UielBi) z vieTHZBi

We define mBi = @,
iel
13. 1. Lemma : For any Fs-subset B = (B,, B, E(“ml’ 1), L)
and BcB, = (BB, Ei (MlBli’ MZB,')’ LB,»)

foreachi el. N, _ B, existsand B, _, B,

14. Proposition : (L(A), Nn) is A-complete lattics.

14.1. Corollary : For any Fs-subset B of A, the following results are true
(@) ,uB=B

(b) ©,"B=0,.

15. Proposition : (L(A), L) is v-complete lattics.

15.1. Corollary : (L(A),u, N) is a complete lattice with v and A

16. Proposition : Let B = (B,B, E(MIBI, 1), L),
Then B u(CnD)

= (BuC)n(BuwD)provided C n D exists.
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17. Proposition: Let B = (B,B, E(MIBI, 1), L),
Then BNn(CuD) = BNnC)u(BnND)
provided in R.H.S (B n C) and (B N D) exists.
18. Definition of Fs-complement of an Fs-subset :
Consider a particular Fs-set A = (A, AA (“ml’ w,),L,), A#®, where
(@) ACA,
() L,=[0,M,],M,=vAA=v _ Aa
(© M, =My, =0,
Ax = My, X AN, x)’=M,, for eachx € A
Given B= (B, B, E(MIBI’ W, L,). We define Fs-complement of B, denoted by B4 for B = A and
L,=L, as follows:
B =D =(D,, D, D(ky,» K, L), where
(@) D=CB=B°‘u A,D=B=A
(b) L,=L,
(c) Hyp, - D, — L,, is defined by Hip, X = M,
W, A—L,, isdefined by p, x=Bx = Mg, X A(u,x)¢
D:A—L,, is defined by Dx = Hip X A (Hyp X)° =M, A (Bx) = (Bx)-.

19. Proposition: ACr = D,
20. Definition: Define (@) = A
21. Proposition : For B = (B, B, B, 1) Ly),
C = (C,, C,Cluyc,» my), L),
which are non Fs-empty sets and B = C=A,L,=L.=L,
(@) BNBA=0,
() BUB=A

(©) (BHA=B
(d) B c Cifand only if CA < B¢A
22. Proposition : Fs-De-Morgan’s laws for a given pair of Fs-subsets:

For any pair of Fs-sets B = (B, B, E(“ml’ W), Ly)
with B = C=A
and L, = L.=L,, wewill have

(@) BuUC)a=B% N CCif (Bx)°A (Cx)< [k, %)V By ] A [(Ry e X)7V Wy x], for each x € A
(b) (BN C)Ca=BCuU C, whenever B n C exists.
23. Fs-De Morgan laws for any given arbitrary family of Fs-sets:
Proposition : Given a family of Fs-subsets (B’), _, of
A = (A, AA (My4,> Byp)s L), where
L, = [0,M,]. Hia,
- MA’ l'l2A
= 0,Ax
=M

A
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(@) (U,_ B)a=n,_ B forl+®, v_vhere B.=(B,,B,B, (;,L]BU, Hap o LBi and
(1) B,=A, LBi =L, provided A,_ B, x)* < Ajer [(MIBU X) v ;,tszx]
(b) (n,_,B)a=u,_ B, whenever N, _ B, exist

3. FS-FUNCTIONS

1. Definition : A Triplet (f,, f, @) is said to be is an Fs-Function between two given Fs-subsets
B = (Bl’ B, I_E(HIBI’ MzB)’ LB)

and = (C,C, (_:(chl’ l’lzc)’ LC)

of A, denoted by (f,, f, ®): B = (B,,B, B(“ml’ W), Ly)
Cc=(,CC (“1c1’ o) Lo)

@

if, and only if (using the diagrams).

f. f
B 5C, B——C
H1B1l lH1C1 Hog l l“zo
LBT>LC LBT> Le

Figure 1: Fs-function ? B—>C
(@) f, |, =f1s onto
(b) ®:L,— L, is complete homomorphism
(f,, f, @) is denoted by f*
2. Proposition : (i) Hic, o filg 2 e f
(if) Dopp by 2 @0 py
3. Def : Increasing Fs-function

\%

f is said to be an increasing Fs- function, and denoted by /. if, and only if(using fig-1)
@ el fily =@ 1y,

() Wyeo fSDPepy,

4. Proposition : @ ° (u,, x)°= [(P ° p,)x]°

5. Proposition: ® - B < C - f, provided f is an increasing Fs-function
6. Def : Decreasing Fs-function

f is said to be decreasing Fs-function denoted as 1 ,and if and only if
(a) Hic, |c °f1|B S Hig,

) Wyeof 2 @opyy

7. Proposition : @< B > C- f, provided f is a decreasing Fs-function
8. Def : Preserving Fs- function

f is said to be preserving Fs-function and denoted as f~ ) if, and only if
(a) “1C1|C°f1|13 =0 Hig

(D) Hyeo f=D ey,

9. Proposition : ® - B = C < f, provided f is Fs- preserving function
10. Def : Composition of two Fs-function

Given two Fs-functions f: B — C and g: C — D. We denote composition of g and fas g ° fand define
as(g°f)= (8,8 V) (f, . D) =g, f,g°/; ¥ D]
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4.

FS-POINT

1. Definition We define an object, for b € A, B € L, such that p < Ab — denoted by (b, B) as follows

(0, B) = (B, B, By, M), Ly)

where A cBcBcA,L <L,
such that Mg, X Hyp X € L.,
a < },tlAlx,VxeAl,BeLA
Ly X, xbxeA

and

and

and
and

bVu,b  x=b
a, XE€A xeA,

Lya X, xX€A
Hop ¥ 7 o, xZ€A xeB

=
=z

=

Il

2. Lemma:

(@) B<p,, band B < (u,,by

() Ryp, b=y b

(©) My OSpy, b

(@) By b2py, b

(e) Bb=p

() (b, P) is Fs-subset of A

Here onward (b, B)-which is an Fs-subset of A, we call a (b,3) objects of A.
3. Definition of a relation between objects:

For any (ba B)ObjeCts B1 = (Blla Bla E:;1 (HlBll’ uZBl)a LBI)
B, = (B, B, B, (“11312’ l“Lsz)’ LB2) of,
we say that B, R(b, B) B, if, and only if
Mg, X = Hyp X, X7 b

V x € B, and My, X = u2B2x,x¢b
VxeB,and Hig,, b = Hig,,

b = Bvp, band Hop,

b - MZBz

b = n,, b

4. Theorem : R(b, B) is an equivalence relation.
5. Definition of Fs-point : The equivalence class corresponding to R(b, B) is denoted by y,* or

(b, B).We define this y,” is an Fs point of A.

Set of all Fs-point of A is denoted by FSP(A).
6. Definition : Let G < FSP(A).
(a) G is said to be closed under stalks if, and only if ,’ € G,a < B = y,“€ G
(b) G is said to be closed under supremums if and only if Mc L,, 3, € G, VB e M= 3, € G,
vM=v,_, B
(¢) G s said to be S-closed if, and only if G is closed under both stalks and supremums.
7. Theorem : Arbitrary intersection of S-closed subset is S-closed
8. Definition : Let G < FSP(A).
Define G- = @, if G=.
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Otherwise G Yo a
Define B = (B,B, E(ulBl, ), L), where
BoB = {b]ye G},
LB = vXEeGLﬁ’ulBlb
= \/XE GG(B V D), Hopb = 1,0
Bb = p bA (1 b)

= Vx;; c6(BV Hsb) A (1y00)
k4 ?EGB) V pab | A (s b)

Xb

|
(Vg coB) A s |V (2B A G1208))

= \/xﬁeG(B A (“2Ab)c) VO
= ng 6G(B A (Hysb)°)
- verGB
9. Theorem : G =8B
10. Definition : For any B cA
Define B =®
if B = ®,
Let B = (B, B, B, ). L) and B =,
Define B~ = {x|beB,Bel,p<Bb}
11. Theorem : A = ngerp(A)XE
12. Lemma : A~ = FSP(A)

13. Theorem: B~ is S-closed.

14. Theorem: For any G c FSP(A), G G~

15. Theorem : Let A be an Fs-set. Then the following are equivalent for any G — FSP(A)
16. Theorem : For any B, and B, such that B, ¢ B,c A, B,"c B, provided B, = B,

and B, = (B, B,, B, (“1312 ) l’lsz)’ LBZ)
16.1. Corollary : B < A= FSP(B) c FSP(A)

17. Result : B, c B, implies B, B, U B, for any Fs-subset B,

18. Result : x,P = G~ for any ,” € G such that G  FSP(A).

19. Recall : 1.16 for any Family (G)), _, of Fs-subsets of A such that G, G, U, _, G.c G.
20. Proposition : G;"c G,~ for any two subsets G, and G, of FSP(A), such that G, c G,.
21. Theorem: For any Fs-subset B of an Fs-set A, B-"=B.

22. Theorem : BNC)y =B nC
for any Fs-subsets B = (B, B, E(MIBI, ), Ly)
and C = (C]: Ca C(chla ugc)a Lc)
of A such that B = C.

23. Proposition: For any family of Fs-subset (B), _, of A, (", _, B,)"=n,_, B, provided all B;’s are
equal for eachi € I
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24. Theorem : (G, U G,) = G,;"U G, for any subsets G, and G, of FSP(A),

25. Theorem : (U, _, G) =y, _, G for any family (G)), _,of subsets of FSP(A).

25.1. Remark : Observe that y ° is always an Fs-subset of Bi.e. y e B ie. ¢ (B7)

26. Theorem : For B=(B,, B, 1_3(;4131, ), L,) A B=AandL =L, (B°) c (B

27. Theorem : (G)“ < (G°) for any G < FSP(A), where A = (A, A, A (u]Al, w,), L),
Mo, = M,w,=0andL,=[0,M, ].

5. AREPRESENTATION THEOREM FOR FS-SETS

1. Let A= (ALA AR, 1) LY
be an Fs-set and L(A) be set of all Fs-subsets
Bi - (Bli’ Bi’ ]_31' (M]Bli > HZBi)’ LB,»)
with B, A of A.
Let PFSP(A) be the set of all subsets of FSP (A).
®:L(A) > PFSP(A).

Define B - B
Y : PFSP(A) — L(A).
Define G > G

Then the following are true

(a) YOB=Bor Yo =1

b)) GCPYGord¥Y o 1

(c¢) Image of ® ={G < FSP(A)|G is S-closed}

(d) ®(B) < (OB),, where A= (A, A A (MIAI, w,),L,), iy, = M, u,=0andL, =[0,M,]

(e) YG)°Ar < P(G), where A= (A, A, A (MIAI, w,,L,), iy, = M, un,=0andL, =[0,M,]

Proof : We Already proved that @, W are increasing and @ is a meet complete homomorphism and ¥

is join complete homomorphism [17]

(a) Follows from 4.21

(b) Follows from 4.14

(c) G € LHS = image of @ implies. ®B = B-= G for some B — A and B~ is always S-closed from
(4.13) implying B-= G € RHS
G € RHS implies G(""= G or ®¥YG = G from (4.15). That is, ®(WYG) = G so that G € LHS

(d) Follows from 4.26

(e) Follows from 4.27

1.1. Example : Let A = (AI,A,K(MIAI, w,), L)),
where A, = {a, b},
A = {aj,
o = L, =0
and L, = {0,alB1}
Suppose B =y
and C = yxr
Then B~ = {x%x"
and C = %
And B-C = {6 x5 %"}

Here BuC = y*uyr
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= y,' implying (B L C)
= {5 x5 1l n
So that, BulC)y = BuC
2. Theorem : @ is a join complete homomorphism, if and only if L, = {0, 1}

Proof : If L, contains more than two elements, then there exist p € L, such that B # 0, B # 1 and B°
exists such that B¢ = 0 and 3 # 1 so that B || p°.

Hence ® cannot be a join complete homomorphism by above example, a contradiction.

Hence L, = {0,1}
Conversely suppose L, = {0,1}
Consider a nonempty family of nonempty Fs-subset (B), |, we have to show that (U, _| B)”
- Ui el iN
Clearly RHS < LHS ...(1)
Let x,, € LHS.
Then y,"c, _, B, here all possible values of  are 0 and 1.
For B =20
consider B, = (B,,B, I_Bl. (},LIB”), “23,»)’ LB,-) such that b € B,
Define 1 = BBy Coliye M) Le)
= C,
where R, = Hacp
L, = {0.1}
Clearly y,’c B,sothaty,’e B,-"cu, ell B~ =RHS
Hence LHS < RHS ...(2)
For B = 1 consider
B, = (BB, B, (M5, » Mg )s Ly ) such that b € B,
Define 1 = BB, Coliye o) L)
= C, where
Mo X = HyeXs Vx#b,
R, 0 = 1,
Hoe, ¥ = 0,
L, = 10,1}
Clearly %, < B,
= 6 €B < v B
= RHS
Hence LHS < RHS ...(3)
From (1), (2) and (3), LHS = RHS

3. Theorem : ¥ is a meet complete homomorphism if and only if L, is singleton.
Proof : Suppose YV is a meet complete homomorphism

Let B € LAsuchthatp =0
Let G, = 5
G, = {5 %"}
GnNnG, =@
= G,NnG) = 0,
G~ =%V
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= %Gy
6 Yn"
= XbBC
= G NG, =y 'nyx”
= %" C.oxy 27,5
(G,nG,) # G NG, which is contradiction.
So V¥ is not a meet complete homomorphism

Conversely, suppose L, is singleton. To prove ‘¥ is a meet complete homomorphism

Suppose W is not a meet complete homomorphism. Then there exist a nonempty family (G), _, such
that (0, _, G)" & m,_, G . Then there exist 3,” < RHS such that ., LHS and B # 0 and B € L,,
contradicting L, is singleton

Hence Y is a meet complete homomorphism.
4. Proposition : Given B, then B =G

= B = G
Proof: B =G
ie ®B) = G
= Yd(B) = Y(G)
= 1(B) = Y(G) from 4.28(e) that is,
B = G.
5. Proposition: Given G is S-closed, then
G =B
= B =G
Proof : Given G is S-closed implies G = G~
ie. dY(G) = G
Let B =G
ie. B = ®(G)
= Y(B) = YO(G)
= ¥YB) = G
6. Lemma: (G,NnG) =G 'NnG,,
for any two S-closed subsets G, and G, of FSP(A).
Proof : G, is S-closed implies G, = B,
where B, = A
and Bl - (BII’BI’EI (HIB”’ H2131)’ LBl)
- D e, Xg
B, 2B, = A
= 011G,
- LA’ l’llBllb

= vx‘ieGl (BV pyb)

Mo = Kb
Similarly G, is S-closed implies G, = B,

2

where B. = A

2
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= UXE €G, Xb
B,2B, = A

= {b|y, G}, L132
b

LA’ lVLIB]z

= EG (B \4 “QA b)a BZ

= By b
Need to show that Mg A, 2 Hyg Mo
But we have, Hig,, b > u,b
= My,
and ulBlzb > w,b
= My, 0
Mgy DA R, 0 2 By D
= Mg, DV Hy, b
Hence B, m B, non-empty.
Now, G nG, = B/nB,S
= (B,nB)"
from 4.25 so that B,nNnB) = (G nG))
We have for any Fs-subset HH =G
= H = G
Take H =G6"nG/
and G = G,nNG,
Hence (G,NG) = G NG/
7. Theorem : (n,_, Gy = n,_,GS

for any family (G)), _, of S-closed subsets of FSP(A)

8. Define E : FS-SET, — SET, where * =i orp
A ——>FSP(A)

A FSP(A)

(f, f, q))l —> |FSP(f,, f, D)

B FSP(B)
Figure 2
Such that FSP (f,, f, ®)(x,*) = x‘ff. Then, E dense functor.
Proof : For Ce FSSET, 1 = (lc, C, LC) C->C

E(lc)(Xbﬁ) = E(lc 5 C? L ) (XbB)
= FSP (ICI’ C? L ) (X},B )
=

- lFSP(C) (Xbﬁ)
lE(C) (XbB)



Fs-Sets, Fs-Points, and A Representation Theorem 183
So that, E(1) = Lo
For (f, f, ®) € Hom, (B,C) and (g,, g, ¥) € Hom, (C, D) asin 2.3
Meylefils = @opp)and p o f< @ e, f
Mo oo 8ils 2 Wepe)and pprg <Wep,
From 2.11, Composition of two increasing Fs-function is increasing, we can have
Miplp* & fily = @< pp and p,p e gf STD =,y
So that, Dgfb Hyp, gfb A (n,, gfb)
(PP oy, b A [(FD - )b
Elg, /. g/, ¥ - D]

vap
K

= E(g, g ®) (x)

= E(g,,g V) E(f,. /. (D)(Xbﬁ)
E(g, g ¥)° E(f./, D).

\%

El(g,, & V) (/1. /. D)(x,”)

So that E[(gl’ g, \P) ° (fi’fa q))]
Hence E is functor.

Let B € (SET),. We have to find B € (FSSET)_such that E(B) = FSP(B) is isomorphic with B.

Consider B =y _,x
We have FSP(B) = {x,|b € B}
Define f: FSP(B) » B by f(x,") = b

Clearly f'is a bijection.

Hence E is a dense functor
9. Remark : Note that y,”= @, Fs-empty set of second kind if, and only if
% = (D,D, Dy, yp), L),
where Hip, = Hyp
10. Remark : @ -Fs-empty set of second kind can be treated as Fs-point.
11. Definition: Let F, G:A — B be a pair of functors. A natural transformation n between two functor

F and G —denoted by n : F — G is defined as follows with the help of the following diagram which should
be commutative .That is, Gf°n,=n,° Ff

A FA—" SGA

fl Ifl le
B FB——>GB
Figure 3
FS-SET = Category with Fs-sets (with complete Boolean algebra valued membership functions) as

objects and Fs-functions [3.1] as morphisms between Fs-sets.

FS-SETND = Category with Fs-sets (with non-degenerating complete Boolean algebra valued
membership functions) as objects and Fs-functions as morphisms between Fs-sets.

12. Theorem : There is a natural transformation between the functors I and G  E where G < E
composition of functors G-as described below and E in 3.35 and I: (FS-SET), — (FS-SET), is the identity
functor where * =i or p
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D (D,, D, D (H1D1a M), Lo)

fl—) (F, 1, 1)

E (E,, E, E (u1E1! M), Le)
Figure 4
Where Hip, = My,

and g, = Mo

and L. =L

D E

Proof: E : FF-SSET, — SET
E(f,, f, @)(x,")

FSP(f,, 1, ®)(x,”)
= A

F-SET, —— SET —%- FS-SET,

F-SET, —%°E, FS-SET), I: FS-SET, — FS-SET,
n:1 = G°E

A A — 5 G - E(A)

(f, f, @) | I(f, 1, @) G- E(f, f, @)

B I(B)—=—s G - E(B)

Figure 5
To be proved G E(f,f,®)°n, = ng°I(f,/, ®), where
N, = (CAI, C,, CLA), where
— FSP(A)

C, oA
A — FSP(A)
LA
al

A
CA:
C

Ly —> ®©

- xalo
a—y'
o —> ©
n, — (CBl, C,. C, ), where
C. : B — FSP(A)
C.:B — FSP(A)
C, : L, > x
b — xblo
b —xr°
B —> o
So that, n,° I(f,, £, ®) : I(A) - G °E(B)
G- E(f,,f, ®)°n,:1(A) > G- E(B).
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We have G E(f,f,®)°n,
TIBO I(f;’f; ®)
To be proved
1' go CAl :CBl O«fl
2. g°C,=C,°f
3.1,°C, =C, @
1. A, —— FSP(A) —*~ FSP(B)
g°C,)a
fl CB,;
1.L, — B, FSP(B)
(CBl Of;) al
Hence g”° CAI
2. A—>— FSP(A) —~ FSP(B)
g°C)a
A —L5 B —=> ESp(B)
(CyeNa
Hence g° CA
3L, 0 ——
(1,°C Do
L i} L CLg o0
A B —
(Cz° @)
Hence 1,-C

o La

G- E(f,,/,®)°(C,.C,,C, )
G- (Ef,.f, @) (C, .C,,C, )
G(g) - (C,,C, C)

(8¢ 1,)°(C,,C,C )
(g°C,)°g°C,1,°C )
Ng° (s /s @)

(Cyr Cpo Clp)° (. 1, @)

(Cy, /1 Cyo £, C iy @)

C, (fa)
L.,

Cyof

1 (C o)
1, ()

o0

C,_ (@(@))
(1-° CLA)OL
C, ~®

L

B
From (1), (2) and (3) clearly G © E(f,, f; ®) * n, =, °I(f,, /. D)
That is, ) from I into G ° E is a natural transformation.
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