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CALCULATION OF THE STRESS INTENSITY FACTOR
FOR TWO EQUAL CO-AXIAL CIRCULAR CRACKS

DR. SuMAN KUMAR VERMA

ABSTRACT: The two-dimensional problem of diffraction of an arbitrary incident elastic
longitudinal wave by two equal co-axial circular cracks are discussed hers. Infact these
circular cracks are in an infinite, isotropic and homogeneous elastic medium. Firstly,
mathematical Model developed to solved by a simple integral equation technique.
Approximate expressions the stress intensity factors are derived when the wavelength is
large as compared to the radius of the circular cracks. By taking appropriate limits, the
corresponding results for various limiting configurations are derived for known cases.
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1. INTRODUCTION

In recent years, various authors have given attention to the problems dealing with
stress and strain fields in an elastic medium containing cracks of finite dimension.
These problems are of great interest in fracture mechanics, seismology and geophysics
due to the nature of elastic waves is modified by the presence of cracks in the elastic
medium. Specially scattering of elastic waves by cracks is a problem of considerable
importance in the field of fracture mechanics, quantitative nondestructive evaluation
of materials, geophysics and seismology. Recently various two-dimensional problems
of diffraction of plane acoustic wave by a semi-circular soft or rigid infinite strip have
been discussed by different techniques!-. Shail® solved the problem of diffraction of
low-frequency acoustic waves by an infinite circular are soft strip by integral equation
techniques. These integral equation techniques give the solution of two Fredholm
integral equation of the first kind with logarithmic kernels which are derived by using
the well-known solutions of Carleman integral equations”®. These integral equation
techniques as well as their applications are quite complicated and cumbersome. Sampath
and Jain®, Jain and Jain'*'? developed a simple independent integral equation technique
to solve various two-dimensional Dirichlet as well as Neumann boundary value
problems involving two equal co-axial infinite circular strips. These techniques have
been further used to solve two-dimensional problems of diffraction of elastic P waves
by (i) two equal co-axial circular rigid strips'?, (ii) two equal parallel and coplanar
Griffith cracks'.

It is here for the first time the solution of the two-dimensional problem of diffraction
of obliquely incidence low frequency elastic P waves by two equal co-axial circular
cracks are solved. The cracks are embedded, in an infinite, isotropic and homogeneous
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elastic medium, by these simple integral equation techniques®!>. With use of the usual
Green’s function approach, the solution of this problem is first reduced to a pair of
governing simultaneous Fredholm integral equations of the first kind. When the
wavelength is large as compared to the radius of circular cracks, solutions of this pair
of governing integral equations is further reduced to that of a set of pairs of simultaneous
Fredholm integral equations of the first kind. By making appropriate substitutions'?,
the first pair of simultaneous Fredholm integral equations of the first kind of this set is
solved to obtain approximate expression for the two unknown functions. Approximate
expressions are derived for the far-field amplitudes, the scattering cross section by!’

Finally, I have derived the stress intensity factors for the above problem using the
technique or derivation done in detail'’. By taking appropriate limits, we derive the
corresponding known solution of the problem of diffraction of obliquely incident P
waves by two parallel and coplanar Griffith cracks!®. This serves as a check on our
analysis. The other two corresponding results of the limiting configurations of a circular
crack and a semi-circular crack are obtained which seem to be new.

2. FORMULATION OF BOUNDARY VALUE PROBLEMS

Consider a cylindrical polar coordinate system (r, 6, x,) such that the two equal co-
axial circular cracks are defined by the equations

r=a,0<B<|fl<a<m -0<x <o
where a is the radius of the circular crack (see fig. 1),

By normalizing all the lengths with respect to ‘a’, the cracks are now defined by the
equation

r=1,0<B<|0l<a<m —0<x, <.

Let u® (x) be the displacement field (the time factor e is suppressed throughout the
analysis) associated with the incident elastic P-waves propagating in the infinite, isotropic
and homogeneous medium occupying the whole region S of the x, — x, plane in the
direction making angle ¢ with the positive direction of x, axis and is defined as:

u® (x) =imiAo b exp (imi(x. b), b = é1 cos + é2sind, x € S, (2.1)

where x = (x, x,), m*> = (p,w’a®)/(A + 2u), A is the known constant e, and e, are the
unit vectors along the X, and X, axes, A and are the lame constants of the medium. S,
is the density of the medium, and  is the frequency of the incident wave. The constant
stiffness tensor Cijkl(x) of the infinite host medium is defined as:

Ciju(x) = 8 S + n(dix 81 + 81 8jx), x € S, (2.2)
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where 0’ S areas Kronecker deltas and the indices are 1, 2. In the absence of body
forces and the cracks, u°(x) satisfies the equilibrium equations

(o] 2 (o]
Cl,jkl ue (x) +umzu’® (x),x €S, (2.3)
where
8%un, ()
o — e TS 2 2 2
u ki (X) T Bxidxj " my” = p,wa /u

The components 1°7 (x) and t°r, (x) of the stress tensor 1°(x) associated with the
incident field are given by

1° (x) =1°,(X) cosq+ 1°,(x) sing, x € S, 2.4)
°,(x) =1°,(X) cosq+ 1°,(x) sing, x € S, (2.5)
where
°,(x) == A, (mw/t*) {cos’ + (1 -27°) sin’p} exp [im, (x, cosd + x, sind)],
°,(x) =—A, m*u {cos’p} exp [im, (x, cosd + x, sind)],
°,(x) == A, m? n {(1-27%) cos’p + sin*p} exp [im, (x, cosd + x, sind)],
T=m/m, = [/ +2p)]",

Let the displacement vector, the stress tensor associated with the scattered field and
the total field be denoted by #’(x) and 1(x) and u(x), ©(x) respectively.

The boundary conditions are
T, (X) = TS”(X) +1°,(x) =0, 1=1, 2, as x tends to the points on C, (2.6)

where the arc C are defined by the equation r =1, B < |0 < o, u (x) , T, (X) , 1 =1, 2
are continuous across r=1,0< (0| < B, a < 10| < m, 2.7)

In addition, we have to satisfy the radiation condition at infinity and the appropriate
edge conditions at the tips of the cracks.

Thus, u(x) satisfies the distributional formula
div[Cimur(x) ] = div[Ciumuri(x) | + Craitgk (Xe) (0/0x1) 0(x — xc) Ralxe)
um,> u(x), x €S, (2.8)
where the bar denotes the distributional derivative,

gr(xe) = ur(xe) |-—ur(xe)|s, k=1, 2
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are the jumps in the components of the displacement vector across the arcs C and fi(x )
is the unit vector along the outward normal drown at the point x_of the arcs C.

The above distributional formula incorporates all the continuity requirements of
the components u,, T, i=1, 2, given in the above boundary conditions (2.6) and (2.7).
Following the usual Green’s function approach, the integral representation formulas
for the components u* (x) of the displacement vector of the scattered field are given
by

B ra
”SJH(X) =f_a fB [Criin gr(xc) cosO Gip.i (x.xc)

+ Cioij gk(xc) sin® G, 1 [(x, x0)] dO, m=1,2,x € D,

= 1T+ 101 Gee) {088 [() G (1 x0)
+ (1/7% = 2) Gam. 2 (x, xc)] + sin0 [Gy.2 (x, X¢) (2.10)
+ Gom, 1 (x, xo)] } + g2(xc) {080 [Gin, 2 (x, xc)
+ (1/7%) Gom.2 (x, x0)1} dO,  m=1,2,

where x_= (x', x,") = (cos0’, sin0’) and Green’s function G, (x, x) are defined as [15,
16]

Glm(x, Xc) = (1/4um22) [81111 mp2 HO(l) (maR)
+ (az/axl dxn) [Ho'V (m2, R) — Ho® (m, R, 1=1, 2, (2.11)

where R = |x — x | and H " is the Hankel function of the first kind of order zero.

The boundary conditions (2.6), (2.7), the formulas (2.4), (2.5), (2.10) and the
relations
75, (X) =1511(X) c0s0 + t512(X) sind, i=1, 2,
X)) = (W) {1b11(x) + (1-21%) 4% 2(X) },
X)) =150(x) =p {pd2x) + s 1(x) }, (2.12)
1(x) = (W) {152 2(x) + (1212 u511(x) },

lead to the pair of governing integral equations of this problem and its solutions were
derived first time by .
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It is reduced to after detail derivation given by'” Verma
L,9(8") = (d/d6") [@(©O)], 1, j=1,2 (2.12)

and the edge conditions
[0 d0' =0, Lj=12 (2.14)

which readily follow from the edge conditions g(+a) = 0, g (+f) = 0.
the following required expressions for IV.(‘))(O’), Lj=1,2;

2
1-A2 _22Bl1 272 5Bosd + cos20

0)Q" = Jo Jo -
(@) AZ[(cosB-cos8’) (cos8’-cosa)]1/2 Ei, =12 (2.15)

(cos6’-B) sin6’
A[(cosp-cos8') (cos@'-cosa)|1/2

Ilz(o)(e') = Gl 5 1: 1, 2, (2.16)

where the constants E and G’s (i = 1,2) are given below.

Substituting the expressions of 11.].<°>(e’), i, j=1, 2 from eqns. (2.15) and (2.66) in
the relations (2.12), we obtain the values of g(0°) up to the order O(m ).

Fortunately, we do not require the values of gl(e’), i =1, 2, for deriving the
expressions for the various physical quantities of interest in this problem. These can
be readily derived by using the values of I, ©(®), i,j = 1, 2, given by the relations
(2.15) and (2.16).

3. STRESS INTENSITY FACTORS

The stress intensity factors K, and K, are defined as (in the physical units)

Kli = llm \/E {(e_ a)% [Tsri (1: e)]}9<a, ’i = 1’2’ (31)
e->a+

Ko

im @ ((B-6): [17i (L O)locy, 1 = 12 (32)

From eqns. (2.12), we get
S B
()= - w [ § I {9:(6) My (6-67) + g,(6") M, (6-0")}de, (3.3)

S 1 AgmP2(1-1%)

T (x)=

- = [J};{— sinB 19 (6")sin®’ + cos6 19 (6" cos’
1
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+I£?L)(B )sin®’ [

cose’ cosO

+ COSB] + sin@ Ig‘;)(e )

cosB’-cosBO (3.4)
+cosB’|} dB' + 0(m,)],
S -B o
T, (0= -u r S5 1918 Ly (8-8") + g,(8") M, (6-6")}de, (3.5)

S _ B Agm*2(1-1%) ra(0) - v
c x)= ——— UB {I;7 (8" [ - COSB] sinf

cose’ cos0

+ sin® I(O)(B ) [ - cosd’ ] sinB I(D)(B’) sin@’

COSB’ cos0

(3.6)
+c0sB 1.9(0") cosb'} d6’ + 0(m,)],

where we have used the expressions for L (0, 0), M (0, 0), M,(0, 0) as given below
and its more details are given by’

Mi(0, 0" = m [sin(® + 0) (1 — cos(0 — 0)] + 0(m2),

2
Ma(6, ') = m [1+ cos(B + 0" — cos(® + 8") cos( — 0)] + 0(m2), o)

Li1(6,6) = m [1-cos(0 —0") + cos(0 — 0") cos(0 + 0')] + 0(u).

The expansions of the density functions g, (0),i=1,2 derived by Verma [ ]

The values of the stress components t°r(x) , i = 1, 2 can be easily evaluated when 0<f3

or 0>a from eqns. (3.4) and (3.6) after substituting the values of functions Il.j“” 0), i,
j=12

Where Il.j“’) (0), are

2
[1-A? _24Bl1i _A7J2 _5BcosB + cos28

[119(0") = o  Jo Ei, i=1,2 (3.8)

A2[(cosp-cos’) (cos8'-cosa)]1/2

(cos@'-B) sin@’

A[(cosp-cos8") (cos®'-cosa)]1/?

[129(0") =

Gi, =l ds (3.9)

=5 (cosP — cosa), B =%2 (cosP + cosa), 0 <x,y<m, when <0, 0’ <a. (3.10)
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s cosnt
Tn= [, Tacosan it =012,
E = (t?sin2¢p)A?
b (1-72) (2+AZ+2A]i +A]2]2)’
0 0
(3.11)
[(1-272%sin2¢) - A%(1-72)]|A%
(172) @+a2+2 4 A%p/00)
C1=(2BJ1/Jo+ AJ2/Jo)E1/A, D1 = 2B/A)E1, i =1, 2,
(3.12)

G1=2A -2E)/A, G2=2E/A,Hi=F.1=0,i=1, 2.

After evaluating the values of Tsrl. (x), i =1, 2 and putting these in the relations (3.01)
and (3.02) we readily obtain.

Kit = Aol = 12) V2 [(3 = Q1= 2B cosa + cos2a) P1/Q1

+ [1 = (P2 = A2)/Q2] (sin2a — 2B sina) }/[sina. (cosp — cosa) |12

(3.13)
+ 0(m2)],
Ki2 = Aoum? (1 = ) Va [{Q2— 1 = 2B cosa + cos2a) (P2— A2)/Q2
(3.14)
+ (sin’a — 2B sina) P1/Q1) / [sina (cosf — cosa ]2 + 0(1m2)]
K21 = —Aop2 (1= 12) Va [(3 = Q1 - 2B cosP + cos2p) P1/Q;
+[1=(P2— A%/ Q2] (sin2P — 2B sinP)} / [sinP (cosP — cosa)]* 3.15)
+ 0(m2)],
K2 = —Aou? (1 - 12) Va [Q2— 1 — 2B cosP + cos2B) (P.— A2)/Q.
(3.16)

+ (sin2f3 — 2B sinf3) P1/Qq }/[sinB(cosP — cosa) 12 + O(mz2)],

where the values of constants P, Qs , i =1, 2 are given below

Py = 2 sin?d/(1 — 1), P2 = (1 - 272 sin*$)/(1 — 12), (3.17)



62 Dr. SumaN KumAR VERMA

Q1 =2+ A%+ 2AB Ii/Jo + AxJo/T4, (3.18)

Q2=2-A?-2AB Ji/Jo - AxJ2/11, (3.19)

As far as the author knows, the above results seem to be new.

4. LIMITING RESULTS

A. (i) An Infinite Circular Crack

When, 3 — 0, all defined stress intensity factor are derived from eqns. (3. 13) &
(3.14) for the following results for the corresponding problem of an infinite circular
crack;r=1,-a<0<a,—0<x, <o

AOmeZ(l—rZ)\/E

_ O ¥ e [ Liks —(Pa—sin*(% v
Kii = NENET) [{3-Q1 ' —2cos (2) cost. + c0s2a) o + [1-(P2-sin (2) /Qa ]
4.1
(sina2o — 2cos? (%) sina)} + 0(m2) ],
_ Agum?2(1-1 )V T 2 (@
K2 = —Shl(%)m [{Qz2'—=1-2cos (Z)COSOL
+ cos2a (Pz — sin* (g)) 1 Q2" + (sin20—2cos? (g) sinot) P2/ Q1 '} (4.2)
+ 0 @m2) 1,
K,, and K, are not defined,
where,
1, = T cos (nt) dt,
fo [1—(sin2(%) cosT + cosz(%»z ]% (43)
Qi'=2+sin* (5) + 3 sin’ady'/ Jo ' +sin* (5)12 '/ Jo', (4.4)
Q'=4-Q, 4.5)

(ii) An Infinite Semi-Circular Crack

When a --> g in the above results (4.1) — (4.2), we get the corresponding problem of

. . . . . . . g iy
an infinite semi-circular crack occupying the region'” : r=1,--< 6] <G mo<x <o,

As far as the authors know, even the above results for the two limiting
configurations also seem to be new.
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B. Two equal Griffith cracks

oz
We let B, a,, and @ — oo such that aP — a,, ao. > a, A @’/la’, > B, (c = - <1

when we assume that 0 < o + B < 7), in the eqns. (3.13) — (3.16) and obtain the
following corresponding results for two equal and parallel Griffith cracks; a, < |x2| <
a;,x, =0, —<x,<0:

_ BoM?2(1-1?)ya; P; ( _E ) -
K= -2t [(1-E oy )] i=1.2 (4.6)
_ BoM*2(1-t*)Va; Pi [(E .
K= o2 (5 c*) +omMy)] i=1.2 4.7)
Where
M, = pw’a® /u,

Bo is known constant and

F=F G Ja—= c2)),
E=E (g,‘/(1 — CZ))

are the complete elliptical integrals of first and second kind respectively. The above
results agree with the known results'*!7, for two equal parallel coplanar Griffith cracks
b< || <a, x=0,-o0< x<x, when we interchange the values for P, and P,

and change the values of a, to a, a, to b and ¢ to G — y}. This serves as a check on

our analysis presented here.
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la.a)

la.p)

Fig. 1. Section of the two equal circular cracks in the x, - x, plane.
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