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ABSTRACT

With the exponential increasing of networked system & networked application, the demand of effective network
security is increasing day by day. Cryptology is the science and study of systems for secret communication. Cryptology
is the combination of two complementary fields of study: Cryptography and Cryptanalysis. In this paper, we propose
a cryptanalysis method based on Tabu Search to break knapsack cipher. We will also compare and analyze the
performance of proposed algorithm on a knapsack cipher with that of Genetic Algorithm. The experimental results
shows that our proposed algorithm using Tabu Search is better than that of genetic algorithm based method.
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1. INTRODUCTION

The demand for effective internet security is increasing exponentially day by day. Businesses have an
obligation to protect sensitive data from loss or theft. Such sensitive data can be potentially damaging if
it is altered, destroyed, or if it falls into the wrong hands. So they need to develop a scheme that guarantees
to protect the information from the attacker. Cryptology is at the heart of providing such guarantee. The
basic aim of Cryptography is to allow the intended recipients of a message to receive the message properly
while preventing eavesdroppers from understanding the message. Cryptology is the science of building
and analyzing different encryption and decryption methods. Cryptology consists of two subfields;
Cryptography [6, 7] and Cryptanalysis [9]. Cryptography is the science of building new powerful and
efficient encryption and decryption methods. Cryptanalysis is the science and study of method of breaking
cryptographic techniques i.e. ciphers. In other words it can be described as the process of searching for
flaws or oversights in the design of ciphers. In our paper we have performed cryptanalysis of Knapsack
cipher using tabu search [13]. The results are compared with that of using genetic algorithm [5]. The rest
of this paper is organized as follows: Section 2 consists of related work, Section 3, 3.1 and 3.2 deals with
the overview of Knapsack cipher, genetic algorithm and tabu search respectively, section 3.3 represents
the proposed algorithm, section 4 gives the experimental results with their analysis and Section 5 is the
conclusion of the paper.

2. RELATED WORK

The cryptanalysis of Knapsack Cipher has many methods for decryption of cipher data. Cryptanalysis of
knapsack ciphers using genetic algorithms in paper [4] considers the genetic algorithm simply as a possibility
for the cryptanalysis of knapsack ciphers. The paper introduces genetic algorithms using binary chromosomes.
The applicable process of selection, mating and mutation are described. The representation used here is of
binary chromosomes, which represent the summation terms of the knapsack, i.e., a1 in the chromosomes

* Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India, Email: tamoghna.iiests@gmail.com

** Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India, Email: malay@cs.iiests.ac.in



8296 Tamoghna Mandal and Malay Kule

indicates that the term should be included when calculating the knapsack sum. The evaluation function is
determined once a representation scheme is selected. Here the function measures how close a given sum of
terms is to the target sum of the knapsack. Function range between 0 and 1, with 1 indicating an exact
match. Chromosomes that produce a sum greater than the target should have a lower fitness, in general,
than those that produce a sum less than the target.

An Enhanced Cryptanalytic Attack on Knapsack Cipher Using Genetic Algorithm in paper [3] represents
how genetic algorithm can be applied to Markel-Hellman Knapsack cipher. This is a meta-heuristic approach
for the cryptanalysis of Knapsack cipher. The genetic algorithm used involves following steps like encoding,
initialization, evaluation, selection, crossover and mutation. During encoding each character is converted into
ASCII code. During initialization a random population of chromosomes is generated. During evaluation a
fitness function is used to calculate the fitness of each chromosome. Then the best fit chromosomes are
selected using any selection algorithm (rank selection, roulette wheel). Then crossover and mutation is applied
on the newly selected population. This process is continued until the value of the fitness calculated is 1. When
this happens for a particular chromosome this is the required ASCII code of the plain text. In order to improve
the efficiency of genetic algorithm attack on knapsack cipher, the previously published attack was enhanced
and reimplemented with variation of initial assumptions and results are compared with Spillman’s [4] results.
Supravo Palit et al [1] used binaryfirefly algorithm in cryptanalysis of Knapsack cipher. Saptarshi Neil Sinha
et al [2] proposed a cryptanalytic attack on Knapsack cipher using differential evolution algorithm.

In this work we are trying to get improved methods which will take minimum iteration for finding
desired output. Here we are using two methods Genetic Algorithm and Tabu Search methods for the same
knapsack cipher.

3. KNAPSACK CIPHER

One of first knapsack cipher [2, 3] was proposed by Markle and Hellman in 1975 which utilized a NP-
complete problem for its security. The knapsack problem is formulated as follows. Let us assume the
values M1, M2………..,Mn and the sum S are given. Let it be necessary to compute values b1, b2,.…..,bn
values, so that S = M1b1 + M2b2……… + Mnbn . The values of coefficient bi can be equal 0 or 1. The 1
value shows that object will fit into the knapsack, 0 values will not in the knapsack. The Markle-Hellman
knapsack cipher encrypts a message as a knapsack problem. The plaintext block transforms into binary
string (the length of block is equal number of elements in knapsack sequence). One value determines that
an element will be in target sum. This sum is the ciphertext. Table 1 shows an example of solving the
knapsack problem for the entry numbers sequence: 1, 3, 6, 13, 27 and 52.

The public/private key aspect of this approach lies in the fact that there are actually two different
knapsack problems – referred to as the easy Knapsack and hard knapsack. The Markle-Hellman [2] algorithm
is based on this property. The private key is a sequence of number for a superincreasing knapsack problem.
The public key is a sequence of number for a normal knapsack problem with the same solution. Easy
knapsacks have a sequence of numbers that are superincreasing - that is, each number is greater than the
sum of previous numbers:

Table 1
Example of Knapsack Encryption

Plain text Knapsack Sequence Cipher text

1 1 1 0 0 1 1 3 6 13 27 52 1+3+6+52= 62

0 1 0 1 1 0 1 3 6 13 27 52 3+13+27= 43

0 0 1 1 0 1 1 3 6 13 27 52 6+13+52= 71
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(where a
i
 is i-th element of the sequence). For example {1, 3, 6, 13, 27, 52} is a superincreasing sequence

but {1, 3, 4, 9, 15, 25} is not. The knapsack solution with the superincreasing sequence proceeds as follows.
The target sum is compared with a greatest number in the sequence. If the target sum is smaller, than this
number, the knapsack will not fill, otherwise it will. Then the smaller element is subtracted from the target
sum, and the result of the subtraction, is compared with next element. Such operation is done until the
smallest number of sequence is reached. If the target sum is reduced to 0 value, then solution exists. In
other case solution doesn’t exist. For example, consider a total knapsack target sum is 70 and the sequence
of weights of {2, 3, 6, 13, 27, and 52}. The largest weight, 52, is less than 70, so 52 are in the knapsack,
Subtracting 52 from 70 leaves 18. The next number 27 is greater than 18, so 27 is not in the knapsack. The
next weight 13 is less than 18, so 13 is in the knapsack. Subtracting 13 from 18 leaves 5. The next weight,
6, is greater than 5, so 6 are not in the knapsack. Continuing this process will show that both 2 and 3 are in
the knapsack and the total weight is brought to 0, which indicates that a solution has been found. The
plaintext that resulted from a ciphertext value of 70 would be 110101. The superincreasing knapsack is
easy to decode, which means that it does not protect the data. Anyone can recover the bit pattern from the
target sum for a superincreasing knapsack if the elements of the superincreasing knapsack are known.

Merkle and Hellman suggested that such a simple knapsack be converted into a trapdoor knapsack
which is difficult to break. The algorithm [2, 3] work as follows:

1. Select a simple knapsack sequence. Elements make a superincreasing sequence

A��= ( a
1
� + a

2
� + …………. + a

n
�)

2. Select an integer value m greater than sum of all elements of superincreasing sequence.

3. Select another inter w that the gcd(m, w) = 1, that is number m and w are reciprocally prime.

4. Find the inverse of the w mod m = �-1

5. Construct the hard knapsack sequence A = wA� mod m i.e. a
i 
= w� a

i
 mod m

The trapdoor sequence A could be published as a public key (encryption key). The private (secret) key
for this cipher consists of a simple knapsack sequence A�, so-called trapdoor, values m, w, w-1.

The encoding is done as follows. The message divides into n bits block (each block contains as many
element as simple knapsack sequence). Values in the message block shows that the element will be in the
target sum. The target sum of each block is ciphertext. The decoding consists of the following. Each number
of the cipher text is multiplied through �-1 mod m and the result of this operation is the plaintext.

3.1. Genetic Algorithm

In a genetic algorithm [5], a population of strings (called chromosomes or the genotype of the genome),
which encode candidate solutions (called individuals, creatures, or phenotypes) to an optimization problem,
evolves toward bettersolutions. Traditionally, solutions are represented in binary as strings of 0s and 1s ,
but other encodings are also possible. The evolution usually starts from a population of randomly generated
individuals and happens in generations. In each generation, the fitness of every individual in the population
is evaluated, multiple individuals are stochastically selected from the current population (based on their
fitness), and modified (recombined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when
either a maximum number of generations has been produced, or a satisfactory fitness level has been reached
for the population. If the algorithm has terminated due to a maximum number of generations, a satisfactory
solution may or may not have been reached.
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A typical genetic algorithm requires a genetic representation of the solution domain and a fitness function
to evaluate the solution domain.In paper [3] and [4] the authors used genetic algorithm for cryptanalysis of
knapsack cipher.

3.2. Tabu Search

The basic concept of Tabu Search [13] as described by Glover (1993) is a meta-heuristic superimposed on
another heuristic. The overall approach is to avoid entrainment in cycles by forbidding or penalizing moves
which take the solution, in the next iteration, to points in the solution space previously visited (hence
‘tabu’). The Tabu method was partly motivated by the observation that human behavior appears to operate
with a random element that leads to inconsistent behavior given similar circumstances. As Glover points
out, the resulting tendency to deviate from a charted course might be regretted as a source of error but can
also prove to be source of gain. The Tabu method operates in this way with the exception that new courses
are not chosen randomly. Instead the Tabu search proceeds according to the supposition that there is no
point in accepting a new (poor) solution unless it is to avoid a path already investigated. This ensures new
regions of a problems solution space will be investigated in with the goal of avoiding local minima and
ultimately finding the desired solution.

The Tabu Search begins by marching to local minima. To avoid retracing the steps used the method
records recent moves in one or more Tabu lists. The original intent of the list was not to prevent a previous
move from being repeated, but rather to ensure it was not reversed. The Tabu lists are historical in nature
and form the Tabu search memory. The role of the memory can change as the algorithm proceeds. At
initialization the goal is make a coarse examination of the solution space, known as ‘diversification’, but as
candidate locations are identified the search is more focused to produce local optimal solutions in a process
of ‘intensification’.

As we just mentioned, TS is an extension of classical LS methods. In fact, basic TS can be seen as
simply the combination of LS with short-term memories. It follows that the two first basic elements of any
TS heuristic are the definition of its search space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible solutions that can be
considered (visited) during the search. It is also important to note that it is not always a good idea to restrict
the search space to feasible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable. Closely linked to the definition of the search space is that of the neighborhood structure. At each
iteration of LS or TS, the local transformations that can be applied to the current solution, denoted S, define
a set of neighboring solutions in the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is
a subset of the search space defined by:

N(S) = {solutions obtained by applying a single local transformation to S}.

Tabus are one of the distinctive elements of TS when compared to LS. As we already mentioned, tabus
are used to prevent cycling when moving away from local optima through non-improving moves. The key
realization here is that when this situation occurs, something needs to be done to prevent the search from
tracing back its steps to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. Tabus are also useful to help the search move away from previously
visited portions of the search space and thus perform more extensive exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually only a fixed and fairly
limited quantity of information is recorded. In any given context, there are several possibilities regarding
the specific information that is recorded. One could record complete solutions, but this requires a lot of
storage and makes it expensive to check whether a potential move is tabu or not; it is therefore seldom
used. The most commonly used tabus involve recording the last few transformations performed on the
current solution and prohibiting reverse transformations.
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3.3. The Proposed Method

3.3.1. Fitness Function (Cost)

Fitness (cost) = 1-((|Target-Sum|/Target) ^0.5)          if (Sum<=Target)

Fitness(cost) =1-((|Target-Sum|/MaxDiff)^0.167) if (Sum > Target)

Let M = {m
1
, m

2
 ,……. ,m

n
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 € {0, 1} be an arbitrary solution and the public key

A = (a
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n
), Sum = 1 ,n
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FullSum = 1
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Target = Cipher text,

MaxDiff = max {Target, FullSum – Target}

3.3.2. Proposed Algorithm

The proposed algorithm for Cryptanalysis based on Tabu Search for Knapsack Cryptosystem is represented
in a simple way in Figure 1.

The alphabets are represented as strings of 0’s and 1’s by considering their ASCII values. In detail the
proposed algorithm is described as follows:

1. The inputs to the algorithm are the known (intercepted) ciphertext, key size, P.

2. Set the size of the tabu list S_TABU, and S_POSS, the size of the possibilities list. Initialize the
tabu list with a list of random and distinct key (Binary Strings of 0’s & 1’s) and calculate the cost
associated with each of the key in the tabu list.

Figure1: Cryptanalysis using Tabu Search
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3. While cost !=1 , do

(a) Find the best key in the tabu list which has the highest cost associated with it.

Call this key KBEST.

(b) For j = 1………, S_TABU, do

i. Choose n1, n2 � [1, P] n1 � n2.

ii. Create a possible new key KNEW by swapping the elements n1 and n2 in KBEST.

iii. Check that KNEW is not already in the list of possibilities for this iteration or the tabu list. If it is
return to Step 3(b)i.

iv. Add KNEW to the list of possibilities for this iteration and determine its cost.

(c) From the list of possibilities for this iteration find the key with the highest cost – call this key
PBEST.

(d) From the tabu list find the key with the lowest cost – call this key TWORST.

(e) While the cost of PBEST is greater than the cost of TWORST

i. Replace TWORST with PBEST.

ii. Find the new PBEST.

iii. Find the new TWORST

4. Output the best solution (i.e., the one with the cost 1) from the tabu list.

4. RESULTS

Experimental results for the two techniques were generated with 10 runs per data point using ‘C’ language
in an Intel Core 2 Duo Processor with 2 GB of RAM. The best result for each message was averaged to
produce the data point. We are comparing each of the two techniques on the basis of two criteria: number
of iteration required and time requirement.

The first criterion is made upon the no of iteration executed to attack. These results are presented in
Table 2.And the comparison of number of iteration required for genetic algorithm and tabu search for
cryptanalysis is graphically represented in Figure 2.

The second criterion is made upon the time to execute the attack. These results are presented in Table
3.And the comparison of time requirement for genetic algorithm and tabu search for cryptanalysis is
graphically represented in Figure 3.

Table 2
Number of iterations required

Character G.A T.S

M 472.9 464.5

A 162.3 143.1

C 383.7 273.3

R 265 232.6

O 276.1 260.3

Avg 312 274.76
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Figure 2: Comparison of number of iteration required
for genetic algorithm and tabu search for cryptanalysis.

Table 3
Time to execute the attack

Character G.A T.S

M 1.8141 1.8015

A 1.2683 1.1867

C 1.8469 1.1142

R 1.0642 1.0505

O 1.3719 1.0613

Avg 1.47308 1.24284

Figure 3: Comparison of time requirement for genetic algorithm and tabu search for cryptanalysis.
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5. CONCLUSION

The paper explains cryptanalysis of the knapsack cipher using genetic algorithm and tabu search. It was
found that for the knapsack cipher tabu search has the better result from the viewpoint of cryptanalysis. In
paper [3] and [4] the authors used genetic algorithm as a tool for the cryptanalysis of Knapsack cipher. Our
paper presents a new approach for the same using tabu search. It is producing better result both from the
respect of iteration and time requirement.

It can be utilized to any highly secured environment to check the robustness of the algorithm as well as
for cryptanalysis. One possible extension for our work is the incorporation of a new fitness function for
getting better result.

REFERENCES

[1] Supravo Palit, Saptarshi Neil Sinha, Mostafiz Amin Molla, Atreyee Khanra, Malay Kule: A Cryptanalytic Attack on the
Knapsack Cryptosystem using Binary Firefly Algorithm. IEEE International Conference on Computer & Communication
Technology (ICCCT)-2011, Allahabad, India (2011) 428–432.

[2] Saptarshi Neil Sinha, Supravo Palit, Mostafiz Amin Molla, Atreyee Khanra, Malay Kule: A Cryptanalytic Attack on
Knapsack Cipher using Differential Evolution Algorithm. IEEE RAICS2011, Bangalore, Kerala, India (2011) 317–320.

[3] P. Garg, A. Shastri, and Agarwal D.C.:An enhanced cryptanalytic attack on Knapsack Cipher using Genetic
Algorithm.Proceedings of World Academy of Science, Engineering and Technology, Vol. 12 (2006) 145-148.

[4] Spillman, R: Cryptanalysis of Knapsack Ciphers Using Genetic Algorithms, Cryptologia, 17(4) (1993) 367-377.

[5] Goldberg, D.E.:Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading (1989).

[6] Behrouz A. Forouzan, Debdeep Mukhopadhay: Cryptography and Network Security,Second Edition, McGraw Hill
Education (India) Private Limited, New Delhi (2014).

[7] Atul Kahate, Cryptography and Network Security,Second Edition, Tata McGraw-Hill Publishing Company Limited,
New Delhi (2009).

[8] X.S.Yang:Firefly algorithms for multimodal optimization.Proceedings of the Stochastic Algorithms: Foundations and
Applications (SAGA ’09), Vol. 5792 of Lecture Notes in Computing Sciences, Springer, Sapporo, Japan (2009) 178–
179.

[9] Helen F. Gaines: Cryptanalysis - A Study of Ciphers and Their Solutions (1989).

[10] Lukasik, S., Zak, S.: Firefly algorithm for continuous constrained optimization task. ICCCI 2009, Lecture Notes in
Artificial Intelligence (Eds. N. T. Ngugen, R. Kowalczyk, S. M. Chen), (2009) 97-100.

[11] Poonam Garg: Genetic Algorithm & Tabu Search attack on mono alphabetic cipher.BIMC proceeding of Business
Information Management Conference -2005, (2005) 322-328.

[12] Hertz A., de Werra D.:The Tabu Search Metaheuristic: how we used it. Annals of Mathematics and Artificial Intelligence
1, (1990) 111-121.

[13] Glover, F., Taillard, E.D., de Werra, D.: A user’s guide to tabu search. Ann. Oper. Research 41, (1993) 3–28.




