Fs-Sets, Fs-Points, and A Representation Theorem

Vaddiparthi Yogeswara* Biswajit Rath** Ch.Ramasanyasi Rao*** K.V. Umakameswari*** and D. Raghu Ram***

Abstract

In this paper, we establish one of the composition of relations [17] between collection of all subsets of the Fs-points set $(\operatorname{FSP}(\mathrm{A}))$ [17] and collection of Fs-subsets of $\mathrm{A}[17]$ is identity and other composition contains identity. Already we observed [17] one of the relations is a meet complete homomorphism and the other is a join complete homomorphism [17]. Here we search relations between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms. Also we prove a representation theorem between Fs-subsets of A and crisp subsets of $\operatorname{FSP}(\mathrm{A})$ and lastly study some Categorical properties between Categories Fs-set with objects- Fs-sets and morphisms-Fs-functions and set.

Keywords : Fs-set, Fs-subset, Fs-complement, Fs-Function, Fs-point, category of Fs-sets, functor between category of Fs-sets.

1. I. INTRODUCTION

Ever since Zadeh [8] introduced the notion of fuzzy sets in his pioneering work, several mathematicians studied numerous aspects of fuzzy sets.

Murthy[19] introduced f-sets in order to prove Axiom of choice for fuzzy sets. The following example shows why the introduction of f-set theory is necessitated. Let A be non-empty and consider a diamond lattice $\mathrm{L}=\{0, \alpha \| \beta, 1\}$. Define two fuzzy sets f and g from A into L such that $f(x)=\alpha$ and $g(x)=\beta$. Here both f and g are nonempty fuzzy sets. The Cartesian product of f and g from A into L is given by $(f \times g)(x)$ $=f(x) \wedge g(x)=\alpha \wedge \beta=0$. That is, $f \times g$ is a empty set. Even though both f and g are non-empty fuzzy sets, their fuzzy Cartesian product is empty showing that the failure of Axiom of choice in L-fuzzy set theory [1]. The collection of all f-subsets of a given f-set with Murthy's definition [19] f-complement [22] could not form a compete Boolean algebra. Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath introduced the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of given Fs-set is a complete Boolean algebra under Fs-unions, Fs-intersections and Fs-complements. The Fs-sets they introduced contain Boolean valued membership functions. They are successful in their efforts in proving that result with some conditions. In papers [12] and [13] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of given Fs-set and defined an image of an Fs-subset under a given Fs-function. Also they studied the properties of images under various kinds of Fs-functions.

In the paper [17], we constructed a crisp Fs-points set FSP(A) for given Fs-set A and established a pair of relations between collection of all Fs-subsets of a given Fs-set A and collection of all crisp subsets of Fs-points set FSP(A) of the same Fs-set A and proved one of the relations is a meet complete

[^0]homomorphism and the other is a join complete homomorphism and searched some properties between Fs-complemented sets and complemented constructed crisp sets via these homomorphisms[17].

In this paper we establish a representation theorem between Fs-subsets of A and crisp subsets of FSP(A) and study some more properties between these -homomorphism and lastly study some Categorical properties between Categories FSSET with objects- Fs-sets and morphisms-Fs-functions and SET. The detailed definitions of Fs-point and FSP (A) for given Fs-set A are discussed before defining those relations mentioned above. For smooth reading of paper, the theory of Fs-sets and Fs-functions in brief is dealt with in first two sections. We denote the largest element of a complete Boolean algebra $\mathrm{L}_{\mathrm{A}}[1.1]$ by M_{A} or 1 . We denote Fs-union and crisp set union by same symbol \cup and similary Fs-intersection and crisp set intersection by the same symbol \cap. For all lattice theoretic properties and Boolean algebraic properties one can refer Szasz [3], Garret Birkhoff[4],Steven Givant • Paul Halmos[2] and Thomas Jech[5]

2. II. FS-SETS

1. Definition : Let U be a universal set, $A_{1} \subseteq U$ and let $A \subseteq U$ be non-empty. A four tuple

$$
\mathrm{A}=\left(\mathrm{A}_{1}, \overline{\mathrm{~A}}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)
$$

is said be an Fs-set if, and only if
(a) $\mathrm{A} \subseteq \mathrm{A}_{1}$
(b) L_{A} is a complete Boolean Algebra
(c) $\mu_{1 A_{1}}: \mathrm{A}_{1} \rightarrow \mathrm{~L}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, are functions such that $\mu_{1 \mathrm{~A}_{1}} \mid \mathrm{A} \geq \mu_{2 \mathrm{~A}}$
2. Definition : Fs-subset

Let $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)$ and $\mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ be a pair of Fs-sets. B is said to be an Fs-subset of A , denoted by $\mathrm{B} \subseteq \mathrm{A}$, if, and only if
(a) $\mathrm{B}_{1} \subseteq \mathrm{~A}_{1}, \mathrm{~A} \subseteq \mathrm{~B}$
(b) L_{B} is a complete subalgebra of L_{A} or $\mathrm{L}_{\mathrm{B}} \leq \mathrm{L}_{\mathrm{A}}$
(c) $\mu_{1 \mathrm{~B}_{1}} \leq \mu_{1 \mathrm{~A}_{1}} \mid \mathrm{B}_{1}$, and $\mu_{2 \mathrm{~B}} \mid \mathrm{A} \geq \mu_{2 \mathrm{~A}}$
3. Proposition: Let B and A be a pair of Fs-sets such that $\mathrm{B} \subseteq \mathrm{A}$. Then $\overline{\mathrm{B}} x \leq \overline{\mathrm{A}} x$ is true for each $x \in \mathrm{~A}$
3.1. Remark : For some L_{X}, such that $L_{X} \leq L_{A}$ a four tuple $X=\left(X_{1}, X, \bar{X}\left(\mu_{1 X_{1}}, \mu_{2 x}\right), L_{x}\right)$ is not an Fs-set if, and only if
(a) $\mathrm{X} \not \subset \mathrm{X}_{1}$ or
(b) $\mu_{1 \mathrm{X}_{1}} x \nsupseteq \mu_{2 \mathrm{X}} x$, for some $x \in \mathrm{X} \cap \mathrm{X}_{1}$

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an Fs-subset of B for any B \subseteq A.
4. Definition : An Fs-subset $\mathrm{Y}=\left(\mathrm{Y}_{1}, \mathrm{Y}, \overline{\mathrm{Y}}\left(\mu_{1 \mathrm{Y}_{1}}, \mu_{2 \mathrm{Y}}\right), \mathrm{L}_{\mathrm{Y}}\right)$ of A , is said to be an Fs-empty set of second kind if, and only if
(a) $\mathrm{Y}_{1}=\mathrm{Y}$
(b) $\mathrm{L}_{\mathrm{Y}} \leq \mathrm{L}_{\mathrm{A}}$
(c) $\overline{\mathrm{Y}}=0$
4.1. Remark : We denote Fs-empty set of first kind or Fs-empty set of second kind by Φ_{A}.
5. Definition : Let

$$
\begin{aligned}
& \mathrm{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right) \text { and } \\
& \mathrm{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}\right), \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}} \text { be a pair of Fs-subsets. }
\end{aligned}
$$

We say that B_{1} and B_{2} are equal, denoted by $B_{1}=B_{2}$ if, only if
(a) $\mathrm{B}_{11}=\mathrm{B}_{12}, \mathrm{~B}_{1}=\mathrm{B}_{2}$
(b) $\mathrm{L}_{\mathrm{B}_{1}}=\mathrm{L}_{\mathrm{B}_{2}}$
(c) (a) $\left(\mu_{1 \mathrm{~B}_{11}}=\mu_{1 \mathrm{~B}_{12}}\right.$ and $\left.\mu_{2 \mathrm{~B}_{1}}=\mu_{2 \mathrm{~B}_{2}}\right)$ or (b) $\overline{\mathrm{B}}_{1}=\overline{\mathrm{B}}_{2}$
5.1. Remark : We can easily observed that $3(a)$ and $3(b)$ not equivalent statements.

6. Proposition :

$$
\begin{aligned}
& \mathrm{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{\mathrm{B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right) \\
& \mathrm{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{\mathrm{B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)
\end{aligned}
$$

and
are equal if, only if $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2}$ and $\mathrm{B}_{2} \subseteq \mathrm{~B}_{1}$

7. Definition of Fs-union for a given pair of Fs-subsets of A :

Let $\quad \mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$,
be a pair of Fs-subsets of A. Then, the Fs-union of B and C , denoted by $\mathrm{B} \cup \mathrm{C}$ is defined as

$$
\mathrm{B} \cup \mathrm{C}=\mathrm{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right) \text {, where }
$$

(a) $\mathrm{D}_{1}=\mathrm{B}_{1} \cup \mathrm{C}_{1}, \mathrm{D}=\mathrm{B} \cap \mathrm{C}$
(b) $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{B}} \vee \mathrm{L}_{\mathrm{C}}=$ complete subalgebra generated by $\mathrm{L}_{\mathrm{B}} \cup \mathrm{L}_{\mathrm{C}}$
(c) $\mu_{1 \mathrm{D}_{1}}: \mathrm{D}_{1} \rightarrow \mathrm{~L}_{\mathrm{D}}$ is defined by
$\mu_{1 \mathrm{D}_{1}} x=\left(\mu_{1 \mathrm{~B}_{1}} \vee \mu_{1 \mathrm{C}_{1}}\right) x$
$\mu_{2 \mathrm{D}}: \mathrm{D} \rightarrow \mathrm{L}_{\mathrm{D}}$ is defined by
$\mu_{2 \mathrm{D}} x=\mu_{2 \mathrm{~B}} x \wedge \mu_{2 \mathrm{C}} x$
$\overline{\mathrm{D}}: \mathrm{D} \rightarrow \mathrm{L}_{\mathrm{D}}$ is defined by
$\overline{\mathrm{D}} x=\mu_{1 \mathrm{D}_{1}} x \wedge\left(\mu_{2 \mathrm{D}} x\right)^{c}$
8. Proposition : $\mathrm{B} \cup \mathrm{C}$ is an Fs-subset of A .
9. Definition of $\mathbf{F s}$-intersection for a given pair of Fs-subsets of A :

Let $\quad \begin{aligned} & \mathrm{B} \\ & \end{aligned}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$
and

$$
\left.\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}\right), \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)
$$

be a pair of Fs-subsets of A satisfying the following conditions:
(a) $\mathrm{B}_{1} \cap \mathrm{C}_{1} \supseteq \mathrm{~B} \cup \mathrm{C}$
(b) $\mu_{1 \mathrm{~B} 1} x \wedge \mu_{1 \mathrm{C}_{1}} x \geq\left(\mu_{2 \mathrm{~B}} \vee \mu_{2 \mathrm{C}}\right) x$, for each $x \in \mathrm{~A}$

Then, the Fs-intersection of B and t, denoted by $\mathrm{B} \cap \mathrm{C}$ is defined as

$$
\mathrm{B} \cap \mathrm{C}=\varepsilon=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right) \text {, where }
$$

(a) $\mathrm{E}_{1}=\mathrm{B}_{1} \cap \mathrm{C}_{1}, \mathrm{E}=\mathrm{B} \cup \mathrm{C}$
(b) $\mathrm{L}_{\mathrm{E}}=\mathrm{L}_{\mathrm{B}} \wedge \mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{B}} \cap \mathrm{L}_{\mathrm{C}}$
(c) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is defined by $\mu_{1 \mathrm{E}_{1}} x=\mu_{1 \mathrm{~B}_{1}} x \wedge \mu_{1 \mathrm{C}_{1}} x$
$\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is defined by
$\mu_{2 \mathrm{E}} x=\left(\mu_{2 \mathrm{~B}} \vee \mu_{2 \mathrm{C}}\right) x$
$\overline{\mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is defined by
$\overline{\mathrm{E}} x=\mu_{\mathrm{IE}_{1}} x \wedge\left(\mu_{2 \mathrm{E}} x\right)^{c}$.
9.1. Remark : If (i) or (ii) fails we define $\mathrm{B} \cap \mathrm{C}$ as $\mathrm{B} \cap \mathrm{C}=\Phi_{\mathrm{A}}$, which is the Fs-empty set of first kind.
2.10. Proposition : For any Fs-subsets B, C and D of $A=\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$, the following associative laws are true:
(a) $\mathrm{B} \cup(\mathrm{C} \cup \mathrm{D})=(\mathrm{B} \cup \mathrm{C}) \cup \mathrm{D}$
(b) $\mathrm{B} \cap(\mathrm{C} \cap \mathrm{D})=(\mathrm{B} \cap \mathrm{C}) \cap \mathrm{D}$, whenever Fs-intersections exist.

11. Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$ of Fs-subsets of

$$
\begin{aligned}
& \mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{\mathrm{I}}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \text { where } \\
& \mathrm{B}_{i}=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B} i}\right) \text {, for any } i \in \mathrm{I}
\end{aligned}
$$

12. Definition of Fs-union is as follows

Case (1) : For $\mathrm{I}=\Phi$, define Fs-union of $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$, denoted by $\cup_{i \in \mathrm{I}} \mathrm{B}_{i}$ as $\cup_{i \in \mathrm{I}} \mathrm{B}_{i}=\Phi_{\mathrm{A}}$, which is the Fs-empty set

Case (2) : Define for $\mathrm{I} \neq \Phi$, Fs-union of $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$ denoted by $\cup_{i \in \mathrm{I}} \mathrm{B}_{i}$ as follow

$$
\bigcup_{i \in \mathrm{I}} \mathrm{~B}_{i}=\mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)
$$

where
(a) $\mathrm{B}_{1}=\cup_{i \in \mathrm{I}} \mathrm{B}_{1 i}, \mathrm{~B}=\cap_{i \in \mathrm{I}} \mathrm{B}_{i}$
(b) $\mathrm{L}_{\mathrm{B}}=\vee_{i \in \mathrm{I}} \mathrm{L}_{\mathrm{B}_{\mathrm{i}}}=$ complete subalgebra generated by $\cup \mathrm{L}_{i}\left(\mathrm{~L}_{i}=\mathrm{L}_{\mathrm{B}_{i}}\right)$
$\mu_{1 \mathrm{~B}_{1}}: \mathrm{B}_{1} \rightarrow \mathrm{~L}_{\mathrm{B}}$ is defined by
$\mu_{1 \mathrm{~B}_{1}} x=\left(\vee_{i \in \mathrm{I}} \mu_{1 \mathrm{~B}_{1 i}}\right) x=\mathrm{v}_{i \in \mathrm{I}} x \mu_{1 \mathrm{~B}_{1 i}} x$, where
$\mathrm{I}_{x}=\left\{i \in \mathrm{I} \mid x \in \mathrm{~B}_{i}\right\}$
$\mu_{2 \mathrm{~B}}: \mathrm{B} \rightarrow \mathrm{L}_{\mathrm{B}}$ is defined by $\mu_{2 \mathrm{~B}} x=\left(\wedge_{i \in \mathrm{I}} \mu_{2 \mathrm{~B}_{i}}\right) x=\wedge_{i \in \mathrm{I}} \mu_{2 \mathrm{~B}_{i}} x$
$\overline{\mathrm{B}}: \mathrm{B} \rightarrow \mathrm{L}_{\mathrm{B}}$ is defined by $\overline{\mathrm{B}} x=\mu_{1 \mathrm{~B}_{1}} x \wedge\left(\mu_{2 \mathrm{~B}} x\right)^{c}$
12.1. Remark : We can easily show that (d) $B_{1} \supseteq B$ and $\mu_{1 B_{1}} \mid B \geq \mu_{2 B}$.

13. Definition of Fs-intersection:

Case (1) : For $\mathrm{I}=\Phi$, we define Fs-intersection of $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$, denoted by $\cap_{i \in \mathrm{I}} \mathrm{B}_{i}$ as $\cap_{i \in \mathrm{I}} \mathrm{B}_{i}=\mathrm{A}$
Case (2): Suppose $\cap_{i \in \mathrm{I}} \mathrm{B}_{1 i} \supseteq \cup_{i \in \mathrm{I}} \mathrm{B}_{i}$ and $\wedge_{i \in \mathrm{I}} \mu_{1 \mathrm{Bl} i} \mid\left(\cup_{i \in \mathrm{I}} \mathrm{B}_{i}\right) \geq \vee_{i \in \mathrm{I}} \mu_{2 \mathrm{~B}_{i}}$
Then, we define Fs-intersection of $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$, denoted by $\cap_{i \in \mathrm{I}} \mathrm{B}_{i}$ as follows

$$
\left.\bigcap_{i \in \mathrm{I}} \mathrm{~B}_{i}=\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}\right), \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)
$$

(a) $\mathrm{C}_{1}=\cap_{i \in \mathrm{I}} \mathrm{B}_{1 i}, \mathrm{C}=\cup_{i \in \mathrm{I}} \mathrm{B}_{i}$
(b) $\mathrm{L}_{\mathrm{C}}=\wedge_{i \in \mathrm{I}} \mathrm{L}_{\mathrm{B}_{i}}$
(c) $\mu_{1 \mathrm{C}_{1}}: \mathrm{C}_{1} \rightarrow \mathrm{~L}_{\mathrm{C}}$ is defined by $\mu_{1 \mathrm{C}_{1}} x=\left(\wedge_{i \in \mathrm{I}} \mu_{1 \mathrm{Bli} i}\right) x=\wedge_{i \in \mathrm{I}} \mu_{1 \mathrm{~B} 1 i} x$
$\mu_{2 \mathrm{C}}: \mathrm{C} \rightarrow \mathrm{L}_{\mathrm{C}}$ is defined by $\mu_{2 \mathrm{C}} x=\left(\mathrm{V}_{i \in \mathrm{I}} \mu_{2 \mathrm{~B}}\right) x=\vee_{i \in \mathrm{I}} x \mu_{2 \mathrm{~B}_{i}} x$, where, $\mathrm{I}_{x}=\left\{i \in \mathrm{I} \mid x \in \mathrm{~B}_{i}\right\}$
$\overline{\mathrm{C}}: \mathrm{C} \rightarrow \mathrm{L}_{\mathrm{C}}$ is defined by $\left.\overline{\mathrm{C}} x=\mu_{1 \mathrm{C}_{1}} x \wedge \mu_{2 \mathrm{C}} x\right)^{c}$
Case (3): $\cap_{i \in \mathrm{I}} \mathrm{B}_{1 i} \nsupseteq \cup_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{i}$ or $\wedge_{i \in \mathrm{I}} \mu_{1 \mathrm{~B}_{1 i}} \mid\left(\cup_{i \in \mathrm{I}} \mathrm{B}_{i}\right) \nsupseteq \vee_{i \in \mathrm{I}} \mu_{2 \mathrm{~B}_{i}}$
We define

$$
\bigcap_{i \in \mathrm{I}} \mathrm{~B}_{i}=\Phi_{\mathrm{A}}
$$

13. 14. Lemma : For any Fs-subset $\quad B=\left(B_{1}, B, \bar{B}\left(\mu_{1 B}, \mu_{2 B}\right), L_{B}\right)$
and

$$
\mathrm{B} \subseteq \mathrm{~B}_{i}=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}, \mu_{2 \mathrm{~B} i}\right), \mathrm{L}_{\mathrm{B}_{i}}\right)
$$

for each $i \in \mathrm{I} . \cap_{i \in \mathrm{I}} \mathrm{B}_{i}$ exists and $\mathrm{B} \subseteq \cap_{i \in \mathrm{I}} \mathrm{B}_{i}$
14. Proposition : $(\mathrm{L}(\mathrm{A}), \cap)$ is \wedge-complete lattics.
14.1. Corollary : For any Fs-subset B of A, the following results are true
(a) $\Phi_{\mathrm{A}} \cup \mathrm{B}=\mathrm{B}$
(b) $\Phi_{\mathrm{A}} \cap \mathrm{B}=\Phi_{\mathrm{A}}$.
15. Proposition : $(\mathrm{L}(\mathrm{A}), \cup)$ is \vee-complete lattics.
15.1. Corollary : $(L(A), \cup, \cap)$ is a complete lattice with \vee and \wedge
16. Proposition : Let
$B=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$,
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
and
$\mathrm{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$.
Then
$\mathrm{B} \cup(\mathrm{C} \cap \mathrm{D})$

$$
=(\mathrm{B} \cup \mathrm{C}) \cap(\mathrm{B} \cup \mathrm{D}) \text { provided } \mathrm{C} \cap \mathrm{D} \text { exists. }
$$

17. Proposition: Let $\quad \mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$,
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{\mathrm{IC}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
and
$\left.\mathrm{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}\right), \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$.
Then

$$
\mathrm{B} \cap(\mathrm{C} \cup \mathrm{D})=(\mathrm{B} \cap \mathrm{C}) \cup(\mathrm{B} \cap \mathrm{D})
$$

provided in R.H.S $(B \cap C)$ and $(B \cap D)$ exists.

18. Definition of Fs-complement of an Fs-subset :

Consider a particular Fs-set

$$
\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \mathrm{A} \neq \Phi, \text { where }
$$

(a) $\mathrm{A} \subseteq \mathrm{A}_{1}$
(b) $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right], \mathrm{M}_{\mathrm{A}}=\vee \overline{\mathrm{A}} \mathrm{A}=\vee_{a \in \mathrm{~A}} \overline{\mathrm{~A}} \mathrm{a}$
(c) $\mu_{1 \mathrm{~A}_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$,
$\overline{\mathrm{A}} x=\mu_{1 \mathrm{~A}_{1}} x \wedge\left(\mu_{2 \mathrm{~A}} x\right)^{c}=\mathrm{M}_{\mathrm{A}}$, for each $x \in \mathrm{~A}$
Given $B=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}, L_{B}\right)\right.$. We define Fs-complement of B, denoted by $B^{C_{A}}$ for $B=A$ and $L_{B}=L_{A}$ as follows:
$\mathrm{B}^{\mathrm{C}_{\mathrm{A}}}=\mathrm{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}}, \mu_{2 \mathrm{D}}, \mathrm{L}_{\mathrm{D}}\right)\right.$, where
(a) $\mathrm{D}_{1}=\mathrm{C}_{\mathrm{A}} \mathrm{B}_{1}=\mathrm{B}_{1}^{c} \cup \mathrm{~A}, \mathrm{D}=\mathrm{B}=\mathrm{A}$
(b) $\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{A}}$
(c) $\mu_{1 \mathrm{D}_{1}}: \mathrm{D}_{1} \rightarrow \mathrm{~L}_{\mathrm{A}}$, is defined by $\mu_{1 \mathrm{D}_{1}} x=\mathrm{M}_{\mathrm{A}}$
$\mu_{2 \mathrm{D}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, is defined by $\mu_{2 \mathrm{D}} x=\overline{\mathrm{B}} x=\mu_{1 \mathrm{~B}_{1}} x \wedge\left(\mu_{2 \mathrm{~B}} x\right)^{c}$
$\overline{\mathrm{D}}: \mathrm{A} \rightarrow \mathrm{L}_{\mathrm{A}}$, is defined by $\overline{\mathrm{D}} x=\mu_{\mathrm{ID}_{1}} x \wedge\left(\mu_{2 \mathrm{D}} x\right)^{c}=\mathrm{M}_{\mathrm{A}} \wedge(\overline{\mathrm{B}} x)^{c}=(\overline{\mathrm{B}} x)^{c}$.
19. Proposition:
20. Definition: Define
21. Proposition : For

$$
\begin{aligned}
\mathrm{A}^{\mathrm{C}_{\mathrm{A}}} & =\Phi_{\mathrm{A}} \\
\left(\Phi_{\mathrm{A}}\right)^{\mathrm{C}_{\mathrm{A}}} & =\mathrm{A} \\
\mathrm{~B} & =\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B} 1}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \\
\mathrm{C} & =\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right), \\
\mathrm{B} & =\mathrm{C}=\mathrm{A}, \mathrm{~L}_{\mathrm{B}}=\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{A}}
\end{aligned}
$$

which are non Fs-empty sets and
(a) $\mathrm{B} \cap \mathrm{B}^{\mathrm{C}_{\mathrm{A}}}=\Phi_{\mathrm{A}}$
(b) $\mathrm{B} \cup \mathrm{B}^{\mathrm{C}_{\mathrm{A}}}=\mathrm{A}$
(c) $\left(\mathrm{B}^{\mathrm{C}_{\mathrm{A}}}\right)^{\mathrm{C}_{\mathrm{A}}}=\mathrm{B}$
(d) $\mathrm{B} \subseteq \mathrm{C}$ if and only if $\mathrm{C}^{\mathrm{C}_{\mathrm{A}}} \subseteq \mathrm{B}^{\mathrm{C}_{\mathrm{A}}}$
22. Proposition : Fs-De-Morgan's laws for a given pair of Fs-subsets:

For any pair of Fs-sets

$$
\begin{aligned}
\mathrm{B} & =\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \\
\mathrm{C} & =\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \\
\mathrm{B} & =\mathrm{C}=\mathrm{A} \\
\mathrm{~L}_{\mathrm{B}} & =\mathrm{L}_{\mathrm{C}}=\mathrm{L}_{\mathrm{A}}, \text { we will have }
\end{aligned}
$$

and
with
and
(a) $(\mathrm{B} \cup \mathrm{C})^{\mathrm{C}_{\mathrm{A}}}=\mathrm{B}^{\mathrm{C}_{\mathrm{A}}} \cap \mathrm{C}^{\mathrm{C}_{\mathrm{A}}}$ if $(\overline{\mathrm{B}} x)^{c} \wedge(\overline{\mathrm{C}} x)^{c} \leq\left[\left(\mu_{1 \mathrm{~B}_{1}} x\right)^{c} \vee \mu_{2 \mathrm{C}} x\right] \wedge\left[\left(\mu_{1 \mathrm{C} 1} x\right)^{c} \vee \mu_{2 \mathrm{~B}} x\right]$, for each $x \in \mathrm{~A}$
(b) $(\mathrm{B} \cap \mathrm{C})^{\mathrm{C}_{\mathrm{A}}}=\mathrm{B}^{\mathrm{C}} \cup \mathrm{C}^{\mathrm{C}_{\mathrm{A}}}$, whenever $\mathrm{B} \cap \mathrm{C}$ exists.

23. Fs-De Morgan laws for any given arbitrary family of Fs-sets:

Proposition : Given a family of Fs-subsets $\left(\mathrm{B}^{i}\right)_{i \in I}$ of

$$
\begin{aligned}
\mathrm{A} & =\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \text { where } \\
\mathrm{L}_{\mathrm{A}} & =\left[0, \mathrm{M}_{\mathrm{A}}\right] \cdot \mu_{1 \mathrm{~A}_{1}} \\
& =\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}} \\
& =0, \overline{\mathrm{~A}} x \\
& =\mathrm{M}_{\mathrm{A}}
\end{aligned}
$$

(a) $\left(\cup_{i \in \mathrm{I}} \mathrm{B}_{i}\right)^{\mathrm{C}_{\mathrm{A}}}=\cap_{i \in \mathrm{I}} \mathrm{B}_{i}^{\mathrm{C}_{\mathrm{A}}}$, for $\mathrm{I} \neq \Phi$, where $\mathrm{B}_{i}=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}, \mu_{2 \mathrm{~B}_{i}}, \mathrm{~L}_{\mathrm{B}_{i}}\right.\right.$ and (1) $\mathrm{B}_{i}=\mathrm{A}, \mathrm{L}_{\mathrm{B}_{i}}=\mathrm{L}_{\mathrm{A}}$ provided $\left.\wedge_{i \in \mathrm{I}} \overline{\mathrm{B}}_{i} x\right)^{c} \leq \wedge_{i, j \in \mathrm{I}}\left[\left(\mu_{1 \mathrm{~B}_{1 i}} x\right)^{c} \vee \mu_{2 \mathrm{~B}_{\mathrm{j}}} x\right]$
(b) $\left(\cap_{i \in \mathrm{I}} \mathrm{B}_{i}\right)^{\mathrm{C}_{\mathrm{A}}}=\cup_{i \in \mathrm{I}} \mathrm{B}_{i}^{\mathrm{C}_{\mathrm{A}}}$, whenever $\cap_{i \in \mathrm{I}} \mathrm{B}_{i}$ exist

3. FS-FUNCTIONS

1. Definition : A Triplet $\left(f_{1}, f, \Phi\right)$ is said to be is an Fs-Function between two given Fs-subsets
$B=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$
and
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
of A, denoted by $\left(\mathrm{f}_{1}, f, \Phi\right)$:
$\mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
if, and only if (using the diagrams).

Figure 1: Fs-function $\bar{f} \mathbf{B} \rightarrow \mathbf{C}$
(a) $\left.f_{1}\right|_{\mathrm{B}}=f$ is onto
(b) $\Phi: \mathrm{L}_{\mathrm{B}} \rightarrow \mathrm{L}_{c}$ is complete homomorphism
$\left(f_{1}, f, \Phi\right)$ is denoted by \bar{f}
2. Proposition : (i)
(ii)

$$
\begin{aligned}
\left.\left.\mu_{1 C_{1}}\right|_{C} \circ f_{1}\right|_{\mathrm{B}} & \geq \mu_{2 C} \circ f \\
\left.\Phi \circ \mu_{1 B_{1}}\right|_{\mathrm{B}} & \geq \Phi \circ \mu_{2 \mathrm{~B}}
\end{aligned}
$$

3. Def : Increasing Fs-function
\bar{f} is said to be an increasing Fs- function, and denoted by \bar{f}_{i} if, and only if(using fig-1)
(a) $\left.\left.\mu_{\mathrm{1C}_{1}}\right|_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}} \geq \Phi \circ \mu_{\mathrm{1B}_{1}}$
(b) $\mu_{2 \mathrm{C}}{ }^{\circ} f \leq \Phi \circ \mu_{2 \mathrm{~B}}$
4. Proposition : $\Phi \circ\left(\mu_{2 \mathrm{~B}} x\right)^{c}=\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]^{c}$
5. Proposition: $\Phi \circ \overline{\mathrm{B}} \leq \overline{\mathrm{C}} \circ f$, provided \bar{f} is an increasing Fs-function
6. Def : Decreasing Fs-function
\bar{f} is said to be decreasing Fs-function denoted as \bar{f}_{d} and if and only if
(a) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}}{ }^{\circ} f_{1}\right|_{\mathrm{B}} \leq \Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(b) $\mu_{2 C} \circ f \geq \Phi \circ \mu_{2 B}$
7. Proposition : $\Phi \circ \overline{\mathrm{B}} \geq \overline{\mathrm{C}} \circ f$, provided \bar{f} is a decreasing Fs-function
8. Def : Preserving Fs- function
\bar{f} is said to be preserving Fs-function and denoted as \bar{f}_{p} if, and only if
(a) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}}{ }^{\circ} f_{1}\right|_{\mathrm{B}}=\Phi \circ \mu_{\mathrm{BB}_{1}}$
(b) $\mu_{2 C}{ }^{\circ} f=\Phi \circ \mu_{2 \mathrm{~B}}$
9. Proposition : $\Phi \circ \overline{\mathrm{B}}=\overline{\mathrm{C}} \circ f$, provided \bar{f} is Fs- preserving function
10. Def: Composition of two Fs-function

Given two Fs-functions $\bar{f}: \mathrm{B} \rightarrow \mathrm{C}$ and $\bar{g}: \mathrm{C} \rightarrow \mathrm{D}$. We denote composition of \bar{g} and \bar{f} as $\bar{g} \circ \bar{f}$ and define as $(\bar{g} \circ \bar{f})=\left(g_{1}, g, \Psi\right) \circ\left(f_{1}, f, \Phi\right)=\left[g_{1} \circ f_{1}, g \circ f, \Psi \circ \Phi\right]$

4. FS-POINT

1. Definition We define an object, for $b \in \mathrm{~A}, \beta \in \mathrm{~L}_{\mathrm{A}}$ such that $\beta \leq \overline{\mathrm{A}} b-$ denoted by (b, β) as follows

$$
(b, \beta)=\left(B_{1}, B, \bar{B}\left(\mu_{1 B 1}, \mu_{2 B}\right), L_{B}\right),
$$

where
such that

$$
\mu_{1 \mathrm{~B}_{1}} x, \mu_{2 \mathrm{~B}} x \in \mathrm{~L}_{\mathrm{B}},
$$

$$
\alpha \leq \mu_{1 \mathrm{~A}_{1}} x, \forall x \in \mathrm{~A}_{1}, \beta \in \mathrm{~L}_{\mathrm{A}}
$$

$$
\mu_{1 \mathrm{~B}_{1}} x=\left\{\begin{array}{cc}
\mu_{2 \mathrm{~A}} x, & x b, x \in \mathrm{~A} \\
b \vee \mu_{2 \mathrm{~A}} b, & x=b \\
\alpha, & x \notin \mathrm{~A}, x \in \mathrm{~A}_{1}
\end{array}\right.
$$

and

$$
\mu_{2 \mathrm{~B}} x=\left\{\begin{array}{cc}
\mu_{2 \mathrm{~A}} x, & x \in \mathrm{~A} \\
\alpha, & x \notin \mathrm{~A}, x \in \mathrm{~B}
\end{array}\right.
$$

2. Lemma:

(a) $\beta \leq \mu_{1 \mathrm{~A}_{1}} b$ and $\beta \leq\left(\mu_{2 \mathrm{~A}} b\right)^{c}$

(c) $\mu_{1_{\mathrm{B}_{1}}} b \leq \mu_{1 \mathrm{~A}_{1}} b$
(d) $\mu_{2 \mathrm{~B}} b \geq \mu_{2 \mathrm{~A}} b$
(e) $\overline{\mathrm{B}} b=\beta$
$(f)(b, \beta)$ is Fs-subset of A
Here onward (b, β)-which is an Fs-subset of A, we call $a(b, \beta)$ objects of A.

3. Definition of a relation between objects:

For any (b, β) objects

$$
\begin{aligned}
& \mathrm{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right) \\
& \mathrm{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right) \text { of, }
\end{aligned}
$$

and

$$
\text { and } \forall x \in \mathrm{~B}_{1} \text { and }
$$

$$
\begin{aligned}
\mu_{1 \mathrm{~B}_{11}} x & =\mu_{2 \mathrm{~B}_{1}} x, x \neq b \\
\mu_{1 \mathrm{~B}_{12}} x & =\mu_{2 \mathrm{~B}_{2}} x, x \neq b \\
\mu_{1 \mathrm{~B}_{11}} b & =\mu_{1 \mathrm{~B}_{12}} \\
b & =\beta \vee \mu_{2 \mathrm{~A}} b \text { and } \mu_{2 \mathrm{~B}_{1}} \\
b & =\mu_{2 \mathrm{~B}_{2}} \\
b & =\mu_{2 \mathrm{~A}} b .
\end{aligned}
$$

4. Theorem : $\mathrm{R}(b, \beta)$ is an equivalence relation.
5. Definition of Fs-point : The equivalence class corresponding to $\mathrm{R}(b, \beta)$ is denoted by χ_{b}^{β} or (b, β). We define this $\chi_{b}{ }^{\beta}$ is an Fs point of A.

Set of all Fs-point of A is denoted by $\operatorname{FSP}(\mathrm{A})$.
6. Definition : Let $\mathrm{G} \subseteq \mathrm{FSP}(\mathrm{A})$.
(a) G is said to be closed under stalks if, and only if $\chi_{b}{ }^{\beta} \in \mathrm{G}, \alpha \leq \beta \Rightarrow \chi_{b}{ }^{\alpha} \in \mathrm{G}$
(b) G is said to be closed under supremums if and only if $\mathrm{M} \subseteq \mathrm{L}_{\mathrm{A}}, \chi_{b}^{\beta} \in \mathrm{G}, \forall \beta \in \mathrm{M} \Rightarrow \chi_{b}^{\mathrm{VM}} \in \mathrm{G}$, $\vee M=v_{\beta \in M} \beta$
(c) G is said to be S -closed if, and only if G is closed under both stalks and supremums.
7. Theorem : Arbitrary intersection of S-closed subset is S-closed
8. Definition : Let $G \subseteq \operatorname{FSP}(\mathrm{~A})$.

$$
\text { Define } \mathrm{G}^{\sim}=\Phi_{\mathrm{A}} \text { if } \mathrm{G}=\Phi .
$$

Otherwise

$$
\begin{aligned}
\mathrm{G}_{\sim}^{\sim} & =\cup_{\chi_{b}^{\beta} \in \mathrm{G}} \chi_{b}^{\beta} \\
\mathrm{B} & =\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{BI}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right), \text { where } \\
\mathrm{B}_{1} \supseteq \mathrm{~B} & =\left\{b \mid \chi_{b}^{\beta} \in \mathrm{G}\right\}, \\
\mathrm{LB} & =\vee_{\chi_{b}^{\beta} \in \mathrm{G}} \mathrm{~L}_{\beta}, \mu_{1 \mathrm{~B}_{1}} b \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}}\left(\beta \vee \mu_{2 \mathrm{~A}} b\right), \mu_{2 \mathrm{~B}} b=\mu_{2 \mathrm{~A}} b \\
\overline{\mathrm{~B}} b & =\mu_{1 \mathrm{~B}_{1}} b \wedge\left(\mu_{2 \mathrm{~B}} b\right)^{c} \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}}\left(\beta \vee \mu_{2 \mathrm{~A}} b\right) \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c} \\
& =\left[\left(\vee_{\chi_{b}^{\beta} \in \mathrm{G}} \beta\right) \vee \mu_{2 \mathrm{~A}} b\right] \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c} \\
& =\left(\left(\vee_{\chi_{b}^{\beta} \in \mathrm{G}} \beta\right) \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c}\right) \vee\left(\mu_{2 \mathrm{~A}} b \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c}\right) \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}}\left(\beta \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c}\right) \vee 0 \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}}\left(\beta \wedge\left(\mu_{2 \mathrm{~A}} b\right)^{c}\right) \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}} \beta
\end{aligned}
$$

Define
9. Theorem :

$$
\mathrm{G}^{\sim}=\mathrm{B}
$$

10. Definition : For any

$$
\mathrm{B} \subseteq \mathrm{~A}
$$

Define
$\mathrm{B}^{\sim}=\Phi$
if
$\mathrm{B}=\Phi_{\mathrm{A}}$
Let
$\mathrm{B}=\left(\mathrm{B}, \mathrm{B}, \overline{\mathrm{B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and $\mathrm{B} \neq \Phi_{\mathrm{A}}$
Define
$\mathrm{B}^{\sim}=\left\{\chi_{b}{ }^{\beta} \mid b \in \mathrm{~B}, \beta \in \mathrm{~L}_{\mathrm{B}}, \beta \leq \overline{\mathrm{B}} \mathrm{b}\right\}$
11. Theorem :

$$
\mathrm{A}=\cup_{\chi_{b}^{\beta} \in \operatorname{FSP}(A)} \chi_{b}^{\beta}
$$

12. Lemma :
$\mathrm{A}^{\sim}=\operatorname{FSP}(\mathrm{A})$
13. Theorem: B^{\sim} is S -closed.
14. Theorem: For any $\mathrm{G} \subseteq \mathrm{FSP}(\mathrm{A}), \mathrm{G} \subseteq \mathrm{G}^{\sim \sim}$
15. Theorem : Let A be an Fs-set. Then the following are equivalent for any $G \subseteq \operatorname{FSP}(A)$
16. Theorem : For any B_{1} and B_{2} such that $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2} \subseteq \mathrm{~A}, \mathrm{~B}_{1}{ }^{\sim} \subseteq \mathrm{B}_{2}{ }^{\sim}$ provided $\mathrm{B}_{1}=\mathrm{B}_{2}$
where
$\mathrm{B}_{1}=\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right)$
and
$\mathrm{B}_{2}=\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{L}_{\mathrm{B}_{2}}\right)$
$\mathrm{B} \subseteq \mathrm{A} \Rightarrow \mathrm{FSP}(\mathrm{B}) \subseteq \mathrm{FSP}(\mathrm{A})$
16.1. Corollary :
17. Result : $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2}$ implies $\mathrm{B}_{1} \subseteq \mathrm{~B}_{2} \cup \mathrm{~B}_{3}$ for any Fs-subset B_{3}
18. Result : $\chi_{b}^{\beta} \subseteq \mathrm{G}^{\sim}$ for any $\chi_{b}^{\beta} \in \mathrm{G}$ such that $\mathrm{G} \subseteq \operatorname{FSP}(\mathrm{A})$.
19. Recall : 1.16 for any Family $\left(\mathrm{G}_{i}\right)_{\mathrm{i} \in \mathrm{I}}$ of Fs-subsets of A such that $\mathrm{G}_{i} \subseteq \mathrm{G}, \cup_{i \in \mathrm{I}} \mathrm{G}_{i} \subseteq \mathrm{G}$.
20. Proposition : $G_{1}{ }^{\sim} \subseteq G_{2}{ }^{\sim}$ for any two subsets G_{1} and G_{2} of $F S P(A)$, such that $G_{1} \subseteq G_{2}$.
21. Theorem: For any Fs-subset B of an Fs-set $A, B^{\sim \sim}=B$.
22. Theorem :
$(\mathrm{B} \cap \mathrm{C})^{\sim}=\mathrm{B}^{\sim} \cap \mathrm{C}^{\sim}$
for any Fs-subsets
$B=\left(B_{1}, B, \bar{B}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), L_{\mathrm{B}}\right)$
and
$\mathrm{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
of A such that
$\mathrm{B}=\mathrm{C}$.
23. Proposition: For any family of Fs-subset $\left(\mathrm{B}_{i}\right)_{\mathrm{i} \in \mathrm{I}}$ of $\mathrm{A},\left(\cap_{i \in \mathrm{I}} \mathrm{B}_{i}\right)^{\sim}=\cap_{i \in \mathrm{I}} \mathrm{B}_{i}^{\sim}$ provided all B_{i} 's are equal for each $i \in \mathrm{I}$
24. Theorem : $\left(\mathrm{G}_{1} \cup \mathrm{G}_{2}\right)^{\sim}=\mathrm{G}_{1}{ }^{\sim} \cup \mathrm{G}_{2}{ }^{\sim}$ for any subsets G_{1} and G_{2} of $\operatorname{FSP}(\mathrm{A})$,
25. Theorem : $\left(\cup_{i \in \mathrm{I}} \mathrm{G}_{i}\right)^{\sim}=\cup_{i \in \mathrm{I}} \mathrm{G}_{i}^{\sim}$ for any family $\left(\mathrm{G}_{i}\right)_{i \in \mathrm{I}}$ of subsets of $\operatorname{FSP}(\mathrm{A})$.
25.1. Remark : Observe that $\chi_{c}{ }^{0}$ is always an Fs-subset of B i.e. $\chi_{c}{ }^{0} \in \mathrm{~B}^{\sim}$ i.e. $\chi_{c}{ }^{0} \notin\left(\mathrm{~B}^{\sim}\right)^{c}$
26. Theorem : For $B=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right) \subseteq A, B=A$ and $L_{A}=L_{B},\left(B^{C_{A}}\right)^{\sim} \subseteq\left(B^{\sim}\right)^{c}$
27. Theorem : $\left(G^{\sim}\right)^{C_{A}} \subseteq\left(G^{c}\right)^{\sim}$ for any $G \subseteq \operatorname{FSP}(A)$, where $A=\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$, $\mu_{1 A_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$ and $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right]$.

5. A REPRESENTATION THEOREM FOR FS-SETS

1. Let

$$
\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right)
$$

be an Fs-set and L(A) be set of all Fs-subsets
with

$$
\begin{aligned}
& \mathrm{B}_{i}=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i} \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}, \mu_{2 \mathrm{~B}_{i}}\right), \mathrm{L}_{\mathrm{B}_{i}}\right) \\
& \mathrm{B}_{i}=\mathrm{A} \text { of } \mathrm{A} .
\end{aligned}
$$

Let $\operatorname{PFSP}(\mathrm{A})$ be the set of all subsets of FSP (A).

$$
\Phi: \mathrm{L}(\mathrm{~A}) \rightarrow \operatorname{PFSP}(\mathrm{A})
$$

Define

$$
\mathrm{B} \rightarrow \mathrm{~B}^{\sim}
$$

$$
\Psi: \operatorname{PFSP}(\mathrm{A}) \rightarrow \mathrm{L}(\mathrm{~A})
$$

Define

$$
\mathrm{G} \rightarrow \mathrm{G}^{\sim}
$$

Then the following are true
(a) $\Psi \Phi \mathrm{B}=\mathrm{B}$ or $\Psi \Phi=1$
(b) $\mathrm{G} \subseteq \Phi \Psi \mathrm{G}$ or $\Phi \Psi \supseteq 1$
(c) Image of $\Phi=\{\mathrm{G} \subseteq \mathrm{FSP}(\mathrm{A}) \mid \mathrm{G}$ is S-closed $\}$
(d) $\Phi\left(\mathrm{B}^{\mathrm{C}_{\mathrm{A}}}\right) \subseteq(\Phi \mathrm{B})^{c}$, where $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \mu_{1 \mathrm{~A}_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$ and $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right]$
(e) $\Psi G)^{\mathrm{C}_{\mathrm{A}}} \subseteq \Psi\left(\mathrm{G}^{c}\right)$, where $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \mu_{1 \mathrm{~A}_{1}}=\mathrm{M}_{\mathrm{A}}, \mu_{2 \mathrm{~A}}=0$ and $\mathrm{L}_{\mathrm{A}}=\left[0, \mathrm{M}_{\mathrm{A}}\right]$

Proof : We Already proved that Φ, Ψ are increasing and Φ is a meet complete homomorphism and Ψ is join complete homomorphism [17]
(a) Follows from 4.21
(b) Follows from 4.14
(c) $\mathrm{G} \in \mathrm{LHS}=$ image of Φ implies. $\Phi \mathrm{B}=\mathrm{B}^{\sim}=\mathrm{G}$ for some $\mathrm{B} \subseteq \mathrm{A}$ and B^{\sim} is always S -closed from (4.13) implying $B^{\sim}=G \in$ RHS
$\mathrm{G} \in$ RHS implies $\mathrm{G}(\sim \sim=\mathrm{G}$ or $\Phi \Psi \mathrm{G}=\mathrm{G}$ from (4.15). That is, $\Phi(\Psi \mathrm{G})=\mathrm{G}$ so that $\mathrm{G} \in \mathrm{LHS}$
(d) Follows from 4.26
(e) Follows from 4.27
1.1. Example : Let
where
and
Suppose
and
Then

$$
\begin{aligned}
\mathrm{A} & =\left(\mathrm{A}_{1}, \mathrm{~A}, \overline{\mathrm{~A}}\left(\mu_{1 \mathrm{~A}_{1}}, \mu_{2 \mathrm{~A}}\right), \mathrm{L}_{\mathrm{A}}\right), \\
\mathrm{A}_{1} & =\{a, b\}, \\
\mathrm{A} & =\{a\}, \\
\mu_{1 \mathrm{~A}_{1}} & =1, \mu_{2 \mathrm{~A}}=0 \\
\mathrm{~L}_{\mathrm{A}} & =\{0, \alpha \| \beta, 1\} \\
\mathrm{B} & =\chi_{a}^{\alpha} \\
\mathrm{C} & =\chi_{a}^{\beta} . \\
\mathrm{B}^{\sim} & =\left\{\chi_{a}^{0}, \chi_{a}^{\alpha}\right\} \\
\mathrm{C}^{\sim} & =\left\{\chi_{a}^{0}, \chi_{a}^{\beta}\right\}
\end{aligned}
$$

and
And
$\mathrm{B}^{\sim} \mathrm{C}^{\sim}=\left\{\chi_{a}{ }^{0}, \chi_{a}{ }^{\alpha}, \chi_{a}^{\beta}\right\}$
Here
$\mathrm{B} \cup \mathrm{C}=\chi_{a}{ }^{\alpha} \cup \chi_{a}{ }^{\beta}$

$$
\begin{aligned}
& =\chi_{a}{ }^{1} \operatorname{implying}(\mathrm{~B} \cup \mathrm{C})^{\sim} \\
& =\left\{\chi_{a}{ }^{0}, \chi_{a}{ }^{\alpha}, \chi_{a}{ }^{\beta}, \chi_{a}{ }^{1}\right\}
\end{aligned}
$$

So that,

$$
(\mathrm{B} \cup \mathrm{C})^{\sim} \neq \mathrm{B}^{\sim} \cup \mathrm{C}^{\sim}
$$

2. Theorem : Φ is a join complete homomorphism, if and only if $\mathrm{L}_{\mathrm{A}}=\{0,1\}$

Proof: If L_{A} contains more than two elements, then there exist $\beta \in \mathrm{L}_{\mathrm{A}}$ such that $\beta \neq 0, \beta \neq 1$ and β^{c} exists such that $\beta^{c} \neq 0$ and $\beta^{c} \neq 1$ so that $\beta \| \beta^{c}$.

Hence Φ cannot be a join complete homomorphism by above example, a contradiction.
Hence

$$
\begin{aligned}
\mathrm{L}_{\mathrm{A}} & =\{0,1\} \\
\mathrm{L}_{\mathrm{A}} & =\{0,1\}
\end{aligned}
$$

Conversely suppose
Consider a nonempty family of nonempty Fs-subset $\left(\mathrm{B}_{i}\right)_{i \in \mathrm{I}}$, we have to show that $\left(\cup_{i \in \mathrm{I}} \mathrm{B}_{i}\right)^{\sim}$ $=\cup_{i \in \mathrm{I}} \mathrm{B}_{i}^{\sim}$

Clearly

$$
\begin{align*}
& \text { RHS } \subseteq \text { LHS } \tag{1}\\
& \chi_{b}{ }^{3} \in \text { LHS } .
\end{align*}
$$

Let
Then $\chi_{b}{ }^{\beta} \subseteq_{i \in \mathrm{I}} \mathrm{B}_{i}$, here all possible values of β are 0 and 1 .
For

$$
\begin{aligned}
\beta & =0 \\
\mathrm{~B}_{i} & \left.=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}\right), \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}_{i}}\right) \text { such that } b \in \mathrm{~B}_{i} \\
\chi_{b}^{0} & =\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{C}}_{i}\left(\mu_{1 \mathrm{C}_{1 i}}, \mu_{2 \mathrm{C}_{i}}\right), \mathrm{L}_{\mathrm{C}_{i}}\right) \\
& =\mathrm{C}_{i}
\end{aligned}
$$

consider
Define
where

$$
\begin{aligned}
\mu_{11_{1}^{i}} & =\mu_{2 C_{i}} \\
\mathrm{~L}_{\mathrm{C}_{i}} & =\{0,1\}
\end{aligned}
$$

Clearly $\chi_{b}{ }^{0} \subseteq \mathrm{~B}_{i}$ so that $\chi_{b}{ }^{0} \in \mathrm{~B}_{i}{ }^{\sim} \subseteq \cup_{i \in \mathrm{I}} \mathrm{B}_{i}^{\sim}=$ RHS
Hence

$$
\begin{equation*}
\mathrm{LHS} \subseteq \mathrm{RHS} \tag{2}
\end{equation*}
$$

For

$$
\beta=1 \text { consider }
$$

$\mathrm{B}_{i}=\left(\mathrm{B}_{1_{i}}, \mathrm{~B}_{i}, \overline{\mathrm{~B}}_{i}\left(\mu_{1 \mathrm{~B}_{1 i}}, \mu_{2 \mathrm{~B} i}\right), \mathrm{L}_{\mathrm{B}_{i}}\right)$ such that $b \in \mathrm{~B}_{i}$
Define
$\chi_{b}{ }^{1}=\left(\mathrm{B}_{1 i}, \mathrm{~B}_{i}, \overline{\mathrm{C}}_{i}\left(\mu_{1 \mathrm{C}_{1 i}}, \mu_{2 \mathrm{C}_{i}}\right), \mathrm{L}_{\mathrm{C} i}\right)$
$=\mathrm{C}_{i}$ where
$\mu_{1_{C 1} i_{i}} x=\mu_{2 C_{i}} x, \forall x \neq b$,

$$
\mu_{1_{1 \mathrm{C}_{1 i}}} b=1
$$

$$
\mu_{2 \mathrm{VC}_{i}} x=0
$$

$$
\mathrm{L}_{\mathrm{C} i}=\{0,1\}
$$

Clearly
$\chi_{b}{ }^{1} \subseteq \mathrm{~B}_{i}$
\Rightarrow

$$
\chi_{b}^{0} \in \mathrm{~B}_{i}^{\sim} \subseteq \cup_{i \in \mathrm{I}} \mathrm{~B}_{i}^{\sim}
$$

$$
=\text { RHS }
$$

Hence

$$
\begin{equation*}
\mathrm{LHS} \subseteq \mathrm{RHS} \tag{3}
\end{equation*}
$$

From (1), (2) and (3),
LHS = RHS
3. Theorem : Ψ is a meet complete homomorphism if and only if L_{A} is singleton.

Proof : Suppose Ψ is a meet complete homomorphism
Let

$$
\beta \in \text { LA such that } \beta \neq 0
$$

Let

$$
\mathrm{G}_{1}=\left\{\chi_{b}^{1}, \chi_{b}^{\beta}\right\}
$$

$$
\mathrm{G}_{2}=\left\{\chi_{b}^{0}, \chi_{b}^{{ }^{\beta}}\right\}
$$

$$
\mathrm{G}_{1} \cap \mathrm{G}_{2}=\Phi
$$

$\Rightarrow \quad\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)^{\sim}=\Phi_{\mathrm{A}}$

$$
\mathrm{G}_{1} \sim=\chi_{b}{ }^{1} \cup \chi_{b}{ }^{\beta}
$$

$$
\begin{aligned}
& =\chi_{b}{ }^{1}, \mathrm{G}_{2}{ }^{\sim} \\
& =\chi_{b}^{0} \cup \chi_{b}{ }^{\beta^{c}} \\
& =\chi_{b}{ }^{{ }^{c}} \\
\Rightarrow \quad \mathrm{G}_{1} \sim \cap \mathrm{G}_{2}{ }^{\sim} & =\chi_{b}{ }^{1} \cap \chi_{b}{ }^{\beta^{c}} \\
& =\chi_{b}{ }^{{ }^{c}} \\
\therefore \quad\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)^{\sim} & \neq \mathrm{G}_{1} \sim \cap \mathrm{G}_{2}{ }^{\sim}, \text { which is contradiction. }
\end{aligned}
$$

So Ψ is not a meet complete homomorphism
Conversely, suppose L_{A} is singleton. To prove Ψ is a meet complete homomorphism
Suppose Ψ is not a meet complete homomorphism. Then there exist a nonempty family $\left(\mathrm{G}_{i}\right)_{i \in \mathrm{I}}$ such that $\left(\cap_{i \in \mathrm{I}} \mathrm{G}_{i}\right)^{\sim} \not \subset \cap_{i \in \mathrm{I}} \mathrm{G}_{i}^{\sim}$. Then there exist $\chi_{b}{ }^{\beta} \subseteq$ RHS such that $\chi_{b}{ }^{\beta} \not \subset \mathrm{LHS}$ and $\beta \neq 0$ and $\beta \in \mathrm{L}_{\mathrm{A}}$, contradicting L_{A} is singleton

Hence Ψ is a meet complete homomorphism.
4. Proposition : Given B, then $\quad B^{\sim}=G$
$\Rightarrow \quad B=G^{\sim}$
Proof: $\quad B^{\sim}=G$
i.e
$\Phi(\mathrm{B})=\mathrm{G}$
$\Rightarrow \quad \Psi \Phi(\mathrm{B})=\Psi(\mathrm{G})$
$\Rightarrow \quad 1(\mathrm{~B})=\Psi(\mathrm{G})$ from 4.28(e) that is,
$B=G^{\sim}$.
5. Proposition: Given G is S -closed, then

$$
\begin{array}{ll}
& \mathrm{G}^{\sim}=\mathrm{B} \\
\Rightarrow & \mathrm{~B}^{\sim}=\mathrm{G}
\end{array}
$$

Proof: Given G is S-closed implies $G=G^{\sim \sim}$
i.e.

$$
\Phi \Psi(\mathrm{G})=\mathrm{G}
$$

Let
$B=G^{\sim}$
i.e.
$\mathrm{B}=\Phi(\mathrm{G})$
\Rightarrow
$\Psi(\mathrm{B})=\Psi \Phi(\mathrm{G})$
\Rightarrow
$\Psi(\mathrm{B})=\mathrm{G}$
6. Lemma :

$$
\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)^{\sim}=\mathrm{G}_{1}^{\sim} \cap \mathrm{G}_{2}^{\sim},
$$

for any two S-closed subsets G_{1} and G_{2} of $\operatorname{FSP}(A)$.

Proof: G_{1} is S-closed implies
where

$$
\begin{aligned}
\mathrm{G}_{1} & =\mathrm{B}_{1} \sim \\
\mathrm{~B}_{1} & =\mathrm{A} \\
\mathrm{~B}_{1} & =\left(\mathrm{B}_{11}, \mathrm{~B}_{1}, \overline{\mathrm{~B}}_{1}\left(\mu_{1 \mathrm{~B}_{11}}, \mu_{2 \mathrm{~B}_{1}}\right), \mathrm{L}_{\mathrm{B}_{1}}\right) \\
& =\cup_{\chi_{b}^{\beta} \in \mathrm{G}_{1}} \chi_{b}^{\beta} \\
\mathrm{B}_{11} \supseteq \mathrm{~B}_{1} & =\mathrm{A} \\
& =\left\{b \mid \chi_{b}^{\beta} \in \mathrm{G}_{1}\right\}, \mathrm{L}_{\mathrm{B}_{1}} \\
& =\mathrm{L}_{\mathrm{A}}, \mu_{1 \mathrm{~B}_{11}} b \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}_{1}}\left(\beta \vee \mu_{2 \mathrm{~A}} b\right) \\
\mu_{2 \mathrm{~B}_{1}} b & =\mu_{2 \mathrm{~A}} b \\
\mathrm{G}_{2} & =\mathrm{B}_{2}, \\
\mathrm{~B}_{2} & =\mathrm{A}
\end{aligned}
$$

and

$$
\text { Similarly } \mathrm{G}_{2} \text { is S-closed implies } \quad \mathrm{G}_{2}=\mathrm{B}_{2}^{\sim} \text {, }
$$

where
and

$$
\begin{aligned}
\mathrm{B}_{2} & =\left(\mathrm{B}_{12}, \mathrm{~B}_{2}, \overline{\mathrm{~B}}_{2}\left(\mu_{1 \mathrm{~B}_{12}}, \mu_{2 \mathrm{~B}_{2}}\right), \mathrm{LB}_{2}\right) \\
& =\cup_{\chi_{b}^{\beta} \in \mathrm{G}_{2}} \chi_{b}^{\mathrm{B}} \\
\mathrm{~B}_{12} \supseteq \mathrm{~B}_{2} & =\mathrm{A} \\
& =\left\{b \mid \chi_{b}^{\beta} \in \mathrm{G}_{2}\right\}, \mathrm{L}_{\mathrm{B}_{2}} \\
& =\mathrm{L}_{\mathrm{A}}, \mu_{1 \mathrm{~B}_{12}} b \\
& =\vee_{\chi_{b}^{\beta} \in \mathrm{G}_{2}}\left(\beta \vee \mu_{2 \mathrm{~A}} b\right), 2_{\mathrm{B} 2} b \\
& =\mu_{2 \mathrm{~A}} b
\end{aligned}
$$

Need to show that
But we have,

$$
\begin{aligned}
\mu_{1 \mathrm{~B}_{11}} \wedge \mu_{1 \mathrm{~B}_{12}} & \geq \mu_{2 \mathrm{~B}_{1}} \mu_{2 \mathrm{~B}_{2}} \\
\mu_{1 \mathrm{~B}_{11}} b & \geq \mu_{2 \mathrm{~A}} b \\
& =\mu_{2 \mathrm{~B}_{1}} b
\end{aligned}
$$

and
$\therefore \quad \quad \mu_{1 \mathrm{~B}_{11}} b \wedge \mu_{1 \mathrm{~B}_{12}} b \geq \mu_{2 \mathrm{~A}}^{2 \mathrm{~B}_{2}} b$ $=\mu_{2 \mathrm{~B}_{1}} b \vee \mu_{2 \mathrm{~B}_{2}} b$
Hence
$\mathrm{B}_{1} \cap \mathrm{~B}_{2}$ non-empty.
Now,

$$
\mathrm{G}_{1} \cap \mathrm{G}_{2}=\mathrm{B}_{1}^{\sim} \cap \mathrm{B}_{2}^{\sim}
$$

$$
=\left(\mathrm{B}_{1} \cap \mathrm{~B}_{2}\right)^{\sim}
$$

from 4.25 so that
$\left(\mathrm{B}_{1} \cap \mathrm{~B}_{2}\right)^{\sim}=\left(\mathrm{G}_{1}^{\sim} \cap \mathrm{G}_{2}\right)^{\sim}$
We have for any Fs-subset

$$
\mathrm{H}, \mathrm{H}^{\sim}=\mathrm{G}
$$

$$
\Rightarrow
$$

$$
\mathrm{H}=\mathrm{G}^{\sim}
$$

Take
$\mathrm{H}=\mathrm{G}_{1}{ }^{\sim} \cap \mathrm{G}_{2}{ }^{\sim}$
and
Hence

$$
\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)^{\sim}=\mathrm{G}_{1}^{\sim} \cap \mathrm{G}_{2}^{\sim}
$$

7. Theorem :

$$
\left(\cap_{i \in \mathrm{I}} \mathrm{G}_{i}\right)^{\sim}=\cap_{i \in \mathrm{I}} \mathrm{G}_{i}^{\sim}
$$

for any family $\left(\mathrm{G}_{i}\right)_{i \in \mathrm{I}}$ of S-closed subsets of FSP(A)
8. Define E : FS-SET \rightarrow SET, where $*=i$ or p

Figure 2
Such that $\operatorname{FSP}\left(f_{1}, f, \Phi\right)\left(\chi_{b}^{\beta}\right)=\chi_{f b}^{\Phi \beta}$. Then, E dense functor.
Proof: For $\mathrm{C} \in \mathrm{FSSET}_{*}$

$$
\begin{aligned}
1_{c} & =\left(1_{\mathrm{C}_{1}}, 1_{\mathrm{C}}, 1_{\mathrm{LC}}\right): \mathrm{C} \rightarrow \mathrm{C} \\
\mathrm{E}\left(1_{\mathrm{C}}\right)\left(\chi_{b}{ }^{\beta}\right) & =\operatorname{E}\left(1_{\mathrm{C}}, 1_{\mathrm{C}}, 1_{\mathrm{LC}_{\mathrm{C}}}\right)\left(\chi_{b}^{\beta}\right) \\
& =\operatorname{FSP}\left(1_{\mathrm{C} 1}, 1_{\mathrm{C}}, 1_{\mathrm{L}_{\mathrm{C}}}\right)\left(\chi_{b}{ }^{\beta}\right) \\
& =\chi_{\mathrm{l}_{\mathrm{c}}{ }^{b}}^{1_{\mathrm{L}}} \\
& =\chi_{b}{ }^{3} \\
& =1_{\mathrm{FSP}(\mathrm{C})}\left(\chi_{b}{ }^{\beta}\right) \\
& =1_{\mathrm{E}(\mathrm{C})}\left(\chi_{b}^{\beta}\right)
\end{aligned}
$$

So that,

$$
\mathrm{E}\left(1_{\mathrm{C}}\right)=1_{\mathrm{E}(\mathrm{C})}
$$

For $\left(f_{1}, f, \Phi\right) \in \operatorname{Hom}_{i}(\mathrm{~B}, \mathrm{C})$ and $\left(g_{1}, g, \Psi\right) \in \operatorname{Hom}_{i}(\mathrm{C}, \mathrm{D})$ as in 2.3

$$
\begin{aligned}
&\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}}\left.\geq \Phi \circ \mu_{1 \mathrm{~B}_{1}}\right) \text { and } \mu_{2 \mathrm{C}} \circ f \leq \Phi \circ \mu_{2 \mathrm{~B}} f \\
&\left.\left.\left.\mu_{1 \mathrm{D}_{1}}\right|_{\mathrm{D}}{ }^{\circ} g_{1}\right|_{\mathrm{B}} \geq \Psi \circ \mu_{1 \mathrm{C}_{1}}\right) \text { and } \mu_{2 \mathrm{D}}{ }^{\circ} g \leq \Psi \circ \mu_{2 \mathrm{C}}
\end{aligned}
$$

From 2.11, Composition of two increasing Fs-function is increasing, we can have

So that,

$$
\text { So that, } \begin{aligned}
\left.\left.\mu_{1 \mathrm{D}_{1}}\right|_{\mathrm{D}}{ }^{\circ} g_{1} f_{1}\right|_{\mathrm{B}} & \geq \Psi \Phi \circ \mu_{1 \mathrm{~B}_{1}} \text { and } \mu_{2 \mathrm{D}} \circ g f \leq \Psi \Phi \circ \mu_{2 \mathrm{~B}} \\
\overline{\mathrm{D}} g f b & =\mu_{1 \mathrm{D}_{1}} g f b \wedge\left(\mu_{2 \mathrm{D}} g f b\right)^{c} \\
& \geq\left(\Psi \Phi \circ \mu_{1 \mathrm{~B}_{1}} b \wedge\left[\left(\Psi \Phi \circ \mu_{2 \mathrm{~B}}\right) b\right]^{c}\right. \\
\mathrm{E}\left[\left(g_{1}, g, \Psi\right) \circ\left(f_{1}, f, \Phi\right)\right]\left(\chi_{b}^{\beta}\right) & =\mathrm{E}\left[g_{1} \circ f_{1}, g \circ f, \Psi \circ \Phi\right] \\
& =\chi_{g f b}^{\Psi \Phi \beta} \\
& =\mathrm{E}\left(g_{1}, g, \Phi\right)\left(\chi_{f b}^{\Phi \beta}\right) \\
& =\mathrm{E}\left(g_{1}, g, \Psi\right) \circ \mathrm{E}\left(f_{1}, f, \Phi\right)\left(\chi_{b}^{\beta}\right) \\
\text { So that } \quad \mathrm{E}\left[\left(g_{1}, g, \Psi\right) \circ\left(f_{1}, f, \Phi\right)\right] & =\mathrm{E}\left(g_{1}, g, \Psi\right) \circ \mathrm{E}\left(f_{1}, f, \Phi\right) .
\end{aligned}
$$

So that
Hence E is functor.
Let $B \in(S E T)_{0}$. We have to find $B \in(F S S E T)_{0}$ such that $E(B)=F S P(B)$ is isomorphic with B.
Consider

$$
\mathrm{B}=\cup_{b \in \mathrm{~B}} \chi_{b}^{0}
$$

We have

$$
\operatorname{FSP}(\mathrm{B})=\left\{\chi_{b}{ }^{0} \mid b \in \mathrm{~B}\right\}
$$

Define $\boldsymbol{f}: \quad \operatorname{FSP}(\mathrm{B}) \rightarrow \mathrm{B}$ by $f\left(\chi_{b}{ }^{0}\right)=b$
Clearly f is a bijection.
Hence E is a dense functor
9. Remark : Note that $\chi_{b}{ }^{0}=\Phi_{\mathrm{A}}$ Fs-empty set of second kind if, and only if
where

$$
\begin{aligned}
\chi_{b}^{0} & =\left(\mathrm{D}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right), \\
\mu_{\mathrm{DD}_{1}} & =\mu_{2 \mathrm{D}}
\end{aligned}
$$

10. Remark : Φ_{A}-Fs-empty set of second kind can be treated as Fs-point.
11. Definition: Let $\mathrm{F}, \mathrm{G}: \mathrm{A} \rightarrow \mathrm{B}$ be a pair of functors. A natural transformation η between two functor F and G -denoted by $\eta: \mathrm{F} \rightarrow \mathrm{G}$ is defined as follows with the help of the following diagram which should be commutative .That is, $\mathrm{G} f \circ \eta_{\mathrm{A}}=\eta_{\mathrm{B}}{ }^{\circ} \mathrm{F} f$

Figure 3
FS-SET = Category with Fs-sets (with complete Boolean algebra valued membership functions) as objects and Fs-functions [3.1] as morphisms between Fs-sets.

FS-SETND = Category with Fs-sets (with non-degenerating complete Boolean algebra valued membership functions) as objects and Fs-functions as morphisms between Fs-sets.
12. Theorem : There is a natural transformation between the functors I and $G \circ E$ where $G \circ E$ composition of functors G-as described below and E in 3.35 and $\mathrm{I}:(\mathrm{FS}-\mathrm{SET})_{*} \rightarrow(\mathrm{FS}-\mathrm{SET})_{*}$ is the identity functor where $*=i$ or p

Figure 4

Where

$$
\mu_{1 \mathrm{D}_{1}}=\mu_{2 \mathrm{D}}
$$

$$
\mu_{1 \mathrm{E}_{1}}=\mu_{2 \mathrm{E}}
$$

$$
=\infty
$$

and

$$
\begin{aligned}
\mathrm{L}_{\mathrm{D}} & =\mathrm{L}_{\mathrm{E}} \\
& =1_{\infty}
\end{aligned}
$$

Proof: E : FF-SSET \rightarrow \rightarrow SET

$$
\begin{aligned}
\mathrm{E}\left(f_{1}, f, \Phi\right)\left(\chi_{b}^{\beta}\right) & =\mathrm{FSP}\left(f_{1}, f, \Phi\right)\left(\chi_{b}^{\beta}\right) \\
& =\chi_{f b}^{\Phi \beta}
\end{aligned}
$$

F-SET $* \xrightarrow{\mathrm{E}}$ SET $\xrightarrow{\mathrm{G}} \mathrm{FS}_{\mathrm{S}}-\mathrm{SET}_{*}$
F-SET $* \xrightarrow{\mathrm{G}^{\circ} \mathrm{E}}$ FS-SET), I : FS-SET $\rightarrow \mathrm{FS}_{*} \mathrm{SET}_{*}$

$$
\eta: I=G \circ E
$$

Figure 5
To be proved

$$
\begin{aligned}
\mathrm{G} \circ \mathrm{E}\left(f_{1}, f, \Phi\right) \circ \eta_{\mathrm{A}} & =\eta_{\mathrm{B}}{ }^{\circ} \mathrm{I}\left(f_{1}, f, \Phi\right), \text { where } \\
\eta_{\mathrm{A}} & =\left(\mathrm{C}_{\mathrm{A}_{1}}, \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right), \text { where } \\
\mathrm{C}_{\mathrm{A}_{1}}: \mathrm{A}_{1} & \rightarrow \operatorname{FSP}(\mathrm{~A}) \\
\mathrm{C}_{\mathrm{A}}: \mathrm{A} & \rightarrow \operatorname{FSP}(\mathrm{~A}) \\
\mathrm{C}_{\mathrm{L}_{\mathrm{A}}}: \mathrm{L}_{\mathrm{A}} & \rightarrow \infty \\
a_{1} & \rightarrow \chi_{a_{1}}{ }^{0} \\
a & \rightarrow \chi_{a}^{0} \\
\alpha & \rightarrow \infty \\
\eta_{\mathrm{B}} & \rightarrow\left(\mathrm{C}_{\mathrm{B}_{1}}, \mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{LB}}\right), \text { where } \\
\mathrm{C}_{\mathrm{B}_{1}}: \mathrm{B}_{1} & \rightarrow \mathrm{FSP}(\mathrm{~A}) \\
\mathrm{C}_{\mathrm{B}}: \mathrm{B} & \rightarrow \mathrm{FSP}(\mathrm{~A}) \\
\mathrm{C}_{\mathrm{L}_{\mathrm{B}}}: \mathrm{L}_{\mathrm{B}} & \rightarrow \infty \\
b_{1} & \rightarrow \chi_{b_{1}}^{0} \\
b & \rightarrow \chi_{a}^{0} \\
\beta & \rightarrow \infty
\end{aligned}
$$

So that, $\eta_{\mathrm{B}}{ }^{\circ} \mathrm{I}\left(f_{1}, f, \Phi\right): \mathrm{I}(\mathrm{A}) \rightarrow \mathrm{G}{ }^{\circ} \mathrm{E}(\mathrm{B})$
$\mathrm{G} \circ \mathrm{E}\left(f_{1}, f, \Phi\right) \circ \eta_{\mathrm{A}}: \mathrm{I}(\mathrm{A}) \rightarrow \mathrm{G} \circ \mathrm{E}(\mathrm{B})$.

We have $\quad \mathrm{G} \circ \mathrm{E}\left(f_{1}, f, \Phi\right) \circ \eta_{\mathrm{A}}=\mathrm{G} \circ \mathrm{E}\left(f_{1}, f, \Phi\right) \circ\left(\mathrm{C}_{\mathrm{A}_{1}}, \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right)$

$$
=\mathrm{G} \circ\left(\mathrm{E} f_{1}, f, \Phi\right) \circ\left(\mathrm{C}_{\mathrm{A}_{1}}, \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right)
$$

$$
=\mathrm{G}(g) \circ\left(\mathrm{C}_{\mathrm{Al}_{1}}, \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right)
$$

$$
=\left(g, g, 1_{\infty}\right)^{\circ}\left(\mathrm{C}_{\mathrm{A}_{1}}, \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right)
$$

$$
\eta_{\mathrm{B}}{ }^{\circ} \mathrm{I}\left(f_{1}, f, \Phi\right)=\eta_{\mathrm{B}}^{\circ}\left(f_{1}, f, \Phi\right)
$$

$$
\left.=\left(g \circ \mathrm{C}_{\mathrm{A}_{1}}\right), \circ g \circ{ }^{\circ} \mathrm{C}_{\mathrm{A}}, 1_{\infty} \circ \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right)
$$

$$
=\left(\mathrm{C}_{\mathrm{B}_{1}}, \mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{LB}}\right) \circ\left(f_{1}, f, \Phi\right)
$$

$$
=\left(\mathrm{C}_{\mathrm{B}_{1}} \circ f_{1}, \mathrm{C}_{\mathrm{B}} \circ f, \mathrm{C}_{\mathrm{LB}} \circ \Phi\right)
$$

To be proved

1. $g \circ \mathrm{C}_{\mathrm{A}_{1}}=\mathrm{C}_{\mathrm{B}_{1}} \circ f_{1}$
2. $g \circ \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}} \circ f$
3. $1_{\infty}{ }^{\circ} \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}=\mathrm{C}_{\mathrm{L}_{\mathrm{B}}}{ }^{\circ} \Phi$
4. $\mathrm{A}_{1} \xrightarrow{\mathrm{C}_{\mathrm{A}}} \operatorname{FSP}(\mathrm{A}) \xrightarrow{g} \operatorname{FSP}(\mathrm{~B})$

$$
\begin{aligned}
\left(g \circ \mathrm{C}_{\mathrm{A}_{1}}\right) a_{1} & =g\left(\mathrm{C}_{\mathrm{A}_{1}} a_{1}\right) \\
& =g\left(\chi_{a_{1}}^{0}\right)=\chi_{f a_{1}}^{0}=\chi_{f_{1 a 1}}^{0}
\end{aligned}
$$

1. $\mathrm{L}_{\mathrm{A}} \rightarrow \xrightarrow{f_{1}} \mathrm{~B}_{1} \xrightarrow{\mathrm{CB}_{1}} \operatorname{FSP}(\mathrm{~B})$

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{B}_{1}} \circ f_{1}\right) a_{1} & =\mathrm{C}_{\mathrm{B}_{1}}\left(f_{1} a_{1}\right) \\
& =\chi_{f_{1 a 1}}^{0}
\end{aligned}
$$

Hence

$$
g \circ \mathrm{C}_{\mathrm{A}_{1}}=\mathrm{C}_{\mathrm{B}_{1}} \circ f_{1}
$$

2. $\mathrm{A} \xrightarrow{\mathrm{C}_{A}} \operatorname{FSP}(\mathrm{~A}) \xrightarrow{g} \operatorname{FSP}(\mathrm{~B})$

$$
\begin{aligned}
\left(g \circ \mathrm{C}_{\mathrm{A}}\right) a_{1} & =g\left(\mathrm{C}_{\mathrm{A}} a\right) \\
& =g\left(\chi_{a}^{0}\right) \\
& =\chi_{f a}^{0}
\end{aligned}
$$

$\mathrm{A} \xrightarrow{f_{1}} \mathrm{~B} \xrightarrow{\mathrm{CB}} \operatorname{FSP}(\mathrm{B})$

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{B}} \circ f\right) a & =\mathrm{C}_{\mathrm{B}}(f a) \\
& =\chi_{f_{1 a 1}}^{0} \\
g \circ \mathrm{C}_{\mathrm{A}} & =\mathrm{C}_{\mathrm{B}} \circ f
\end{aligned}
$$

Hence
3. $\mathrm{L}_{\mathrm{A}} \xrightarrow{\mathrm{CL}_{A}} \infty \xrightarrow{\infty} \infty$

$$
\begin{aligned}
\left(1_{\infty} \circ \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right) \alpha & =1_{\infty}\left(\mathrm{C}_{\mathrm{LA}} \alpha\right) \\
& =1_{\infty}(\infty) \\
& =\infty
\end{aligned}
$$

$\mathrm{L}_{\mathrm{A}} \xrightarrow{\Phi} \mathrm{L}_{\mathrm{B}} \xrightarrow{\mathrm{CL}_{\mathrm{B}}} \infty$

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{LB}} \circ \Phi\right) \alpha & =\mathrm{C}_{\mathrm{L}_{\mathrm{B}}}(\Phi(\alpha)) \\
& =0 \\
& =\left(1_{\infty} \circ \mathrm{C}_{\mathrm{L}_{\mathrm{A}}}\right) \alpha \\
1_{\infty} \circ \mathrm{C}_{\mathrm{L}_{\mathrm{A}}} & =\mathrm{C}_{\mathrm{L}_{\mathrm{B}}} \circ \Phi
\end{aligned}
$$

Hence
From (1), (2) and (3) clearly $\mathrm{G} \circ \mathrm{E}\left(f_{1}, f, \Phi\right){ }^{\mathrm{L}_{\mathrm{A}}} \eta_{\mathrm{A}}=\eta_{\mathrm{B}}{ }^{\circ} \mathrm{I}\left(f_{1}, f, \Phi\right)$
That is, η from I into $\mathrm{G}{ }^{\circ} \mathrm{E}$ is a natural transformation.

6. ACKNOWLEDGEMENTS

The authors acknowledge GITAM University for providing facilities to do research.

7. REFERENCES

1. J.A.Goguen ,L-Fuzzy Sets, JMAA,Vol.18, P145-174,1967
2. Steven Givant • Paul Halmos, Introduction to Boolean algebras, Springer
3. Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
4. Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
5. Thomas Jech, Set Theory, The Third Millennium Edition revised and expanded, Springer
6. George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, Advances in Fuzzy Systems-Applications and Theory Vol-6, World Scientific
7. James Dugundji, Topology, Universal Book Stall, Delhi.
8. L.Zadeh, Fuzzy Sets, Information and Control,Vol.8,P338-353,1965
9. U.Höhle, S.E.Rodabaugh, Mathematics of fuzzy Sets Logic, Topology, and Measure Theory, Kluwer Academic Publishers, Boston
10. G.F.Simmons, Introduction to topology and Modern Analysis, Mc Graw-Hill international Book Company
11. Vaddiparthi Yogeswara, G.Srinivas and Biswajit Rath, A Theory of Fs-sets, Fs-Complements and Fs-De Morgan Laws, IJARCS, Vol- 4, No. 10, Sep-Oct 2013
12. Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy, A Study of Fs-Functions and Properties of Images of FsSubsets Under Various Fs-Functions. MS-IRJ, Vol-3, Issue-1
13. Vaddiparthi Yogeswara, Biswajit Rath, A Study of Fs-Functions and Study of Images of Fs-Subsets In The Light Of Refined Definition Of Images Under Various Fs-Functions. IJATCSE, Vol-3, No.3, Pages : 06-14 (2014) Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore
14. Vaddiparthi Yogeswara, Biswajit Rath, Generalized Definition of Image of an Fs-Subset under an Fs-functionResultant Properties of Images Mathematical Sciences International Research Journal,2015, Volume -4, Spl Issue, 40-56
15. Vaddiparthi Yogeswara, Biswajit Rath, , Ch.Ramasanyasi Rao, Fs-Sets and Infinite Distributive Laws Mathematical Sciences International Research Journal, 2015 ,Volume-4 Issue-2, Page No-251-256
16. Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Fs-Sets and Theory of FsB-Topology Mathematical Sciences International Research Journal, 2016 ,Volume-5,Issue-1, Page No-113-118
17. Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, D. Raghu Ram Some Properties of Associates of Subsets of FSP-Points Transactions on Machine Learning and Artificial Intelligence, 2016 ,Volume-4,Issue-6
18. Vaddiparthi Yogeswara, Biswajit Rath, Ch.Ramasanyasi Rao, K.V.Umakameswari, D. Raghu Ram Inverse Images of Fs-subsets under an Fs-function - Some Results Mathematical Sciences International Research Journal, 2016
19. Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, JFM, Vol 5(3),P495-523, 1997, U.S.A
20. Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem for Fuzzy Subsystems of A Fuzzy Partial Algebra, Fuzzy Sets and System, Vol 104,P359-371,1999,HOLLAND
21. Mamoni Dhar, Fuzzy Sets towards Forming Boolean Algebra, IJEIC, Vol. 2, Issue 4, February 2011
22. Nistala V.E.S. Murthy, f-Topological Spaces Proceedings of The National Seminar on Topology, Category Theory and their applications to Computer Science, P89-119, March 11-13, 2004, Department of Mathematics, St Joseph's College, Irinjalaguda, Kerala (organized by the Kerala Mathematical Society. Invited Talk).

[^0]: * Associate Professor Dept. Mathematics, GIT, GITAM University, Visakhapatnam-530045, A.P State, India. vaddiparthyy@yahoo.com
 ** Asst. Professor Dept. of Applied Mathematics, GIS, GITAM University, Visakhapatnam-530045, A.P, India. urwithbr@gmail.com
 *** Research Scholar :Dept. of Mathematics, GIS, GITAM University, Visakhapatnam 530045, A.P, India. ams.mathematics@gmail.com, uma.mathematics@gmail.com,draghuram84@gmail.com

