Fs-Sets, Fs-Points, and A Representation Theorem

Vaddiparthi Yogeswara* Biswajit Rath** Ch.Ramasanyasi Rao*** K.V. Umakameswari*** and D. Raghu Ram***

Abstract: In this paper, we establish one of the composition of relations [17] between collection of all subsets of the Fs-points set (FSP(A)) [17] and collection of Fs-subsets of A[17] is identity and other composition contains identity. Already we observed [17] one of the relations is a meet complete homomorphism and the other is a join complete homomorphism [17]. Here we search relations between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms. Also we prove a representation theorem between Fs-subsets of A and crisp subsets of FSP(A) and lastly study some Categorical properties between Categories Fs-set with objects- Fs-sets and morphisms-Fs-functions and set.

Keywords : Fs-set, Fs-subset, Fs-complement, Fs-Function, Fs-point, category of Fs-sets, functor between category of Fs-sets.

1. I. INTRODUCTION

Ever since Zadeh [8] introduced the notion of fuzzy sets in his pioneering work, several mathematicians studied numerous aspects of fuzzy sets.

Murthy[19] introduced *f*-sets in order to prove Axiom of choice for fuzzy sets. The following example shows why the introduction of *f*-set theory is necessitated. Let A be non-empty and consider a diamond lattice $L = \{0, \alpha \mid | \beta, 1\}$. Define two fuzzy sets f and g from A into L such that $f(x) = \alpha$ and $g(x) = \beta$. Here both *f* and *g* are nonempty fuzzy sets. The Cartesian product of *f* and *g* from A into L is given by $(f \times g)(x) = f(x) \land g(x) = \alpha \land \beta = 0$. That is, $f \times g$ is a empty set. Even though both *f* and *g* are non-empty fuzzy sets, their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory [1]. The collection of all f-subsets of a given *f*-set with Murthy's definition [19] f-complement [22] could not form a compete Boolean algebra. Vaddiparthi Yogeswara , G.Srinivas and Biswajit Rath introduced the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of given Fs-sets is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The Fs-sets they introduced contain Boolean valued membership functions .They are successful in their efforts in proving that result with some conditions. In papers [12] and [13] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-function between two Fs-subsets of given Fs-set and defined an image of an Fs-subset under a given Fs-function. Also they studied the properties of images under various kinds of Fs-functions.

In the paper [17], we constructed a crisp Fs-points set FSP(A) for given Fs-set A and established a pair of relations between collection of all Fs-subsets of a given Fs-set A and collection of all crisp subsets of Fs-points set FSP(A) of the same Fs-set A and proved one of the relations is a meet complete

^{*} Associate Professor Dept. Mathematics, GIT, GITAM University, Visakhapatnam-530045, A.P State, India. vaddiparthyy@yahoo.com

^{**} Asst. Professor Dept. of Applied Mathematics, GIS, GITAM University, Visakhapatnam-530045, A.P, India. urwithbr@gmail.com

^{***} Research Scholar :Dept. of Mathematics, GIS, GITAM University, Visakhapatnam 530045, A.P, India. *ams.mathematics@gmail.com, uma.mathematics@gmail.com, draghuram84@gmail.com*

172 Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V. Umakameswari and D. Raghu Ram

homomorphism and the other is a join complete homomorphism and searched some properties between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms[17].

In this paper we establish a representation theorem between Fs-subsets of A and crisp subsets of FSP(A) and study some more properties between these -homomorphism and lastly study some Categorical properties between Categories FSSET with objects- Fs-sets and morphisms-Fs-functions and SET. The detailed definitions of Fs-point and FSP (A) for given Fs-set A are discussed before defining those relations mentioned above. For smooth reading of paper, the theory of Fs-sets and Fs-functions in brief is dealt with in first two sections. We denote the largest element of a complete Boolean algebra $L_A[1.1]$ by M_A or 1. We denote Fs-union and crisp set union by same symbol \cup and similary Fs-intersection and crisp set intersection by the same symbol \cap . For all lattice theoretic properties and Boolean algebraic properties one can refer Szasz [3], Garret Birkhoff[4],Steven Givant • Paul Halmos[2] and Thomas Jech[5]

2. II. FS-SETS

1. Definition : Let U be a universal set, $A_1 \subseteq U$ and let $A \subseteq U$ be non-empty. A four tuple

A =
$$(A_1, A, A (\mu_{1A_1}, \mu_{2A}), L_A)$$

is said be an Fs-set if, and only if

- (a) $A \subseteq A_1$
- (b) L_A is a complete Boolean Algebra
- (c) $\mu_{1A_1} : A_1 \to L_A, \mu_{2A} : A \to L_A$, are functions such that $\mu_{1A_1} | A \ge \mu_{2A}$
- 2. **Definition** : Fs-subset

Let $A = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$ and $B = (B_1, B, \overline{B} (\mu_{1B_1}, \mu_{2B}), L_B)$ be a pair of Fs-sets. B is said to be an Fs-subset of A, denoted by $B \subseteq A$, if, and only if

(a) $B_1 \subseteq A_1, A \subseteq B$

(b) L_{B} is a complete subalgebra of L_{A} or $L_{B} \leq L_{A}$

(c) $\mu_{1B_1} \leq \mu_{1A_1} | B_1$, and $\mu_{2B} | A \geq \mu_{2A}$

3. Proposition: Let B and A be a pair of Fs-sets such that $B \subseteq A$. Then $\overline{B}x \leq \overline{A}x$ is true for each $x \in A$ **3.1. Remark :** For some L_x , such that $L_x \leq L_A$ a four tuple $X = (X_1, X, \overline{X}(\mu_{1X_1}, \mu_{2X}), L_x)$ is not an Fs-set if, and only if

- (a) $X \not\subset X_1$ or
- (b) $\mu_{1X_1} x \not\geq \mu_{2X} x$, for some $x \in X \cap X_1$

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an Fs-subset of B for any $B \subseteq A$.

4. Definition : An Fs-subset $Y = (Y_1, Y, \overline{Y}(\mu_{1Y_1}, \mu_{2Y}), L_Y)$ of A, is said to be an Fs-empty set of second kind if, and only if

- (a) $Y_1 = Y$
- (b) $L_v \leq L_A$
- (c) $\overline{\mathbf{Y}} = \mathbf{0}$

4.1. Remark : We denote Fs-empty set of first kind or Fs-empty set of second kind by Φ_{A} .

5. Definition : Let $B_1 = (B_{11}, B_1, \overline{B}_1 (\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ and

 $B_2 = (B_{12}, B_2, \overline{B}_2 (\mu_{1B_{12}}), \mu_{2B_2}), L_{B_2}$ be a pair of Fs-subsets.

We say that B_1 and B_2 are equal, denoted by $B_1 = B_2$ if, only if

(a) $B_{11} = B_{12}, B_1 = B_2$ (b) $L_{B_1} = L_{B_2}$ (c) (a) $(\mu_{1B_{11}} = \mu_{1B_{12}} \text{ and } \mu_{2B_1} = \mu_{2B_2}) \text{ or } (b) \overline{B}_1 = \overline{B}_2$ **5.1. Remark :** We can easily observed that 3(a) and 3(b) not equivalent statements.

6. Proposition : and B₁ = $(B_{11}, B_1, \overline{B}_1 (\mu_{1B_{11}}, \mu_{B_1}), L_{B_1})$ B₂ = $(B_{12}, B_2, \overline{B}_2 (\mu_{1B_{12}}, \mu_{B_2}), L_{B_2})$ are equal if, only if $B_1 \subseteq B_2$ and $B_2 \subseteq B_1$ 7. Definition of Fs-union for a given pair of Fs-subsets of A: Let B = $(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and

$$C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C),$$

be a pair of Fs-subsets of A. Then, the Fs-union of B and C, denoted by $B \cup C$ is defined as

 $B \cup C = D = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- (a) $D_1 = B_1 \cup C_1, D = B \cap C$
- (b) $L_{\rm D} = L_{\rm B} \lor L_{\rm C}$ = complete subalgebra generated by $L_{\rm B} \lor L_{\rm C}$
- (c) $\mu_{1D_1} : D_1 \to L_D$ is defined by
 - $\mu_{1D_1} x = (\mu_{1B_1} \lor \mu_{1C_1}) x$

 $\mu_{2D}: D \rightarrow L_{D}$ is defined by

$$\mu_{2D} x = \mu_{2B} x \wedge \mu_{2C} x$$

 \overline{D} : $D \rightarrow L_{D}$ is defined by

$$\overline{\mathbf{D}}x = \mu_{1\mathbf{D}_1} x \wedge (\mu_{2\mathbf{D}}x)^c$$

8. Proposition : $B \cup C$ is an Fs-subset of A.

9. Definition of Fs-intersection for a given pair of Fs-subsets of A:

Let $B = (B_1, B, \overline{B} (\mu_{1B_1}, \mu_{2B}), L_B)$ and $C = (C_1, C, \overline{C}(\mu_{1C_1}), \mu_{2C}), L_C)$

be a pair of Fs-subsets of A satisfying the following conditions:

- (a) $B_1 \cap C_1 \supseteq B \cup C$
- (b) $\mu_{1B1} x \wedge \mu_{1C_1} x \ge (\mu_{2B} \vee \mu_{2C})x$, for each $x \in A$

Then, the Fs-intersection of B and *t*, denoted by $B \cap C$ is defined as

$$B \cap C = \varepsilon = (E_1, E, \overline{E} (\mu_{1E}, \mu_{2E}), L_E)$$
, where

- (a) $E_1 = B_1 \cap C_1, E = B \cup C$
- (b) $L_E = L_B \wedge L_C = L_B \cap L_C$ (c) $\mu_{1E_1} : E_1 \rightarrow L_E$ is defined by $\mu_{1E_1} x = \mu_{1B_1} x \wedge \mu_{1C_1} x$ $\mu_{2E} : E \rightarrow L_E$ is defined by $\mu_{2E} x = (\mu_{2B} \vee \mu_{2C})x$ $\overline{E} : E \rightarrow L_E$ is defined by $\overline{E}x = \mu_{1E_1} x \wedge (\mu_{2E} x)^c$.

9.1. Remark : If (*i*) or (*ii*) fails we define
$$B \cap C$$
 as $B \cap C = \Phi_A$, which is the Fs-empty set of first kind.

2.10. Proposition : For any Fs-subsets B, C and D of A = (A₁, A, \overline{A} (μ_{1A_1} , μ_{2A}), L_A), the following associative laws are true:

- (a) $B \cup (C \cup D) = (B \cup C) \cup D$
- (b) $B \cap (C \cap D) = (B \cap C) \cap D$, whenever Fs-intersections exist.

11. Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $(B_i)_{i \in I}$ of Fs-subsets of

A =
$$(A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$$
, where
B_i = $(B_{1i}, B_i, \overline{B}_i(\mu_{1B_1i}, \mu_{2B_i}), L_{B_i})$, for any $i \in I$

12. Definition of Fs-union is as follows

Case (1): For I = Φ , define Fs-union of $(B_i)_{i \in I}$, denoted by $\bigcup_{i \in I} B_i$ as $\bigcup_{i \in I} B_i = \Phi_A$, which is the Fs-empty set

Case (2): Define for $I \neq \Phi$, Fs-union of $(B_i)_{i \in I}$ denoted by $\bigcup_{i \in I} B_i$ as follow

$$\bigcup_{i \in I} \mathbf{B}_i = \mathbf{B} = (\mathbf{B}_1, \mathbf{B}, \overline{\mathbf{B}}(\boldsymbol{\mu}_{1\mathbf{B}_1}, \boldsymbol{\mu}_{2\mathbf{B}}), \mathbf{L}_{\mathbf{B}})$$

where

(a) $\mathbf{B}_1 = \bigcup_{i \in \mathbf{I}} \mathbf{B}_{1i}, \mathbf{B} = \bigcap_{i \in \mathbf{I}} \mathbf{B}_i$ (b) $L_{B} = \bigvee_{i \in I} L_{B}$ = complete subalgebra generated by $\bigcup L_{i} (L_{i} = L_{B})$ $\mu_{1B_1}: B_1 \rightarrow L_B$ is defined by $\mu_{1B_1} x = (\bigvee_{i \in I} \mu_{1B_1i}) x = \bigvee_{i \in I} x \mu_{1B_1i} x$, where $\mathbf{I}_{x} = \{i \in \mathbf{I} | x \in \mathbf{B}_{i}\}$ $\mu_{2B}: B \to L_B$ is defined by $\mu_{2B} x = (\wedge_{i \in I} \mu_{2B_i}) x = \wedge_{i \in I} \mu_{2B_i} x$ $\overline{B}: B \to L_B$ is defined by $\overline{B}x = \mu_{1B_1} x \wedge (\mu_{2B} x)^c$

12.1. Remark : We can easily show that (*d*) $B_1 \supseteq B$ and $\mu_{1B_1} | B \ge \mu_{2B_1}$

13. Definition of Fs-intersection:

Case (1): For I = Φ , we define Fs-intersection of $(B_i)_{i \in I}$, denoted by $\bigcap_{i \in I} B_i$ as $\bigcap_{i \in I} B_i = A$ **Case (2):** Suppose $\bigcap_{i \in I} B_{1i} \supseteq \bigcup_{i \in I} B_i$ and $\bigwedge_{i \in I} \mu_{1B1i} \mid (\bigcup_{i \in I} B_i) \ge \bigvee_{i \in I} \mu_{2B_i}$

Then, we define Fs-intersection of $(B_i)_{i \in I}$, denoted by $\bigcap_{i \in I} B_i$ as follows

$$\bigcap_{i \in I} \mathbf{B}_{i} = \mathbf{C} = (\mathbf{C}_{1}, \mathbf{C}, \mathbf{\overline{C}} (\mu_{1C_{1}}), \mu_{2C}), \mathbf{L}_{C})$$

- (a) $C_1 = \bigcap_{i \in I} B_{1i}, C = \bigcup_{i \in I} B_i$
- (b) $L_{C} = \bigwedge_{i \in I} L_{B_{i}}$
- (c) $\mu_{1C_1} : C_1 \rightarrow L_C$ is defined by $\mu_{1C_1} x = (\bigwedge_{i \in I} \mu_{1B1i}) x = \bigwedge_{i \in I} \mu_{1B1i} x$ μ_{2C} : C \rightarrow L_C is defined by $\mu_{2C} x = (\bigvee_{i \in I} \mu_{2B_i}) x = \bigvee_{i \in I} x \mu_{2B_i} x$, where, $I_x = \{i \in I \mid x \in B_i\}$ $\overline{C}: C \to L_c$ is defined by $\overline{C}x = \mu_{1c}x \wedge \mu_{2c}x)^c$

Case (3): $\bigcap_{i \in I} B_{1i} \not\supseteq \bigcup_{i \in I} B_i$ or $\bigwedge_{i \in I} \mu_{1B_{1i}} | (\bigcup_{i \in I} B_i) \not\ge \bigvee_{i \in I} \mu_{2B_i}$

We define

$$\bigcap_{i \in I} \mathbf{B}_i = \Phi_A$$

13. 1. Lemma : For any Fs-subset $B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ $\mathbf{B} \subseteq \mathbf{B}_{i} = (\mathbf{B}_{1i}, \mathbf{B}_{i}, \overline{\mathbf{B}}_{i} (\boldsymbol{\mu}_{1B_{1i}}, \boldsymbol{\mu}_{2B_{i}}), \mathbf{L}_{B_{i}})$

and

for each $i \in I$. $\bigcap_{i \in I} B_i$ exists and $B \subseteq \bigcap_{i \in I} B_i$

14. Proposition : $(L(A), \cap)$ is \wedge -complete lattics.

14.1. Corollary : For any Fs-subset B of A, the following results are true

- (a) $\Phi_{A} \cup B = B$
- (b) $\Phi_{\Delta} \cap B = \Phi_{\Delta}$.

15. Proposition : $(L(A), \cup)$ is \lor -complete lattics.

15.1. Corollary : $(L(A), \cup, \cap)$ is a complete lattice with \vee and \wedge

16. Proposition : Let	$B = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B}),$
	$C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$
nd	$D = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D).$
Then	$B \cup (C \cap D)$
	= $(B \cup C) \cap (B \cup D)$ provided $C \cap D$ exists.

and

 $B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B),$ **17. Proposition:** Let $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ $D = (D_1, D, \overline{D}(\mu_{1D_1}), \mu_{2D}), L_D).$ and Then $B \cap (C \cup D) = (B \cap C) \cup (B \cap D)$ provided in R.H.S $(B \cap C)$ and $(B \cap D)$ exists. 18. Definition of Fs-complement of an Fs-subset : A = $(A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A), A \neq \Phi$, where Consider a particular Fs-set (a) $A \subseteq A_1$ (b) $L_A = [0, M_A], M_A = \lor \overline{A}A = \lor_{a \in A} \overline{A}a$ (c) $\mu_{1A_1} = M_A, \ \mu_{2A} = 0,$ $\overline{A}x = \mu_{1A_1} x \wedge (\mu_{2A} x)^c = M_A$, for each $x \in A$ Given $B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}, L_B)$. We define Fs-complement of B, denoted by B^{C_A} for B = A and $L_{\rm B} = L_{\rm A}$ as follows: $B^{C_A} = D = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}, L_D))$, where (a) $D_1 = C_A B_1 = B_1^c \cup A, D = B = A$ (b) $L_{D} = L_{A}$ (c) $\mu_{1D_1}: D_1 \rightarrow L_A$, is defined by $\mu_{1D_1} x = M_A$ μ_{2D} : A \rightarrow L_A, is defined by $\mu_{2D} x = \overline{B}x = \mu_{1B_1} x \wedge (\mu_{2B}x)^c$ \overline{D} : A \rightarrow L_A, is defined by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c = M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$. $A^{C_A} = \Phi_A$ **19. Proposition:** $(\Phi_A)^{C_A} = A$ **20. Definition:** Define $B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B),$ 21. Proposition : For $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C),$ $B = C = A, L_p = L_c = L_A$ which are non Fs-empty sets and (a) $B \cap B^{C_A} = \Phi_A$ (b) $\mathbf{B} \cup \mathbf{B}^{C_A} = \mathbf{A}$ $(c) \quad (\mathbf{B}^{\mathbf{C}_{\mathbf{A}}})^{\mathbf{C}_{\mathbf{A}}} = \mathbf{B}$ (*d*) $B \subseteq C$ if and only if $C^{C_A} \subseteq B^{C_A}$ 22. Proposition : Fs-De-Morgan's laws for a given pair of Fs-subsets: $B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ For any pair of Fs-sets $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C),$ and B = C = Awith $L_{B} = L_{C} = L_{A}$, we will have and (a) $(B \cup C)^{C_A} = B^{C_A} \cap C^{C_A}$ if $(\overline{B}x)^c \wedge (\overline{C}x)^c \leq [(\mu_{1B_1} x)^c \vee \mu_{2C} x] \wedge [(\mu_{1C1} x)^c \vee \mu_{2B} x]$, for each $x \in A$ (b) $(B \cap C)^{C_A} = B^C \cup C^{C_A}$, whenever $B \cap C$ exists. 23. Fs-De Morgan laws for any given arbitrary family of Fs-sets: **Proposition :** Given a family of Fs-subsets $(B^i)_{i \in I}$ of A = $(A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$, where $L_{A} = [0, M_{A}]. \mu_{1A_{1}}$ $= M_{A}, \mu_{2A}$

$$= 0, \overline{A}x$$
$$= M_A$$

(a) $(\bigcup_{i \in I} B_i)^{C_A} = \bigcap_{i \in I} B_i^{C_A}$, for $I \neq \Phi$, where $B_i = (B_{1i}, B_i, \overline{B}_i (\mu_{1B_{1i}}, \mu_{2B_i}, L_{B_i})$ and (1) $B_i = A$, $L_{B_i} = L_A$ provided $\wedge_{i \in I} \overline{B}_i x)^c \leq \wedge_{i,j \in I} [(\mu_{1B_{1i}} x)^c \vee \mu_{2B_j} x]$ (b) $(\bigcap_{i \in I} B_i)^{C_A} = \bigcup_{i \in I} B_i^{C_A}$, whenever $\bigcap_{i \in I} B_i$ exist

3. FS-FUNCTIONS

1. Definition : A Triplet (f_1, f, Φ) is said to be is an Fs-Function between two given Fs-subsets

and of A, denoted by (f_1, f, Φ) :

$$B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$$

$$C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$$

$$B = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$$

$$C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$$

if, and only if (using the diagrams).

Figure 1: Fs-function $f \ B \rightarrow C$

(a) $f_1|_{\rm B} = f$ is onto

- (b) $\Phi: L_B \to L_c$ is complete homomorphism (f_1, f, Φ) is denoted by \overline{f}
- **2. Proposition :** (*i*) $\mu_{1C_1}|_{C} \circ f_1|_{B} \geq \mu_{2C} \circ f$

$$(ii) \qquad \Phi \circ \mu_{1B_1} |_{B} \geq \Phi$$

3. Def : Increasing Fs-function

 \overline{f} is said to be an increasing Fs- function, and denoted by \overline{f}_i if, and only if(using fig-1)

(a) $\mu_{1C_1}|_{C} \circ f_1|_{B} \ge \Phi \circ \mu_{1B_1}$

(b)
$$\mu_{2C} \circ f \leq \Phi \circ \mu_{2B}$$

4. Proposition : $\Phi \circ (\mu_{2B} x)^c = [(\Phi \circ \mu_{2B})x]^c$

5. Proposition: $\Phi \circ \overline{B} \leq \overline{C} \circ f$, provided \overline{f} is an increasing Fs-function

6. Def: Decreasing Fs-function

 \overline{f} is said to be decreasing Fs-function denoted as \overline{f}_d and if and only if

(a)
$$\mu_{1C_1} |_{C} \circ f_1 |_{B} \le \Phi \circ \mu_{1B_1}$$

(b)
$$\mu_{2C} \circ f \ge \Phi \circ \mu_{2B}$$

7. Proposition : $\Phi \circ \overline{B} \ge \overline{C} \circ f$, provided \overline{f} is a decreasing Fs-function

8. Def: Preserving Fs- function

 \overline{f} is said to be preserving Fs-function and denoted as \overline{f}_p if, and only if

(a)
$$\mu_{1C_1}|_{C} \circ f_1|_{B} = \Phi \circ \mu_{1B_1}$$

(b)
$$\mu_{2C} \circ f = \Phi \circ \mu_{2B}$$

9. Proposition : $\Phi \circ \overline{B} = \overline{C} \circ f$, provided \overline{f} is Fs- preserving function

10. Def : Composition of two Fs-function

Given two Fs-functions \overline{f} : B \rightarrow C and \overline{g} : C \rightarrow D. We denote composition of \overline{g} and \overline{f} as $\overline{g} \circ \overline{f}$ and define as $(\overline{g} \circ \overline{f}) = (g_1, g, \Psi) \circ (f_1, f, \Phi) = [g_1 \circ f_1, g \circ f, \Psi \circ \Phi]$

FS-POINT 4.

1. Definition We define an object, for $b \in A$, $\beta \in L_A$ such that $\beta \leq \overline{A}b$ – denoted by (b, β) as follows

$$(b, \beta) = (B_{1}, B, B(\mu_{1B1}, \mu_{2B}), L_{B}),$$
where
such that

$$A \subseteq B \subseteq B_{1} \subseteq A_{1}, L_{B} \leq L_{A},$$

$$\mu_{1B_{1}} x, \mu_{2B} x \in L_{B},$$

$$\alpha \leq \mu_{1A_{1}} x, \forall x \in A_{1}, \beta \in L_{A}$$

$$\mu_{1B_{1}} x = \begin{cases} \mu_{2A} x, & x \ b, x \in A \\ b \lor \mu_{2A} b, & x = b \\ \alpha, & x \notin A, x \in A_{1} \end{cases}$$
and

$$\mu_{2B} x = \begin{cases} \mu_{2A} x, & x \in A \\ \alpha, & x \notin A, x \in B \end{cases}$$

and

where

2. Lemma:

(a) $\beta \le \mu_{1A_1} b$ and $\beta \le (\mu_{2A} b)^c$ (b) $\mu_{1B_1} b \ge \mu_{2B} b$ (c) $\mu_{1B_1} b \leq \mu_{1A_1} b$

- (d) $\mu_{2B} b \ge \mu_{2A} \dot{b}$
- (e) $\overline{B}b = \beta$
- (f) (b, β) is Fs-subset of A

Here onward (b, β) -which is an Fs-subset of A, we call a (b,β) objects of A.

3. Definition of a relation between objects:

 $B_1 = (B_{11}, B_1, \overline{B}_1 (\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ For any (b, β) objects $B_2 = (B_{12}, B_2, \overline{B}_2 (\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$ of, and

we say that $B_1 R(b, \beta) B_2$ if, and only if

and
$$\forall x \in B_1$$
 and
and $\forall x \in B_2$ and
 $\forall x \in B_2$ and
 $\psi_{1B_{11}} x = \mu_{2B_1} x, x \neq b$
 $\mu_{1B_{12}} x = \mu_{2B_2} x, x \neq b$
 $\mu_{1B_{11}} b = \mu_{1B_{12}}$
 $b = \beta \lor \mu_{2A} b$ and μ_{2B_1}
 $b = \mu_{2B_2}$
 $b = \mu_{2A} b.$

4. Theorem : $R(b, \beta)$ is an equivalence relation.

5. Definition of Fs-point : The equivalence class corresponding to $R(b, \beta)$ is denoted by χ_{b}^{β} or (b, β) . We define this χ_b^{β} is an Fs point of A.

Set of all Fs-point of A is denoted by FSP(A).

6. Definition : Let $G \subseteq FSP(A)$.

- (a) G is said to be closed under stalks if, and only if $\chi_b^{\ \beta} \in G$, $\alpha \le \beta \Longrightarrow \chi_b^{\ \alpha} \in G$
- (b) G is said to be closed under supremums if and only if $M \subseteq L_A$, $\chi_b^{\ \beta} \in G$, $\forall \ \beta \in M \Rightarrow \chi_b^{\ \lor M} \in G$, $\lor M = \lor_{\beta \in M} \beta$
- (c) G is said to be S-closed if, and only if G is closed under both stalks and supremums.
- 7. Theorem : Arbitrary intersection of S-closed subset is S-closed
- **8. Definition :** Let $G \subseteq FSP(A)$.

Define
$$G^{\sim} = \Phi_{A}$$
 if $G = \Phi_{A}$.

	Otherwise	G~	=	$\cup_{\chi^{\beta}_{b} \in \mathbf{G}} \chi^{\beta}_{b}$
	Define	В	=	$(B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B})$, where
		$B_1 \supseteq B$	=	$\{b \mid \chi_b^{\beta} \in \mathbf{G}\},\$
		LB	=	$ee_{\chi^eta_b\in\mathrm{G}}\mathrm{L}_eta$, $\mu_{1\mathrm{B}_1}b$
			=	$\vee_{\chi_b^\beta \in \mathcal{G}} (\beta \vee \mu_{2A} b), \mu_{2B} b = \mu_{2A} b$
		$\overline{\mathrm{B}}b$	=	$\mu_{_{1\mathrm{B}_1}}b\wedge(\mu_{_{2\mathrm{B}}}b)^c$
				$\vee_{\chi^{\beta}_{b}\in \mathbf{G}}(\beta\vee\mu_{2\mathbf{A}}b)\wedge(\mu_{2\mathbf{A}}b)^{c}$
			=	$\left[\left(\bigvee_{\chi^{\beta}_{b} \in \mathbf{G}} \beta \right) \lor \mu_{2A} b \right] \land (\mu_{2A} b)^{c}$
			=	$\left(\left(\bigvee_{\chi^{\beta}_{b}\in G}\beta\right)\wedge\left(\mu_{2A}b\right)^{c}\right)\vee\left(\mu_{2A}b\wedge\left(\mu_{2A}b\right)^{c}\right)$
			=	$\vee_{\chi^{\beta}_{b}\in G}(\beta\wedge(\mu_{2A}b)^{c})\vee 0$
			=	$arphi_{\chi^{eta}_b\in\mathrm{G}}(eta\wedge(\mu_{2\mathrm{A}}b)^c)$
			=	$\bigvee_{\chi^{\beta}_{b} \in G} \beta$
	9. Theorem :	G~	=	В
	10. Definition : For any	В	\subseteq	А
	Define	B~	=	Φ
	if	В	=	$\Phi_{_{ m A}}$
	Let	В	=	$(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $B \neq \Phi_A$
	Define	B~	=	$\{\chi_b^{\beta} \mid b \in \mathbf{B}, \dot{\beta} \in \mathbf{L}_{\mathbf{B}}, \beta \leq \overline{\mathbf{B}}b\}$
	11. Theorem :	А	=	$\cup_{\chi^{\beta}_{b} \in \text{FSP}(A)} \chi^{\beta}_{b}$
	12. Lemma :	A~	=	FSP(A)
	13. Theorem: B^{\sim} is S-closed			
	14. Theorem: For any $G \subseteq F$	$FSP(A), G \subseteq$	⊑G	~~
				following are equivalent for any $G \subseteq FSP(A)$
	16. Theorem : For any B_1 and			$B_1 \subseteq B_2 \subseteq A, B_1 \cong B_2$ provided $B_1 = B_2$
whe	re			$(B_{11}, B_{1}, \overline{B}_{1}, (\mu_{1B_{11}}, \mu_{2B_{1}}), L_{B_{1}})$
and				$(B_{12}, B_2, \overline{B}_2 (\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$
	16.1. Corollary :			$A \Rightarrow FSP(B) \subseteq FSP(A)$
	17. Result : $B_1 \subseteq B_2$ implies			
	18. Result : $\chi_b^{\beta} \subseteq G^{\sim}$ for any	-		
				Fs-subsets of A such that $G_i \subseteq G, \cup_{i \in I} G_i \subseteq G$.
				bsets G_1 and G_2 of FSP(A), such that $G_1 \subseteq G_2$.
	21. Theorem: For any Fs-sul			
2	22. Theorem :	$(B \cap C)^{\sim}$		
	any Fs-subsets			$(\mathbf{B}_1, \mathbf{B}, \overline{\mathbf{B}}(\boldsymbol{\mu}_{1\mathbf{B}_1}, \boldsymbol{\mu}_{2\mathbf{B}}), \mathbf{L}_{\mathbf{B}})$
and				$(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$
of A	such that	2	=	
	23. Proposition: For any fan	nily of Fs-s	ubs	et $(\mathbf{B}_i)_{i \in \mathbf{I}}$ of A, $(\bigcap_{i \in \mathbf{I}} \mathbf{B}_i)^{\sim} = \bigcap_{i \in \mathbf{I}} \mathbf{B}_i^{\sim}$ provided a

23. Proposition: For any family of Fs-subset $(B_i)_{i \in I}$ of A, $(\bigcap_{i \in I} B_i)^{\sim} = \bigcap_{i \in I} B_i^{\sim}$ provided all B_i 's are equal for each $i \in I$

24. Theorem : $(G_1 \cup G_2)^{\sim} = G_1^{\sim} \cup G_2^{\sim}$ for any subsets G_1 and G_2 of FSP(A), **25. Theorem :** $(\bigcup_{i \in I} G_i)^{\sim} = \bigcup_{i \in I} G_i^{\sim}$ for any family $(G_i)_{i \in I}$ of subsets of FSP(A). **25.1. Remark :** Observe that χ_c^0 is always an Fs-subset of B *i.e.* $\chi_c^0 \in B^{\sim}$ *i.e.* $\chi_c^0 \notin (B^{\sim})^c$ **26. Theorem :** For B = (B₁, B, $\overline{B}(\mu_{1B_1}, \mu_{2B}), L_B) \subseteq A, B = A \text{ and } L_A = L_B, (B^{C_A}) \subseteq (B^{\sim})^c$ **27. Theorem :** $(G^{\sim})^{C_A} \subseteq (G^{c})^{\sim}$ for any $G \subseteq FSP(A)$, where $A = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A)$, $\mu_{1A_1} = M_A, \ \mu_{2A} = 0 \text{ and } L_A = [0, M_A].$

A REPRESENTATION THEOREM FOR FS-SETS 5.

A = $(A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$ 1. Let

be an Fs-set and L(A) be set of all Fs-subsets

with

$$B_i = (B_{1i}, B_i, \overline{B}_i (\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$$

$$B_i = A \text{ of } A.$$

Let PFSP(A) be the set of all subsets of FSP (A).

$$\begin{array}{c} \Phi: L(A) \rightarrow PFSP(A).\\ \text{Define} & B \rightarrow B^{\sim}\\ \Psi: PFSP(A) \rightarrow L(A).\\ \text{Define} & G \rightarrow G^{\sim} \end{array}$$

Det

Then the following are true

- (a) $\Psi \Phi B = B \text{ or } \Psi \Phi = 1$
- (*b*) $G \subset \Phi \Psi G$ or $\Phi \Psi \supset 1$
- (c) Image of $\Phi = \{G \subseteq FSP(A) | G \text{ is } S\text{-closed}\}$
- (d) $\Phi(B^{C_A}) \subseteq (\Phi B)^c$, where $A = (A_1, A, \overline{A} (\mu_{1A_1}, \mu_{2A}), L_A), \mu_{1A_1} = M_A, \mu_{2A} = 0$ and $L_A = [0, M_A]$
- (e) $\Psi G^{C_A} \subseteq \Psi(G^c)$, where $A = (A_1, A, \overline{A} \ (\mu_{1A_1}, \mu_{2A}), L_A), \mu_{1A_1} = M_A, \mu_{2A} = 0$ and $L_A = [0, M_A]$

Proof: We Already proved that Φ , Ψ are increasing and Φ is a meet complete homomorphism and Ψ is join complete homomorphism [17]

- (a) Follows from 4.21
- (b) Follows from 4.14
- (c) $G \in LHS = \text{ image of } \Phi \text{ implies. } \Phi B = B^{\sim} = G \text{ for some } B \subseteq A \text{ and } B^{\sim} \text{ is always S-closed from}$ (4.13) implying $B^{\sim} = G \in RHS$

 $G \in RHS$ implies $G(\sim) = G$ or $\Phi \Psi G = G$ from (4.15). That is, $\Phi(\Psi G) = G$ so that $G \in LHS$

- (d) Follows from 4.26
- (e) Follows from 4.27

1.1. Example : Let	A = $(A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A),$
where	$\mathbf{A}_1 = \{a, b\},$
	$\mathbf{A} = \{a\},\$
	$\mu_{1A_1} = 1, \mu_{2A} = 0$
and	$L_{A}^{\perp} = \{0, \alpha \parallel \beta, 1\}$
Suppose	$\mathbf{B} = \chi_a^{\alpha}$
and	$\mathbf{C} = \boldsymbol{\chi}_a^{\beta}.$
Then	$\mathbf{B}^{\sim} = \{\chi_a^0, \chi_a^\alpha\}$
and	$C^{-} = \{\chi_{a}^{0}, \chi_{a}^{\beta}\}$
And	$\mathbf{B}^{\sim}\mathbf{C}^{\sim} = \{\chi_a^0, \chi_a^{\alpha}, \chi_a^{\beta}\}$
Here	$\mathbf{B} \cup \mathbf{C} = \chi_a^{\alpha} \cup \chi_a^{\beta}$

180	180 Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V. Umakameswari and D. Raghu Ram					
			=	χ_a^{-1} implying $(B \cup C)^{\sim}$		
				$\{\chi_a^0, \chi_a^\alpha, \chi_a^\beta, \chi_a^1\}$		
	So that,	$(B \cup C)^{\sim}$				
		lete home	omo	orphism, if and only if $L_A = \{0, 1\}$		
				ents, then there exist $\beta \in L_A$ such that $\beta \neq 0, \beta$	\neq 1 and β^c	
exis	sts such that $\beta^c \neq 0$ and $\beta^c \neq 1$ so	that $\beta \parallel \beta$	3°.		,	
	Hence Φ cannot be a join comp	plete hom	om	orphism by above example, a contradiction.		
	Hence	L _A	=	{0,1}		
	Conversely suppose	L _A	=	{0,1}		
		of noner	npt	y Fs-subset $(B_i)_{i \in I}$, we have to show that ($(\bigcup_{i \in I} \mathbf{B}_i)^{\sim}$	
= ($V_{i \in I} \mathbf{B}_{i}^{\sim}$	DUG				
	Clearly	RHS			(1)	
	Let	0		LHS.		
	Then $\chi_b^{\beta} \subseteq_{i \in I} B_i$, here all possible					
	For	β	=	0		
	consider	\mathbf{B}_{i}	=	$(\mathbf{B}_{1i}, \mathbf{B}_i, \overline{\mathbf{B}}_i (\boldsymbol{\mu}_{1\mathbf{B}_1i}), \boldsymbol{\mu}_{2\mathbf{B}_i}), \mathbf{L}_{\mathbf{B}_i})$ such that $b \in \mathbf{B}_i$		
	Define	χ_b^{0}		$(\mathbf{B}_{1i}, \mathbf{B}_{i}, \overline{\mathbf{C}}_{i} (\boldsymbol{\mu}_{1C_{1i}}, \boldsymbol{\mu}_{2C_{i}}), \mathbf{L}_{C_{i}})$		
			=	C_i		
whe	ere	μ_{1C1_i}	=	μ_{2C_i} ,		
				{0, 1}		
	Clearly $\chi_b^0 \subseteq \mathbf{B}_i$ so that $\chi_b^0 \in \mathbf{B}_i$	$a_i \sim \subseteq \bigcup_{i \in \mathbb{N}}^i$	\mathbf{B}_{i}	= RHS		
	Hence	LHS	\subseteq	RHS	(2)	
	For	β	=	1 consider		
		\mathbf{B}_{i}	=	$(\mathbf{B}_{1,i}, \mathbf{B}_{i}, \overline{\mathbf{B}}_{i}, (\mu_{1\mathbf{B}_{1,i}}, \mu_{2\mathbf{B}_{i}}), \mathbf{L}_{\mathbf{B}_{i}})$ such that $b \in \mathbf{B}_{i}$		
	Define			$(\mathbf{B}_{1,i}^{T}, \mathbf{B}_{i,i}^{T}, \mathbf{\overline{C}}_{i}^{T}(\boldsymbol{\mu}_{1C_{1,i}}^{T}, \boldsymbol{\mu}_{2C_{i}}^{T}), \mathbf{L}_{C_{i}}^{T})$		
		0		C_i where		
		μ_{1C1} , x	=	$\mu_{2C_i}^{i}x, \forall x \neq b,$		
		$\mu_{1C_{1i}}b$				
		$\mu_{2C_i} x$	=	0,		
		L_{c_i}	=	{0, 1}		
	Clearly	Ci		B _i		
	-	$\chi_b^0 \in \mathbf{B}_i^{\sim}$				
				RHS		
	Hence	LHS	\subset	RHS	(3)	
	From (1), (2) and (3),	LHS				
				corphism if and only if L_A is singleton.		
	Proof : Suppose Ψ is a meet co					
	Let	-		LA such that $\beta \neq 0$		
	T (۳ C	-	(1β)		

Let

$$G_{1} = \{\chi_{b}^{1}, \chi_{b}^{\beta}\},$$

$$G_{2} = \{\chi_{b}^{0}, \chi_{b}^{\beta^{c}}\}$$

$$G_{1} \cap G_{2} = \Phi$$

$$(G_{1} \cap G_{2})^{\sim} = \Phi_{A}$$

$$G_{1}^{\sim} = \chi_{b}^{-1} \cup \chi_{b}^{\beta}$$

$$= \chi_b^{-1}, G_2^{\sim}$$

$$= \chi_b^{-0} \cup \chi_b^{-\beta^c}$$

$$= \chi_b^{-\beta^c}$$

$$\Rightarrow \qquad G_1^{\sim} \cap G_2^{\sim} = \chi_b^{-1} \cap \chi_b^{-\beta^c}$$

$$= \chi_b^{-\beta^c} \qquad (\because \chi_b^{-1} \supseteq \chi_b^{-\beta^c})$$

$$\therefore \qquad (G_1 \cap G_2^{-\gamma})^{\sim} \neq G_1^{\sim} \cap G_2^{\sim}, \text{ which is contradiction.}$$
So W is not a meet complete homomorphism

So Ψ is not a meet complete homomorphism

Conversely, suppose $\boldsymbol{L}_{\!\scriptscriptstyle A}$ is singleton. To prove $\boldsymbol{\Psi}$ is a meet complete homomorphism

Suppose Ψ is not a meet complete homomorphism. Then there exist a nonempty family $(G_i)_{i \in I}$ such that $(\bigcap_{i \in I} G_i)^{\sim} \not\subset \bigcap_{i \in I} G_i^{\sim}$. Then there exist $\chi_b^{\beta} \subseteq$ RHS such that $\chi_b^{\beta} \not\subset$ LHS and $\beta \neq 0$ and $\beta \in L_A$, contradicting L_A is singleton

Hence Ψ is a meet complete homomorphism.

4. Proposit	ion : Given B, then	3~ =	=	G
\Rightarrow		B =	=	G~
Proof:]	3~ =	=	G
i.e	$\Phi($]	3) =	=	G
\Rightarrow	ΨΦ(]	3) =	=	$\Psi(G)$
\Rightarrow	1(1	3) =	=	$\Psi(G)$ from 4.28(<i>e</i>) that is,
		B =	=	G~.
5. Proposi	tion: Given G is S-closed,	ther	1	
	(J~ =	=	В
\Rightarrow]	3~ =	=	G
Proof : Giv	en G is S-closed implies	G =	=	$G^{\sim}{}^{\sim}$
i.e.	$\Phi \Psi (0)$		=	G
Let		B =	=	G~
i.e.		B =	=	$\Phi(G)$
\Rightarrow	Ψ(Ι	3) =	=	$\Psi\Phi(G)$
\Rightarrow	Ψ(Ι	3) =	=	G
6. Lemma	$: \qquad (G_1 \cap G_2)$)~ =	=	$G_1 \cap G_2$,
for any two S-cl	losed subsets G_1 and G_2 of	FSP	P (2	A).
Proof : G_1	s S-closed implies	G ₁ =	=	B ₁ ~,
where]	B ₁ =	=	А
and]	B ₁ =	=	$(\mathbf{B}_{11}, \mathbf{B}_{1}, \overline{\mathbf{B}}_{1}, (\mu_{1B_{11}}, \mu_{2B_{1}}), \mathbf{L}_{B_{1}})$
		=	=	$\cup_{\chi^{\beta}_{b}\in G_{1}}\chi^{\beta}_{b}$
	$B_{11} \supseteq B_{11}$	3 ₁ =	=	А
		=	=	$\{b \mid \chi_b^{\beta} \in \mathbf{G}_1\}, \mathbf{L}_{\mathbf{B}_1}$
		=	=	$L_A, \mu_{1B_{11}} b$
				$\bigvee_{\chi^{\beta}_{h} \in G_{1}} (\beta \lor \mu_{2A} b)$
		-	_	$\chi_b^{\rm p} \in \mathcal{G}_1$ (\mathcal{P} + $\mathcal{P}_{2A}^{\rm p}$)
	$\mu_{2\mathrm{B}}$	<i>b</i> =	=	$\mu_{2A}b$
Similarly G				B ₂ ~,
where]	B ₂ =	=	А

102	vaduiparun Togeswara	a, Diswajit Katil, Ci	1.IXa	inasanyasi Kao, K. v. Omakameswari
	and	B ₂	=	$(B_{12}, B_2, \overline{B}_2, (\mu_{1B_{12}}, \mu_{2B_2}), LB_2)$
			=	$\cup_{\chi^{\beta}_{b} \in G_{2}} \chi^{\beta}_{b}$
		$B_{12} \supseteq B_{22}$		
		-12 = -2		$\{b \mid \chi_b^{\beta} \in \mathbf{G}_2\}, \mathbf{L}_{\mathbf{B}_2}$
				$L_{A}, \mu_{1B12} b$
				$\bigvee_{\chi_b^\beta \in \mathbf{G}_2} (\beta \lor \mu_{2\mathbf{A}} b), 2_{\mathbf{B}2} b$
			=	$\mu_{2A} b$
	Need to show that	$\mu_{\mathrm{1B}_{11}} \wedge \mu_{\mathrm{1B}_{12}}$		
	But we have,	$\mu_{_{1\mathrm{B}_{11}}} b$	\geq	$\mu_{2A}b$
			=	$\mu_{_{2\mathrm{B}_{1}}}b$
and		$\mu_{{}_{1\mathrm{B}_{12}}}b$	\geq	$\mu_{2A} b$
				$\mu_{_{2\mathrm{B}_2}}b$
	·.	$\mu_{\mathrm{1B}_{11}} b \wedge \mu_{\mathrm{1B}_{12}} b$		
				$\mu_{2B_1} b \lor \mu_{2B_2} b$
	Hence	1		B_2 non-empty.
	Now,	$G_1 \cap G_2$		$B_1 \sim B_2$
				$(\mathbf{B}_1 \cap \mathbf{B}_2)^{\sim}$
	from 4.25 so that	1 2		$(G_1 \sim G_2) \sim$
	We have for any Fs-sub			
	\Rightarrow			Gĩ.
1	Take			$G_1 \cap G_2$
and				$G_1 \cap G_2$
	Hence	$(G_1 \cap G_2)^{\sim}$		1 2
	7. Theorem :	$(\bigcap_{i \in I} G_i)^{\sim}$		$t \in I$ t
	for any family $(G_i)_{i \in I}$ of			
	8. Define E : FS-SET _*			\rightarrow FSP(A)
		A —		
		Î		FSP(A)
		(f_1, f, Φ)		$\longrightarrow \int FSP(f_1, f, \Phi)$ FSP(B)
		↓ R		↓ FSP(B)
		D		

Figure 2

Such that FSP $(f_1, f, \Phi)(\chi_b^\beta) = \chi_{fb}^{\Phi\beta}$. Then, E dense functor. **Proof :** For $C \in FSSET_*$ $1_c = (1_{C_1}, 1_C, 1_{LC}) : C \to C$ $E(1_C)(\chi_b^\beta) = E(1_{C_1}, 1_C, 1_{LC}) (\chi_b^\beta)$ $= FSP(1_{C_1}, 1_C, 1_{LC}) (\chi_b^\beta)$ $= \chi_{1_C^\beta}^1$ $= \chi_b^\beta$

$$= 1_{\text{FSP(C)}} (\chi_b^{\beta}) \\ = 1_{\text{E(C)}} (\chi_b^{\beta})$$

So that, $E(1_{C}) = 1_{E(C)}$ For $(f_1, f, \Phi) \in \text{Hom}_i(B, C)$ and $(g_1, g, \Psi) \in \text{Hom}_i(C, D)$ as in 2.3 $|\mu_{1C_1}|_{\mathcal{C}} \circ f_1|_{\mathcal{B}} \ge \Phi \circ \mu_{1B_1}$ and $\mu_{2\mathcal{C}} \circ f \le \Phi \circ \mu_{2\mathcal{B}} f$ $\mu_{1D_1} \mid_D \circ g_1 \mid_B \geq \Psi \circ \mu_{1C_1} \text{) and } \mu_{2D} \circ g \leq \Psi \circ \mu_{2C}$ From 2.11, Composition of two increasing Fs-function is increasing, we can have $\mu_{\mathrm{1D}_{1}}|_{\mathrm{D}} \circ g_{1}f_{1}|_{\mathrm{B}} \geq \Psi \Phi \circ \mu_{\mathrm{1B}_{1}} \text{ and } \mu_{\mathrm{2D}} \circ gf \leq \Psi \Phi \circ \mu_{\mathrm{2B}}$ $\overline{\mathrm{D}}gfb = \mu_{1\mathrm{D}_1}gfb \wedge (\mu_{2\mathrm{D}}gfb)^c$ So that, $\geq (\Psi \Phi \circ \mu_{1B_1} b \wedge [(\Psi \Phi \circ \mu_{2B})b]^c$ $E[(g_1, g, \Psi) \circ (f_1, f, \Phi)](\chi_b^\beta) = E[g_1 \circ f_1, g \circ f, \Psi \circ \Phi]$ $= \chi^{\Psi\Phi\beta}_{ab}$ = $E(g_1, g, \Phi) \left(\chi_{fb}^{\Phi\beta}\right)$ $= E(g_1, g, \Psi) \circ E(f_1, f, \Phi)(\chi_{\mu}^{\beta})$ $\mathbb{E}[(g_1, g, \Psi) \circ (f_1, f, \Phi)] = \mathbb{E}(g_1, g, \Psi) \circ \mathbb{E}(f_1, f, \Phi).$ So that Hence E is functor. Let $B \in (SET)_{a}$. We have to find $B \in (FSSET)_{a}$ such that E(B) = FSP(B) is isomorphic with B.

Consider $\mathbf{B} = \bigcup_{b \in \mathbf{B}} \chi_b^0$ $FSP(B) = \{\chi_b^0 | b \in B\}$ We have $FSP(B) \rightarrow B by f(\chi_{b}^{0}) = b$

Define *f* :

Clearly f is a bijection.

Hence E is a dense functor

9. Remark : Note that $\chi_b^{0} = \Phi_A$ Fs-empty set of second kind if, and only if

$$\chi_b^0 = (D, D, D(\mu_{1D_1}, \mu_{2D}), L_D),$$

where

 $\mu_{1D_1} = \mu_{2D}$

10. Remark : Φ_A -Fs-empty set of second kind can be treated as Fs-point.

11. Definition: Let F, G:A \rightarrow B be a pair of functors. A natural transformation η between two functor F and G –denoted by $\eta: F \to G$ is defined as follows with the help of the following diagram which should be commutative .That is, $Gf \circ \eta_A = \eta_B \circ Ff$

FS-SET = Category with Fs-sets (with complete Boolean algebra valued membership functions) as objects and Fs-functions [3.1] as morphisms between Fs-sets.

FS-SETND = Category with Fs-sets (with non-degenerating complete Boolean algebra valued membership functions) as objects and Fs-functions as morphisms between Fs-sets.

12. Theorem : There is a natural transformation between the functors I and $G \circ E$ where $G \circ E$ composition of functors G-as described below and E in 3.35 and I: $(FS-SET)_* \rightarrow (FS-SET)_*$ is the identity functor where * = i or p

$$\begin{array}{c} D \\ f \\ \downarrow \\ E \end{array} \xrightarrow{(D_1, D, \overline{D} (\mu_{1D_1}, \mu_{2D}), L_D)} \\ \downarrow (f_1, 1, 1) \\ (E_1, E, \overline{E} (\mu_{1E_1}, \mu_{2E}), L_E) \end{array}$$

Figure 4

Where

$$\begin{array}{rcl} \mu_{1D_1} &=& \mu_{2D} \\ &=& \infty \\ \mu_{1E_1} &=& \mu_{2E} \\ &=& \infty \end{array}$$

and and

$$\begin{array}{rcl} L_{\rm D} &=& L_{\rm E} \\ &=& 1_{\infty} \end{array}$$

Proof: $E : FF-SSET_* \rightarrow SET$

$$E(f_1, f, \Phi)(\chi_b^{\beta}) = FSP(f_1, f, \Phi)(\chi_b^{\beta})$$
$$= \chi_{fb}^{\Phi\beta}$$

F-SET $_{*} \xrightarrow{E}$ SET \xrightarrow{G} FS-SET $_{*}$ F-SET $_{*} \xrightarrow{G \circ E}$ FS-SET), I : FS-SET $_{*} \rightarrow$ FS-SET $_{*}$ $\eta : I = G \circ E$ $A \xrightarrow{I(A) \xrightarrow{\eta_{A}}}$ $(f_{1}, f, \Phi) \xrightarrow{|I(f_{1}, f, \Phi)|}$

$$(f_{1}, f, \Phi) \bigvee_{\mathsf{B}}^{\mathsf{A}} \begin{array}{c} \mathsf{I}(\mathsf{A}) \xrightarrow{\eta_{\mathsf{A}}} \mathsf{G}^{\circ} \mathsf{E}(\mathsf{A}) \\ \downarrow & \downarrow \\ \mathsf{B} \end{array} \xrightarrow{\eta_{\mathsf{B}}} \mathsf{G}^{\circ} \mathsf{E}(f_{1}, f, \Phi) \\ \downarrow & \downarrow \\ \mathsf{H}(\mathsf{B}) \xrightarrow{\eta_{\mathsf{B}}} \mathsf{G}^{\circ} \mathsf{E}(\mathsf{B}) \end{array}$$

Figure 5

To be proved
$$G \circ E(f_1, f, \Phi) \circ \eta_A = \eta_B \circ I(f_1, f, \Phi)$$
, where
 $\eta_A = (C_{A_1}, C_A, C_{L_A})$, where
 $C_{A_1} : A_1 \to FSP(A)$
 $C_A : A \to FSP(A)$
 $C_{L_A} : L_A \to \infty$
 $a_1 \to \chi_a^0$
 $a \to \chi_a^0$
 $a \to \infty$
 $\eta_B \to (C_{B_1}, C_B, C_{L_B})$, where
 $C_{B_1} : B_1 \to FSP(A)$
 $C_B : B \to FSP(A)$
 $C_{L_B} : L_B \to \infty$
 $b_1 \to \chi_{b_1}^0$
 $b \to \chi_a^0$
 $\beta \to \infty$
So that, $\eta_B \circ I(f_1, f, \Phi) : I(A) \to G \circ E(B)$.

We have

$$\begin{aligned} G \circ E(f_{1}, f, \Phi) \circ \eta_{A} &= G \circ E(f_{1}, f, \Phi) \circ (C_{A_{1}}, C_{A}, C_{L_{A}}) \\ &= G \circ (Ef_{1}, f, \Phi) \circ (C_{A_{1}}, C_{A}, C_{L_{A}}) \\ &= G(g) \circ (C_{A_{1}}, C_{A}, C_{L_{A}}) \\ &= (g, g, 1_{\infty}) \circ (C_{A_{1}}, C_{A}, C_{L_{A}}) \\ &= (g \circ C_{A_{1}}), \circ g \circ C_{A}, 1_{\infty} \circ C_{L_{A}}) \\ &\eta_{B} \circ I(f_{1}, f, \Phi) &= \eta_{B} \circ (f_{1}, f, \Phi) \\ &= (C_{B_{1}}, C_{B}, C_{LB}) \circ (f_{1}, f, \Phi) \\ &= (C_{B_{1}} \circ f_{1}, C_{B} \circ f, C_{LB} \circ \Phi) \end{aligned}$$

To be proved

1.
$$g \circ C_{A_1} = C_{B_1} \circ f_1$$

2. $g \circ C_A = C_B \circ f$
3. $1_{\infty} \circ C_{L_A} = C_{L_B} \circ \Phi$
1. $A_1 \xrightarrow{C_A} FSP(A) \xrightarrow{g} FSP(B)$
 $(g \circ C_{A_1}) a_1 = g(C_A)$

$$(g \circ C_{A_1}) a_1 = g(C_{A_1} a_1)$$

= $g(\chi^0_{a_1}) = \chi^0_{fa_1} = \chi^0_{f_{1a_1}}$

1.
$$L_A \rightarrow \xrightarrow{f_1} B_1 \xrightarrow{CB_1} FSP(B)$$

 $(C_{B_1} \circ f_1) a_1 = C_{B_1}(f_1 a_1)$
 $= \chi^0_{f_{1a_1}}$

Hence $g \circ C_{A_1} = C_{B_1} \circ f_1$ 2. $A \xrightarrow{C_A} FSP(A) \xrightarrow{g} FSP(B)$ $(g \circ C_A) a_1 = g(C_A a)$ $= g(\chi_a^0)$ $= \chi_{fa}^0$ A $\xrightarrow{f_1} B \xrightarrow{C_B} FSP(B)$ $(C_B \circ f)a = C_B(fa)$ $= \chi_{f_{1a1}}^0$ Hence $g \circ C_A = C_B \circ f$ 3. $L_A \xrightarrow{CL_A} \infty \xrightarrow{\infty} \infty$ $(1_{\infty} \circ C_{L_A})\alpha = 1_{\infty} (C_{LA} \alpha)$ $= 1_{\infty} (\infty)$ $= \infty$ $L_A \xrightarrow{\Phi} L_B \xrightarrow{CL_B} \infty$ $(C_{LB} \circ \Phi)\alpha = C_{L_B} (\Phi(\alpha))$ $= \infty$ $= (1_{\infty} \circ C_{L_A})\alpha$ Hence $1_{\infty} \circ C_{L_A} = C_{L_B} \circ \Phi$ From (1), (2) and (3) clearly $G \circ E(f_1, f, \Phi) \circ \eta_A = \eta_B \circ I(f_1, f, \Phi)$ That is, η from I into $G \circ E$ is a natural transformation.

6. ACKNOWLEDGEMENTS

The authors acknowledge GITAM University for providing facilities to do research.

7. REFERENCES

- 1. J.A.Goguen ,L-Fuzzy Sets, JMAA, Vol.18, P145-174, 1967
- 2. Steven Givant Paul Halmos, Introduction to Boolean algebras, Springer
- 3. Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
- 4. Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
- 5. Thomas Jech, Set Theory, The Third Millennium Edition revised and expanded, Springer
- 6. George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, Advances in Fuzzy Systems-Applications and Theory Vol-6,World Scientific
- 7. James Dugundji, Topology, Universal Book Stall, Delhi.
- 8. L.Zadeh, Fuzzy Sets, Information and Control, Vol.8, P338-353, 1965
- 9. U.Höhle, S.E.Rodabaugh, Mathematics of fuzzy Sets Logic, Topology, and Measure Theory, Kluwer Academic Publishers, Boston
- 10. G.F.Simmons, Introduction to topology and Modern Analysis, Mc Graw-Hill international Book Company
- Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath ,A Theory of Fs-sets, Fs-Complements and Fs-De Morgan Laws, IJARCS, Vol- 4, No. 10, Sep-Oct 2013
- 12. Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy, A Study of Fs-Functions and Properties of Images of Fs-Subsets Under Various Fs-Functions. MS-IRJ, Vol-3,Issue-1
- Vaddiparthi Yogeswara, Biswajit Rath, A Study of Fs-Functions and Study of Images of Fs-Subsets In The Light Of Refined Definition Of Images Under Various Fs-Functions. IJATCSE, Vol-3, No.3, Pages : 06 - 14 (2014) Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore
- Vaddiparthi Yogeswara, Biswajit Rath, Generalized Definition of Image of an Fs-Subset under an Fs-function-Resultant Properties of Images Mathematical Sciences International Research Journal, 2015, Volume -4, Spl Issue, 40-56
- Vaddiparthi Yogeswara, Biswajit Rath, , Ch.Ramasanyasi Rao , Fs-Sets and Infinite Distributive Laws Mathematical Sciences International Research Journal, 2015 , Volume-4 Issue-2, Page No-251-256
- Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Fs-Sets and Theory of FsB-Topology Mathematical Sciences International Research Journal, 2016, Volume-5, Issue-1, Page No-113-118
- 17. Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, D. Raghu Ram Some Properties of Associates of Subsets of FSP-Points Transactions on Machine Learning and Artificial Intelligence, 2016, Volume-4, Issue-6
- Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Inverse Images of Fs-subsets under an Fs-function – Some Results Mathematical Sciences International Research Journal, 2016
- 19. Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, JFM, Vol 5(3), P495-523, 1997, U.S.A
- Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem for Fuzzy Subsystems of A Fuzzy Partial Algebra, Fuzzy Sets and System, Vol 104, P359-371, 1999, HOLLAND
- 21. Mamoni Dhar, Fuzzy Sets towards Forming Boolean Algebra, IJEIC, Vol. 2, Issue 4, February 2011
- 22. Nistala V.E.S. Murthy, f-Topological Spaces Proceedings of The National Seminar on Topology, Category Theory and their applications to Computer Science, P89-119, March 11-13, 2004, Department of Mathematics, St Joseph's College, Irinjalaguda, Kerala (organized by the Kerala Mathematical Society. Invited Talk).