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Fs-Sets, Fs-Points, and A Representation 
Theorem
Vaddiparthi Yogeswara* Biswajit Rath** Ch.Ramasanyasi Rao*** K.V. Umakameswari***
and D. Raghu Ram***

Abstract :  In this paper, we establish one of the composition of relations [17] between collection of all subsets 
of the Fs-points set (FSP(A)) [17] and collection of Fs-subsets of A[17] is identity and other composition 
contains identity. Already we observed [17] one of the relations is a meet complete homomorphism and the 
other is a join complete homomorphism [17]. Here we search relations between Fs-complemented sets and 
complemented constructed crisp sets  via these homomorphisms. Also we prove a representation theorem 
between Fs-subsets of A and crisp subsets of FSP(A) and lastly study some Categorical properties between 
Categories  Fs -set  with objects- Fs-sets and morphisms-Fs-functions and set.
Keywords : Fs-set, Fs-subset, Fs-complement, Fs-Function, Fs-point, category of Fs-sets, functor between 
category of Fs-sets.

1. I. INTRODUCTION

Ever since Zadeh [8] introduced the notion of fuzzy sets in his pioneering work, several mathematicians 
studied numerous aspects of fuzzy sets. 

Murthy[19] introduced f-sets in order to prove Axiom of choice for fuzzy sets. The following example 
shows why the introduction of f-set theory is necessitated. Let A be non-empty and consider a diamond 
lattice L = {0,  ,1}. Defi ne two fuzzy sets f and g from A into L such that f(x) =  and g(x) = . Here 
both f and g are nonempty fuzzy sets. The Cartesian product of f and g from A into L is given by (f × g)(x) 
= f(x) ˄ g(x) =   = 0. That is, f × g is a empty set. Even though both f and g are non-empty fuzzy sets, 
their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory 
[1]. The collection of all f-subsets of a given f-set  with Murthy’s defi nition [19] f-complement [22] could 
not form a compete Boolean algebra. Vaddiparthi Yogeswara , G.Srinivas and Biswajit Rath introduced 
the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of 
given Fs-set is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The 
Fs-sets they introduced contain Boolean valued membership functions .They are successful in their efforts 
in proving that result with some conditions. In papers [12] and [13] Vaddiparthi Yogeswara, Biswajit 
Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of given Fs-set and 
defi ned an image of an Fs-subset under a given Fs-function. Also they studied the properties of images 
under various kinds of Fs-functions.

In the paper [17], we constructed a crisp Fs-points set FSP(A) for given Fs-set A and established 
a pair of relations  between collection of all Fs-subsets of a given Fs-set A and collection of all crisp 
subsets of Fs-points set FSP(A) of the same Fs-set A  and proved one of the relations  is a meet complete 
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homomorphism and the other is a join complete homomorphism and searched some properties between 
Fs-complemented sets and complemented  constructed crisp sets  via these homomorphisms[17].

In this paper we establish a representation theorem between Fs-subsets of A and crisp subsets of 
FSP(A) and study some more properties between these -homomorphism and lastly study some Categorical 
properties between Categories  FS SET  with objects- Fs-sets and morphisms-Fs-functions and SET. The 
detailed defi nitions of Fs-point and FSP (A) for given Fs-set A are discussed before defi ning those relations 
mentioned above. For smooth reading of paper, the theory of Fs-sets and Fs-functions in brief is dealt with 
in fi rst two sections. We denote the largest element of a complete Boolean algebra  LA [1.1] by MA or 1. 
We denote Fs-union and crisp set union by same symbol  and similary Fs-intersection and crisp set 
intersection by the same symbol . For all lattice theoretic properties and Boolean algebraic properties 
one can refer Szasz [3], Garret Birkhoff[4],Steven Givant • Paul Halmos[2] and Thomas Jech[5]

2. II. FS-SETS

1. Defi nition :  Let U be a universal set, A1  U and let A  U be non-empty. A four tuple  
 A = (A1,  A, A  (1A1

, 2A), LA)
is said be an Fs-set if, and only if
 (a) A   A1

 (b) LA is a complete Boolean Algebra
 (c)  1A1

 : A1  LA, 2A : A LA, are functions such that 1A1
 | A  2A

2.  Definition : Fs-subset
Let = (A1, A, A  (1A1 

, 2A), LA) and B = (B1, B, B (1B1
, 2B), LB) be a pair of Fs-sets. B is said to 

be an Fs-subset of A, denoted by B A, if, and only if
 (a) B1  A1, A  B
 (b) LB is a complete subalgebra of LA or LB  LA

 (c) 1B1
    μ1A1

 | B1, and  2B | A ≥ 2A

3 . Proposition: Let B  and A be a pair of Fs-sets such that B  A . Then B̅x   A̅x is true for each x A
3.1. Remark : For some LX, such that LX  LA a four tuple X = (X1, X, X̅(1X1

, 2X), LX) is not an 
Fs-set if, and only if
 (a) X  X1  or
 (b) 1X1

 x ³/  2X x, for some x  X  X1

Here onwards, any object of this type is called an Fs-empty set of fi rst kind and we accept that it is an 
Fs-subset of B for any B A.

4. Defi nition : An Fs-subset Y = (Y1, Y, Y̅(1Y1
, 2Y), LY) of A, is said to be an Fs-empty set of second 

kind if, and only if
 (a) Y1 = Y
 (b) LY   LA

 (c) Y̅ = 0
4.1. Remark : We denote Fs-empty set of fi rst kind or Fs-empty set of second kind by A.
5. Defi nition : Let B1 = (B11, B1, B̅1 (1B11

, 2B1
), LB1

) and 
 B2 = (B12, B2, B̅2 (1B12

), 2B2
), LB2

 be a pair of Fs-subsets. 
We say that B1 and B2 are equal, denoted by B1 = B2  if, only if

 (a) B11 = B12, B1 = B2

 (b) LB1
 = LB2

 (c) (a) (1B11
 = 1B12

  and 2B1
 = 2B2

) or  (b) B̅1 = B̅2
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5.1. Remark : We can easily observed that 3(a) and 3(b) not equivalent statements. 
6. Proposition : B1 = (B11, B1, B̅1 (1B11

, B1
), LB1

) 
and  B2 = (B12, B2, B̅2 (1B12

, μB2
), LB2

) 
are equal if, only if B1 B2   and B2  B1

7.  Defi nition of Fs-union for a given pair of Fs-subsets of A:
Let B = (B1, B, B̅(1B1

, μ2B), LB) and 
 C = (C1, C, C̅(1C1

, μ2C), LC),
be a pair of Fs-subsets of A. Then, the Fs-union of B and C, denoted by B  C is defi ned as

 B  C = D = (D1, D, D̅(1D1
, 2D), LD), where

 (a) D1 = B1  C1, D = B  C
 ( ) LD = LB  LC  = complete subalgebra generated by LB  LC

 (c) 1D1
 : D1  LD is defi ned by

  1D1
 x = (1B1

 1C1
) x   

  2D : D  LD is defi ned by
  2D x = 2B x  2C x 
  D̅ :  D  LD is defi ned by
  D̅x = 1D1

 x (2Dx)c 
8. Proposition : B C is an Fs-subset of A.
9. Defi nition of Fs-intersection for a given pair of Fs-subsets of A:
Let B = (B1, B, B̅ (1B1

, 2B), LB)
and C = (C1, C, C̅(1C1

), 2C), LC)
be a pair of Fs-subsets of A satisfying the following conditions:
 (a) B1  C1  B C
 (b) 1B1  x  1C1

 x   (2B  2C)x, for each x  A
Then, the Fs-intersection of B and t, denoted by B  C is defi ned as

   B  C =  = (E1, E, E̅ (1E , 2E), LE), where
 (a) E1 = B1  C1, E = B C
 (b) LE = LB  LC = LB  LC

 (c) 1E1
 : E1  LE is defi ned by 1E1

 x = 1B1
 x  1C1

 x
  μ2E : E LE is defi ned by
  μ2E x = (μ2B  μ2C)x
  E̅ :  E LE is defi ned by
  E̅x = 1E1

 x (2E x)c. 
9.1. Remark : If (i) or (ii) fails we defi ne B  C as  B  C = A, which is the Fs-empty set of fi rst kind.
2.10. Proposition : For any Fs-subsets B, C and D of A = (A1, A, A̅  (1A1

, 2A), LA), the following 
associative laws are true:
 (a) B (C D) = (B  C) D
 (b) B  (C  D) = (B  C)  D, whenever Fs-intersections exist.

11. Arbitrary Fs-unions and arbitrary Fs-intersections: 
Given a family (Bi)i  I of Fs-subsets of 
 A = (A1, A, A̅(1A1

, 2A), LA), where
 Bi = (B1i, Bi, B̅i (1B1i

, 2Bi
), LBi

), for any i  I
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12. Defi nition of Fs-union is as follows
Case (1) : For I = , defi ne Fs-union of (Bi)i I, denoted by i I Bi as i I Bi = A, which is the 

Fs-empty set
Case (2) : Defi ne for I , Fs-union of (Bi) i I denoted by i I Bi as follow

 
I

Bi
iÎ
  = B = (B1, B, B̅(1B1

, μ2B), LB)
where 
 (a) B1 = i  B1i, B = i I Bi 
 (b)  LB = i I LBi

 = complete subalgebra generated by  Li (Li = LBi
)

  1B1
 : B1 → LB is defi ned by

   μ1B1
 x = (i I μ1B1i

) x  = i I x μ1B1i
 x, where

  Ix = {i  I| x Bi}
  μ2B : B  LB is defi ned by 2B x = (˄i I μ2Bi ) x = ˄i I μ2Bi 

 x
  B̅ : B  LB is defi ned by B̅x = 1B1

 x ˄ (2B x)c

12.1. Remark : We can easily show that (d) B1  B and 1B1
| B  2B.

13. Defi nition of Fs-intersection:
Case (1) : For I = , we defi ne Fs-intersection of (Bi)i I, denoted by i I Bi as i I Bi = A 

Case (2) : Suppose i  I B1i i I Bi  and  ˄i I 1B1i | (i  I Bi)  i I μ2Bi
Then, we defi ne Fs-intersection of (Bi)i I, denoted by i I Bi as follows

 
I

Bi
iÎ
  = C = (C1, C, C̅ (1C1

), 2C), LC)
 (a) C1 = i I B1i, C = i I Bi   
 (b) LC = ˄i I LBi
 (c)  1C1

 : C1  LC is defi ned by 1C1
 x = (˄i I 1B1i) x = ˄i I  μ1B1i x

  2C : C  LC is defi ned by 2C x = (i I 2Bi
) x = i I x 2Bi

 x, where, Ix = {i  I | x  Bi}
  C̅ : C  LC is defi ned by C̅x = 1C1

x ˄ μ2C x)c

Case (3): i I B1i Ê/ iI Bi or ˄i I 1B1i
 | (i I Bi) ³/ i I μ2Bi

 

We defi ne 
I

Bi
iÎ
  = A

13. 1. Lemma : For any Fs-subset B = (B1, B, B̅(1B1
, 2B), LB)

and B Bi = (B1i, Bi, B̅i (1B1i
, 2Bi

), LBi
) 

for each i I. i I Bi  exists and B i I Bi 
14. Proposition : (L(A),) is ˄-complete lattics.
14.1. Corollary : For any Fs-subset B of A, the following results are true

 (a) A  B = B
 (b) ΦA  B = A.

15. Proposition : (L(A), ) is -complete lattics.
15.1. Corollary : (L(A),, ) is a complete lattice with  and ˄
16. Proposition : Let B = (B1, B, B̅(1B1

, 2B), LB), 
 C = (C1, C, C̅(1C1

, 2C), LC)
and D = (D1, D, D̅(1D1

, 2D), LD).
Then B  (C D )
  = (B C)  (B  D) provided C  D exists.
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17. Proposition:  Let B = (B1, B, B̅(1B1
, 2B), LB), 

 C = (C1, C, C̅(1C1
, 2C), LC)

and D = (D1, D, D̅(1D1
), 2D), LD).

Then B  (C  D) = (B  C) (B  D) 
provided in R.H.S  (B  C)  and (B  D)  exists.

18. Defi nition of Fs-complement of an Fs-subset :
Consider a particular Fs-set A = (A1, A, A̅ (1A1

, 2A), LA),  A , where
 (a) A  A1

 (b) LA = [0, MA], MA = A̅A = a A A̅a 
 (c) 1A1

 = MA, 2A = 0,
  A̅x =  1A1 

x ˄(2A x)c = MA, for each x  A 
  Given B = (B1, B, B̅(1B1

, 2B, LB). We defi ne Fs-complement of B, denoted by BCA  for B = A and 
LB = LA as follows:

  BCA = D = (D1, D, D̅(1D1
, 2D, LD), where

 (a) D1 = CAB1 = B1
c   A, D = B = A

 (b) LD = LA

 (c) 1D1
 : D1  LA, is defi ned by 1D1

 x = MA

  2D : A  LA, is defi ned by 2D x = B̅x = 1B1
 x ˄(2Bx)c

  D̅ : A LA, is defi ned by D̅x = 1D1
x ˄ (2D x)c  = MA  (B̅x)c = (B̅x)c.

19. Proposition: ACA = A

20. Defi nition: Defi ne (A)CA = A  
21. Proposition : For B = (B1, B, B̅(μ1B1

, μ2B), LB), 
 C = (C1, C, C̅(1C1

, 2C), LC), 
which are non Fs-empty sets and B = C = A, LB = LC = LA

 (a) B  BCA = A

 (b) B  BCA = 
 (c) (BCA)CA = B
 (d) B  C if and only if CCA  BCA

22. Proposition : Fs-De-Morgan’s laws for a given pair of Fs-subsets:
For any pair of Fs-sets B = (B1, B, B̅(1B1

, 2B), LB)
and C = (C1, C, C̅(1C1

, 2C), LC),
with B = C = A 
and LB = LC = LA, we will have
 (a) (B C)CA = BCA  CCA if (B̅x)c  (C̅x)c  [(1B1

 x)c  2C x] [(1C1 x)c  2B x], for each x  A
 (b) (B  C) CA  = BC CCA , whenever B  C exists.

23. Fs-De Morgan laws for any given arbitrary family of Fs-sets:
Proposition : Given a family of Fs-subsets (Bi)i I of  
 A = (A1, A, A̅ (1A1

, 2A), LA), where
 LA = [0, MA]. 1A1

  = MA, 2A 
  = 0, A̅x 
  = MA 
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 (a)  (i I Bi)
CA = i I Bi

CA, for I , where Bi = (B1i, Bi, B̅i (1B1i
, 2Bi 

, LBi
  and 

  (1) Bi = A, LBi
 = LA provided  ˄i I B̅i x)c  ˄i, j I [(1B1i

 x)c 2Bj 
x]  

 (b)  (i I Bi)
CA = i I Bi

CA, whenever  i I Bi exist

3. FS-FUNCTIONS

1. Defi nition : A Triplet (f1, f, ) is said to be is an Fs-Function between two given Fs-subsets
 B = (B1, B, B̅(1B1

, 2B), LB)
and C = (C1, C, C̅(1C1

, μ2C), LC)
of A, denoted by (f1, f, ): B = (B1, B, B̅(1B1

, 2B), LB)
 C = (C1, C, C̅ (1C1

, 2C), LC)  
if, and only if (using the diagrams).

f1
B1

LB

C1

LC
�

�1B1
�1C1

LB LC

�2B �2C

B C
f

�

Figure 1: Fs-function f  B  C

 (a) f1 |B = f is onto 
 (b)  : LB  Lc is complete homomorphism
  (f1, f, ) is denoted by f̅

2.  Proposition : (i)  1C1 |C °   f1 |B  2C °  f
(ii) ° 1B1

 |B  °  2B

3.  Def : Increasing Fs-function
f̅  is said to be an increasing Fs- function, and denoted by f̅ i if, and only if(using fi g-1)

 (a) 1C1 |C °  f1 |B  °  1B1

 (b) 2C °  f   °  2B

4. Proposition :  ° (2B x)c = [(° μ2B)x]c

5.  Proposition: ° B̅  C̅ °  f, provided f̅  is an increasing Fs-function
6. Def : Decreasing Fs-function
f̅  is said to be decreasing Fs-function denoted as  f̅ d and if and only if

 (a) 1C1
 |C ° f1|B   °  1B1

 (b) 2C °  f    °  2B

7. Proposition :  ° B   C °  f, provided f̅  is a decreasing Fs-function
8. Def : Preserving Fs- function
f̅  is said to be preserving Fs-function and denoted as f̅ p if, and only if

 (a) 1C1
|C ° f1|B =  °  1B1

 (b) 2C °  f = °  2B

9.  Proposition : ° B̅ = C̅ ° f, provided f̅  is Fs- preserving function
10. Def : Composition of two Fs-function
Given two Fs-functions  f̅ : B   C and g̅ : C  D. We denote composition of g̅ and f̅ as g̅  f̅ and defi ne 

as (g̅  f̅ ) =  (g1, g, )  (f1, f, ) = [g1  f1, g f,   ]  
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4. FS-POINT

1. Defi nition We defi ne an object, for b A,   LA such thatA̅b – denoted by (b, ) as follows
 (b, ) = (B1, B, B̅(1B1, 2B), LB) , 
where A  B B1  A1, LB  LA, 
such that 1B1

 x, 2B x  LB, 
   1A1

 x,  x  A1,  LA

 1B1
 x = 

2A

2A

1

A

A, A

x, x b, x
b b, x b

, x x





ì Îïïïï  =íïï Ï Îïïî

and 2B x = 2A A
A, B

x, x
, x x




ì Îïïíï Ï Îïî
2. Lemma:

 (a)  1A1
 b and  (2Ab)c

 (b) 1B1
 b  2B b 

 (c) 1B1
 b 1A1

 b
 (d) 2B b 2A b
 (e) B̅b = 
 (f) (b, ) is Fs-subset of A

Here onward (b, )-which is an Fs-subset of A, we call a (b,β) objects of A.
3. Defi nition of  a relation between objects: 
For any (b, )objects  B1 = (B11, B1, B̅1 (1B11

, 2B1
), LB1

) 
and  B2 = (B12, B2, B̅2 (1B12

, 2B2
), LB2

) of, 
we say that B1 R(b, ) B2 if, and only if 
 1B11

 x = 2B1
x, x  b

and x B1 and 1B12
 x = 2B2

 x, x  b 
and x B 2 and 1B11

 b = 1B12
  

 b =   μ2A b and 2B1
 b = 2B2

 
 b = 2A b.

4.  Theorem : R(b, ) is an equivalence relation.
5. Defi nition of Fs-point : The equivalence class corresponding to R(b, ) is denoted by b

 or 
(b, ).We defi ne this b

 is an Fs point of A.
Set of all Fs-point of A is denoted by FSP(A).
6. Defi nition : Let G  FSP(A).

 (a) G is said to be closed under stalks if, and only if b
 G, b

G
 (b) G is said to be closed under supremums if and only if M  LA, b

 G,   M  b
M G, 

M =  M  
 (c) G is said to be S-closed if, and only if G is closed under both stalks and supremums.

7. Theorem : Arbitrary intersection of S-closed subset is S-closed
8. Defi nition : Let G  FSP(A).
 Defi ne G~ = A if G = .
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Otherwise G~ = Gb
b





Î
È

Defi ne B = (B1, B, B̅(1B1
, 2B), LB), where

 B1  B = {b | χb
 G},

 LB = 11BG
L

b
, b 


Î


  = 2A 2B 2AG
( ),

b
b b b

   
Î

  =

 B̅b = 1B1
 b ˄ (2B b)c 

  = 2A 2AG
( ) ( )

b

cb b
  

Î
  

  = ( ) 2A 2AG
( )

b

cb b
  

Î

é ù  ê úë û

  = ( )( )2A 2A 2AG
( ) ( ( ) )

b

c cb b b
   

Î
   

  = 2AG
( ( ) ) 0

b

cb
 

Î
  

  = 2AG
( ( ) )

b

cb
 

Î
 

  = Gb



Î



9. Theorem : G~ = B
10. Defi nition : For any B   A
Defi ne B~ =  
if  B = A

Let B = (B1, B, B̅(1B1
, 2B), LB) and B A

Defi ne B~ = {b
 | b  B,   LB,   B̅ }

11. Theorem : A = FSP (A)b
b





Î
È

12. Lemma : A~ = FSP(A)
13. Theorem: B~ is S-closed.
14. Theorem: For any G  FSP(A), G  G~ ~

15. Theorem : Let A be an Fs-set. Then the following are equivalent for any G  FSP(A) 
16. Theorem : For any B1 and B2 such that B1  B2  A, B1

~ B2
~ provided B1 = B2 

where  B1 =  (B11, B1, B̅1 (1B11
, 2B1

), LB1
) 

and B2 = (B12, B2, B̅2 (1B12
 , 2B2

), LB2
)

16.1. Corollary : B  A  FSP(B)  FSP(A)
17. Result : B1  B2 implies B1  B2  B3 for any Fs-subset B3 
18. Result : b

β G~ for any b
G such that G  FSP(A).

19. Recall : 1.16 for any Family (Gi)i I of Fs-subsets of A such that Gi  G, i I Gi  G. 
20. Proposition : G1

~  G2
~  for any two subsets G1 and G2 of FSP(A), such that G1  G2. 

21. Theorem: For any Fs-subset B of an Fs-set A, B~ ~ = B.
22. Theorem : (B  C)~  = B~  C~  

for any Fs-subsets B = (B1, B, B̅(1B1
, 2B), LB) 

and C = (C1, C, C̅(μ1C1
, 2C), LC) 

of  such that B  = C.
23. Proposition: For any family of Fs-subset (Bi)i I of A, (i I Bi )

~ = i I Bi
~  provided all Bi’s are 

equal for each i  I
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24. Theorem : (G1  G2)
~ = G1

~  G2
~ for any subsets G1 and G2 of FSP(A),

25. Theorem : (i I Gi)
~ = i I Gi

~ for any family (Gi)i  I of subsets of FSP(A).
25.1. Remark : Observe that c

0 is always an Fs-subset of B i.e. c
0  B~ i.e. c

0  (B~)c 
26. Theorem : For B = (B1, B, B̅(1B1

, 2B), LB ) A, B = A and LA= LB, (BCA)~ (B~)c

27. Theorem : (G~)CA  (Gc)~ for any G  FSP(A), where A = (A1, A, A̅ (1A1
, μ2A), LA), 

1A1
 = MA, 2A= 0 and LA = [0, MA ]. 

5. A REPRESENTATION THEOREM FOR FS-SETS

1. Let  A = (A1, A, A̅(1A1
, 2A), LA)

be an Fs-set and L(A) be set of all Fs-subsets
 Bi = (B1i, Bi, B̅i (1B1i

 , μ2Bi
), LBi

)
with Bi = A of A. 
Let PFSP(A) be the set of all subsets of FSP (A).
 : L(A)  PFSP(A).

Defi ne B  B~

  : PFSP(A)  L(A).
Defi ne G  G~

Then the following are true
 (a) B = B or= 1
 (b) G  G or 1
 (c) Image of ={G  FSP(A)|G is S -closed}
 (d) (BCA)  (B)c, where A = (A1, A, A̅  (1A1

, 2A), LA), 1A1
 = MA, 2A = 0 and LA = [0, MA]

 (e) G)CA  Gc), where A = (A1, A, A̅  (1A1
, 2A), LA), 1A1

 = MA, 2A = 0 and LA = [0, MA]
Proof : We Already proved that ,  are increasing and  is a meet complete homomorphism and  

is join complete homomorphism [17]
 (a) Follows from 4.21
 (b) Follows from 4.14
 (c) G  LHS =  image of  implies. B = B~ = G for some B  A  and B~ is always S-closed from 

(4.13) implying B~ = G  RHS
  G RHS implies G(~ ~ = G or G = G from (4.15). That is, (G) = G so that G  LHS
 (d) Follows from 4.26
  (e) Follows from 4.27

1.1. Example : Let  A = (A1, A, A̅(1A1
, μ2A), LA),

where A1 = {a, b},
 A = {a},
 μ1A1

 = 1, μ2A = 0
and LA = {0,  ,1}

Suppose B = a


and C = a
.

Then B~ = {a
0, a

}
and C~ = {χa

0, a
} 

And B~ C~ = {χa
0,, a

, a
}

Here B C = a
 a


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  = a
1 implying (B  C)~

  = {a
0,, a

, a
, a

1}
So that, (B C)~  B~  C~

2. Theorem :  is a join complete homomorphism, if and only if LA = {0, 1}
Proof : If LA contains more than two elements, then there exist β  LA such that  0,  1 and c 

exists such that c  0 and c  1 so that   c.
Hence  cannot be a join complete homomorphism by above example, a contradiction.
Hence LA = {0,1}
Conversely suppose LA = {0,1}
Consider a nonempty family of nonempty Fs-subset (Bi)i  I, we have to show that (i  I Bi)

~

= i I Bi
~ 

Clearly RHS   LHS …(1)
Let b

  LHS. 
Then b

i I Bi, here all possible values of  are 0 and 1.
For  = 0 
consider Bi = (B1i, Bi, B̅i (1B1i

), 2Bi
), LBi

) such that b  Bi

Defi ne b
0 = (B1i, Bi, C̅i (1C1i

, 2Ci
), LCi

)
  = Ci 

where 1C1i
 = 2Ci

,  
 LCi

 = {0, 1}
Clearly  b

0  Bi so that b
0 Bi 

~  i I Bi
~ = RHS

Hence  LHS   RHS …(2)
For  = 1 consider 
 Bi = (B1i

, Bi, B̅i (μ1B1i
, 2Bi

), LBi
) such that b  Bi

Defi ne b
1 = (B1i

, Bi, C̅i (μ1C1i
, 2Ci

), LCi) 
  = Ci where
 1C1i

 x = μ2Ci
x,  x  b,

 1C1i 
b = 1, 

 2Ci
 x = 0,

 LCi = {0, 1}
Clearly b

1  Bi 
 b

0 Bi
~  i I Bi

~

  = RHS
Hence LHS   RHS …(3)
From (1), (2) and (3), LHS = RHS
3. Theorem :  is a meet complete homomorphism if and only if LA is singleton.
Proof : Suppose  is a meet complete homomorphism 
Let   LA such that  0
Let G1 = {b

1, b
},

 G2 = {b
0, b

βc}
 G1  G2 = 
 (G1  G2)

~ = A 
 G1

~ = b
1 b


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  = b
1, G2

~ 

  = b
0 b

c 
  = χb

c 
 G1

~  G2
~ = b

1  b
c 

  = χb
c   (b

1  b
c)

 (G1  G2 )
~    G1

~ G2
~, which is contradiction.

So  is not a meet complete homomorphism
Conversely, suppose LA is singleton. To prove  is a meet complete homomorphism
Suppose  is not a meet complete homomorphism. Then there exist a nonempty family (Gi)i  I such 

that (i  I Gi)
~    i  I Gi

~ . Then there exist b
 RHS such that b

 LHS and  0 and   LA, 
contradicting LA is singleton

Hence  is a meet complete homomorphism.
4. Proposition : Given B,  then B~ = G
  B = G~

Proof: B~ = G
i.e (B) = G 
 (B) = (G)
 1(B) = (G) from 4.28(e) that is, 
 B = G~.
5.  Proposition: Given G is S-closed, then 
 G~ = B 
 B~ = G 
Proof : Given G is S-closed implies G = G~ ~ 
i.e. (G) = G 
Let B = G~ 
i.e. B = (G)
 (B) = Ψ(G)
 Ψ(B) = G
6. Lemma : (G1  G2)

~ = G1
~  G2

~,  
for any two S-closed subsets G1 and G2 of FSP(A).

Proof : G1 is S-closed implies G1 = B1
~,  

where B1 = A 
and B1 = (B11, B1, B̅1 (μ1B11

, μ2B1
), LB1

)
  = 

1Gb
b





Î
È

 B11  B1 = A 
  = {b | b

 G1}, LB1
  = LA, 1B11

 b

  = 
1

2AG
( )

b
b

 
Î

 

 2B1
b = μ2A b

Similarly G2 is S-closed implies G2 =  B2
~,

where B2 = A 
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and B2 = (B12, B2, B̅2 (1B12
, 2B2

 ), LB2)

  = 
2Gb

b





Î
È

 B12 B2 = A
  = {b | b

 G2}, LB2
  = LA, 1B12

 b

  = 
2Gb

 Î
 (2A b), 2B2 b

  = 2A b 
Need to show that 1B11

 1B12 
  2B1

 μ2B2
But we have, 1B11

 b  2Ab
  = 2B1

 b 
and 1B12

 b  μ2A b 
  = μ2B2

 b
 μ1B11

 b  1B12
 b  2A b

  = 2B1
 b 2B2

 b
Hence B1  B2 non-empty. 
Now, G1  G2 = B1

~  B2
~ 

  = (B1  B2)
~

from 4.25 so that (B1  B2)
~ =  (G1

~  G2
~)~

We have for any Fs-subset H, H~ = G 
 H = G~.
Take H  = G1

~  G2
~ 

and G = G1  G2

Hence (G1  G2)
~ = G1

~  G2
~

7. Theorem : (i I Gi)
~  = i I Gi

~

for any family (Gi)i I of S-closed subsets of FSP(A)  
8. Defi ne E :FS- SET*   SET, where * = i or p

A

B

( , , )f f1 � FSP( , , )f f1 �

FSP(A)

A FSP(A)

FSP(B)

Figure 2

Such that FSP (f1, f, )(b
) = fb .F  Then, E dense functor.

Proof : For CFS SET* 1c = (1C1
, 1C, 1LC) : C  C 

 E(1C)(b
) = E(1C1

, 1C, 1LC
) (b

)
  = FSP (1C1, 1C, 1LC

) (b
 )

  = LC

C

1
1 b

  
  = b



  = 1FSP(C) (b
)

  = 1E(C) (b
) 
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So that, E(1C) = 1E(C) 
For (f1, f, )  Homi (B,C) and (g1, g, ) Homi (C, D) as in 2.3
 1C1

 |C ° f1 |B    ° 1B1
) and 2C ° f ° 2B f

 1D1
 |D ° g1 |B    ° 1C1

) and 2D ° g ° 2C 
From 2.11, Composition of two increasing Fs-function is increasing, we can have
 1D1

|D  °  g1 f1|B   °  1B1
 and 2D ° gf ° 2B

So that, D̅gfb = 1D1
gfb  (μ2D gfb)c

   (° μ1B1
b [( ° μ2B)b]c

 E[(g1, g, ) ° (f1, f, )](b
) = E[g1 ° f1, g ° f, ° ]

  = gfb
 F

  = E(g1, g, ) ( )fb
F

  = E(g1, g, ) ° E(f1, f, )(b
)

So that E[(g1, g, ) ° (f1, f, )] = E(g1, g, ) °  E(f1, f, ).
Hence E is functor.
Let B  (SET)o. We have to fi nd B  (FS SET)o such that E(B) = FSP(B) is isomorphic with B.
Consider B = b B b

0 
We have FSP(B) = {b

0 | b B}
Defi ne f : FSP(B)  B by f(b

0) = b
Clearly f is a bijection.
Hence E is a dense functor
9. Remark : Note that b

0 = A Fs-empty set of second kind if, and only if 
 b

0 = (D, D, D̅(μ1D1
, μ2D), LD),

where 1D1
 = μ2D

10. Remark : A-Fs-empty set of second kind can be treated as Fs-point. 
11. Defi nition: Let F, G:A B be a pair of functors. A natural transformation  between two functor 

F and G –denoted by : F  G is defi ned as follows with the help of the following diagram which should 
be commutative .That is, Gf ° A = B °  Ff

�A

FA

FB

GA

GB

If Gf

A

B

f

Figure 3

FS -SET = Category with Fs-sets (with complete Boolean algebra valued membership functions) as 
objects and Fs-functions [3.1] as morphisms between Fs-sets.

FS -SETND = Category with Fs-sets (with non-degenerating complete Boolean algebra valued 
membership functions) as objects and Fs-functions as morphisms between Fs-sets. 

12. Theorem : There is a natural transformation between the functors I and G ° E where G ° E 
composition of functors G- as described below and E in 3.35 and I: (FS -SET)*  (FS- SET)* is the identity 
functor where * = i or p
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D

E

f ( , 1, 1)f1

(D , D, D ( , ), L )1 1D1 2D D��

(E , E, E ( , ), L )1 1E1 2E E��

Figure 4

Where 1D1
 = 2D 

  =  
and  1E1

 = μ2E 

  =  
and LD = LE 

  = 1 
Proof: E : FF-S SET* SET
 E(f1, f, )(b

) =  FSP(f1, f ,)(b
)

  = fb
F

F-S ET *  
E¾   SET G¾¾  FS -SET* 

F-S ET *  
G E¾¾   FS-SET), I : FS-SET*  FS -SET*

  : I = G ° E

( , , )f f1 � ( , , )f f1 �I( , , )f f1 �

�A

�B

I(A)

I(B)

G E(A)°

G E(B)°

G E°

A

B

Figure 5

 To be proved G ° E(f1, f, ) °  A = B ° I(f1, f, ), where
 A = (CA1

, CA, CLA
), where

 CA1
 :  A

1
  FSP(A)

 CA :  A  FSP(A)
 CLA

 :  LA  
 a1  a1

0

 a  a
0

   
 B  (CB1

, CB, CLB), where
 CB1

 :  B
1
  FSP(A)

 CB : B  FSP(A)
 CLB

 :  LB  
 b1  b1

0

 b  a
0

   
So that,B ° I(f1, f, ) : I(A)  G ° E(B)
G °  E(f1, f, ) °  A : I(A)  G °  E(B).
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We have G ° E(f1, f, ) °  A = G °  E(f1, f, ) ° (CA1
, CA, CLA

) 
  = G °  (Ef1, f, ) ° (CA1

,CA, CLA
) 

  = G(g) °  (CA1
, CA, CLA

) 
  = (g, g, 1) ° (CA1

, CA, CLA
) 

  = (g ° CA1
), °  g ° CA, 1°  CLA

) 
 B ° I(f1, f, ) = B ° (f1, f, )
  = (CB1

, CB, CLB) °  (f1, f, )
  = (CB1

 ° f1, CB °  f, CLB ° ) 
To be proved 

 1. g ° CA1
 = CB1

 ° f1

 2. g ° CA = CB ° f
 3. 1° CLA

 = CLB
 ° 

1.   A1 
AC¾¾    FSP(A) g¾   FSP(B)

 (g ° CA1
) a1 = g(CA1

 a1 )

  = ( )
1 1 1 1

0 0 0
aa fa fg   = =

1. LA  → 1f¾¾  B1 
1CB¾¾   FSP(B)

 (CB1
 °  f1) a1 = CB1

 (f1 a1)

  = 1 1

0
af

Hence  g ° CA1
 = CB1

 ° f1

2.   A AC¾¾    FSP(A) g¾   FSP(B)

 (g ° CA) a1 = g(CAa)
  = g(a

0)
  = fa

0 

A   
1f¾¾  B CB¾¾   FSP(B)

 (CB ° f)a = CB (fa)

  = 1 1

0
af

Hence g ° CA = CB ° f

3.   LA  ACL¾¾    ¥¾¾  

 (1∞ ° CLA
) = 1 (CLA )

  = 1∞ ()
  = 
LA  F¾  LB   

BCL¾¾   
 (CLB °  ) = CLB

 (())
  = ∞
  = (1∞ ° CLA

)
Hence 1° CLA

 = CLB
 ° 

From (1), (2) and (3) clearly G ° E(f1, f, ) °  A = B ° I(f1, f, )
That is,  from I into G ° E is a natural transformation.
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