A STUDY OF ANTI FUZZY SU-ALGEBRAS

Utsanee Leerawat¹ and Rattana Sukklin²

Abstract: In this paper, the notion of anti fuzzy SU-subalgebra and anti fuzzy SU-ideal in SU-algebra are established and some of their properties are investigated. Moreover, the relations between fuzzy SU-subalgebra(SU-ideal) and anti fuzzy SU-subalgebra(SU-ideal) of SU-algebras are studied.

Keywords: SU-algebras, anti fuzzy SU-subalgebra, anti fuzzy SU-ideal.

Mathematics Subject Classification: 03G25; 06F35; 08A72.

1. INTRODUCTION

R. Biswas introduced the concept of anti fuzzy subgroups of a group [1] and studied the basic properties of a group in terms of anti fuzzy subgroups. Hong and Jun [2] modified Biswas idea and applied it into BCK algebra. M. Mostafa, A.Abd-Elnaby and M.M. Yousef [3] introduced the notion of a fuzzy KU-ideals of KU-algebras and they investigated several basic properties which are related to fuzzy KU-ideals. Recently, a new algebraic structure was presented as SU-algebra and a concept of ideal in SU-algebra [4]. R. Sukklin and U. Leerawat introduced the concept of fuzzy SU-subalgebra and fuzzy SU-ideal in SU-algebra [5]. In this paper, we introduce the concept of anti fuzzy SU-subalgebras and anti fuzzy SU-ideals in SU-algebras. Moreover, we investigate some of their properties.

2. PRELIMINARIES

We give some definitions and results which are essential for the subsequent sections.

Definition 2.1: [4] A SU-algebra is a nonempty set X with a constant 0 and a binary operation "*" satisfying the following conditions:

- (1) ((x * y) (x * z)) (y * z) = 0,
- (2) x * = 0 x,
- (3) if x * y = 0 imply x = y

for all $x, y, z, \in XI$.

From now on, a binary operation "*" will denoted by juxtaposition.

Theorem 2.2: [4] Let X be a SU-algebra. Then the following results hold for all $x, y \in X$

- (1) xx = 0
- (2) xy = yx,
- (3) 0x = x,

Definition 2.3: [4] Let X be a SU-algebra. A nonempty subset I of X is called a SU-subalgebra of X if $xy \in I$ for all $x, y \in X$.

Definition 2.4: [4] Let X be a SU-algebra. A nonempty subset I of X is called an ideal of X if it satisfies the following properties:

(1) $0 \in I$,

(2) if $(xy) z \in I$ and $y \in I$ imply $xz \in I$ for all $x, y, z, \in X$.

Theorem 2.5: [4] Let X be a SU-algebra. Then X be a BCI-algebra.

Definition 2.6: [6] Let *X* be a Set. A fuzzy set μ in *X* is a function $\mu : X \rightarrow [0, 1]$.

Definition 2.7: [7] Let X be a SU-algebra and μ be a fuzzy set in X. Then the complement of μ is denoted by μ^c and defined as $\mu^c(x) = 1 - \mu(x)$ for all.

Definition 2.8: [2] Let X be a BCI-algebra. A fuzzy set μ in X is called fuzzy BCI-ideal X in.

(1) If $\mu(0) \le \mu(x)$,

(2) $\mu(x) \le \max (\mu(xy), \mu(y))$ for all $x, y \in X$

Definition 2.9: [5] Let X be a SU-algebra. A fuzzy set μ in X is called fuzzy SU-subalgebra in X.

If $\mu(xy) \ge \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 2.10: [5] Let X be a SU-algebra. A fuzzy set μ of X is called a fuzzy SU-ideal in X if it satisfies the following conditions:

$$(F_1) \ \mu(0) \ge \mu(x)$$

 $(F_2) \ \mu(xz) \ge \min\{\mu((xy)z), \ \mu(y)\}$

for all $x, y, z \in X$

Definition 2.11: Let *X* be a SU-algebra and μ be a fuzzy set of *X*. For $t \in [0, 1]$, the set $\mu_t = \{x \in X \mid \mu(x) \ge t\}$ is called a upper level subset of μ and the set $\mu^t = (x \in X \mid \mu(x) \le t\}$ is called a lower level subset of μ . Clearly $\mu_t \cup \mu^t = X$.

Theorem 2.12: [5] Let X be a SU-algebra and μ be a fuzzy set in X. Then μ_t is a SU-subalgebra in X for any $t \in [0, 1]$ and $\mu_1 \neq \phi$ if and only if μ is a fuzzy SU-subalgebra in X.

Theorem 2.13: [5] Let X be a SU-algebra and μ be a fuzzy set in X. Then μ is a fuzzy SU-subalgebra in X if and only if μ is a fuzzy SU-ideal in X.

3. ANTI FUZZY SU-SUBALGEBRAS

We first give the definition of anti fuzzy SU-subalgebra and provide some its properties.

Definition 3.1: Let X be a SU-algebra. A fuzzy set μ in X is called anti fuzzy SU-subalgebra in X if $\mu(xy) \leq \max \{\mu(x), \mu(y)\}$ for $x, y \in X$ all.

The set $Im(\mu) = (t \in [0, 1] \mid \mu(x) = t)$, for some $x \in X$ is called the image set of μ .

Example 3.2: Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined by the following:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	2 3 0 1	0

Then X is a SU-algebra[4]. Define a fuzzy set $\mu : X \rightarrow [0, 1]$ by, $\mu(0) = 0.3$, $\mu(1) = 0.6$ and $\mu(2) = \mu(3) = 0.7$. Then μ is an anti fuzzy SU-subalgebra in X.

Theorem 3.3: Let X be a SU-algebra and μ be a fuzzy set in X. Then

- (i) If μ is an anti fuzzy SU-subalgebra in *X*, then $\mu(0) \le \mu(x)$ for all $x \in X$.
- (ii) If μ is an anti fuzzy SU-subalgebra in X if and only if μ^c is an fuzzy SU-subalgebra in X.
- **Proof**: (i) Let $x \in X$ and μ be an anti fuzzy SU-subalgebra in X. Since xx = 0, then $\mu(0) \le \max \{\mu(x), \mu(x)\} = \mu(x)$. Thus $\mu(0) \le \mu(x)$.
 - (ii) Assume μ is an anti fuzzy SU-subalgebra in X. Let x, y, z, \in X.

So $\mu^c(xy) = 1 - \mu(xy) \ge 1 - \max \{\mu(x), \mu(y)\} = \min \{1 - \mu(y)\} = \min \{\mu^c(x), \mu^c(y)\}.$ Hence $\mu^c(xy) \ge \min \{\mu^c(x), \mu^c(y)\}$. Therefore μ^c is a fuzzy SU-subalgebra in *X*.

Conversely, let μ^c be a fuzzy SU-subalgebra in X. So

 $\mu(xy) = 1 - \mu^{c}(xy) \le 1 - \min\{\mu^{c}(x), \, \mu^{c}(y)\} = \max\{1 - \mu^{c}(x), \, 1 - \mu^{c}(y) = \max\{\mu(x), \, \mu(y)\}.$

Hence $\mu(xy) \le \max \{\mu(x), \mu(y)\}$. Therefore μ is an anti fuzzy SU-subalgebra in X.

Remark: If μ is a fuzzy set in SU-algebra *X*, then $\mu^t = \mu_{1-t}^c$ for all $t \in [0, 1]$.

Theorem 3.4: Let X be a SU-algebra and μ be a fuzzy set in X. Then μ^t is a SU-subalgebra in X for any $t \in [0, 1]$ and $\mu^t \neq \phi$ if and only if μ is an anti fuzzy SU-subalgebra in X.

Proof: Let μ^t be a SU-subalgebra in *X*. We have $1 - t \in [0, 1]$ and $\mu^t = \mu_{1-t}^c$. Since μ^t is a SU-subalgebra in *X*, then μ_{1-t}^c is a SU-subalgebra in *X* and $\mu_{1-t}^c = \phi$. Hence μ^c is a fuzzy SU-subalgebra in *X*. By theorem 3.3, we have μ is an anti fuzzy SU-subalgebra in *X*.

Conversely, let μ be an anti fuzzy SU-subalgebra in X. Since μ is an anti fuzzy SU-subalgebra in X, then μ^c is a fuzzy SU-subalgebra in X. We have $1 - t \in [0, 1]$ and $\mu^t = \mu_{1-t}^c$. Hence $\mu_{1-t}^c \neq \phi$ and μ_{1-t}^c is a SU-subalgebra in X. Thus is a SU-subalgebra in X.

Theorem 3.5: Let X be a SU-algebra and A be a SU-subalgebra in X. Then for any $t \in [0, 1)$, there exists an anti fuzzy SU-subalgebra μ of X, such that $\mu^t = A$.

Proof: Let A be a SU-subalgebra in X and $t \in [0, 1]$.

Define a fuzzy set $\mu : X \rightarrow [0, 1]$ by

$$\mu(x) = \begin{cases} t \text{ if } x \in A; \\ 1 \text{ if } x \notin A. \end{cases}$$

Then μ is an anti fuzzy subalgebra of X. Obviously, $\mu^t = A$.

Theorem 3.6: Let X be a SU-algebra and μ be an anti fuzzy SU-subalgebra in X. If μ^s , μ^t for some $0 \le s < t \le 1$, are lower level subsets of μ , then $\mu^s = \mu^t$ if and only if $\{x \in X \mid s < \mu(x) \le t\} = \phi$.

Proof: Let μ^s , μ^t be lower level SU-subalgebra of μ such that $\mu^s = \mu^t$ for some $0 \le s < t \le 1$.

Suppose $\{x \in X \mid s < \mu(x) \le t\} = \phi$. There exists $y \in X$ such that $s < \mu(y) \le t$, then $y \in \mu^t$ but $y \notin \mu^s$. Hence $\mu^s \neq \mu^t$, which is contradiction. Conversely, let $\{x \in X \mid s < \mu(x) \le t\} = \phi$. It is obvious that $\mu^s \subseteq \mu^t$. If $x \in \mu^t$ we have $\mu(x) \le t$. Since $\{x \in X \mid s < \mu(x) \le t\} = \phi$, we have $\mu(x) \le s$, then $x \in \mu^s$ thus $\mu^t \subseteq \mu^s$. Therefore $\mu^s = \mu^t$.

Remark: If $t_1 = \mu(0)$, then μ^{t_1} is the smallest lower level subset of μ . Hence we have $\mu^{t_1} \subset \mu^{t_2} \subset \mu^{t_3} \subset \dots = X$, where $\operatorname{Im}(\mu) = (t, t_2, \dots, t_n)$ with $t_1 < t_2 < t_3 < \dots t_n$, and *n* is positive integers. Note that in Example 3.2, if $t_1 = 0.3$, $t_2 = 0.6$, and $t_3 = 0.7$, then

 $\mu^{t_1} \subseteq \mu^{t_2} \subseteq \mu^{t_3} = X$. Let $\beta \in [0, 1]$ be such that $\mu(0) \leq \beta$ and $\beta \notin \text{Im}(\mu)$. If $t_1 < \beta t_{i+1}$, then $\{x \in X \mid t_i < \mu(x) \leq \beta\}$. By Theorem 3.6, then $\mu^{t_i} = \mu^{\beta}$. If $t_n < \beta$, then $\mu^{t_n} \subseteq \mu^{\beta}$. Since $\mu^{t_n} = X$, we have mb = X. Hence $\mu^{t_n} = \mu^{\beta}$. Therefore for any $\beta \in [0,1]$ with $\mu(0) \leq \beta$, the lower level subset μ of is one of $\mu^{t_i} \mid 1 < i \leq n\}$.

Corollary 3.7: Let X be a SU-algebra and μ be an anti fuzzy SU-subalgebra in X.

If $\text{Im}(\mu) = (t_1, t_2, ..., t_n)$ with $t_1 < t_2 < t_3 < ... < t_n$, then the set $\mu^{t_i} | 1 < i \le n$ is the set of all lower level subsets of μ .

4. ANTI FUZZY IDEALS OF SU-ALGEBRAS

In this section, we introduce the notions of anti fuzzy SU-ideal and disscuss some related properties.

Definition 4.1: Let X be a SU-algebra. A fuzzy set μ in X is called anti fuzzy SU-ideal of X if it satisfies the following conditions:

$$(AF_1) \ \mu(0) \le m(x)$$

 $(AF_2) \ \mu(xz) \le \max{\{\mu((xy)z), \ \mu(y)\}}, \text{ for all } x, y, z, \in X.$

Example 4.2: A fuzzy set μ is defined as Example 3.2, then μ be an anti fuzzy SU-ideal in *X*.

Theorem 4.3: Let *X* be a SU-algebra. If μ_1 , μ_2 are anti fuzzy SU-ideals in *X*, then \overline{u} is an anti fuzzy SU-ideal in *X*, where $\overline{u}(x) = \max{\{\mu_1(x), \mu_2(x)\}}$ for all $x \in X$.

Proof: Let μ_1 , μ_2 be anti fuzzy SU-ideals in X. Obviously, \overline{u} is fuzzy set in X.

So $\overline{u}(0) = \max\{\mu_1(0), \mu_2(0)\} \le \max\{\mu_1(x), \mu_2(x)\} = \overline{u}(x)$. Thus $\overline{u}(0) \le \overline{\mu}(x)$ for all $x \in X$.

Now we will show that $\overline{\mu}(xz) \le \max{\{\overline{\mu}((xy)z), \overline{\mu}(y)\}}$ for all $x, y, z, \in X$.

We have

$$\overline{\mu}(xz) = \max\{\mu_1(xz), \mu_2(xz)\} \le \max\{\max\{\mu_1((xy)z), \mu_1(y)\}, \max\{\mu_2((xy)z), \mu_2(y)\}\}$$

 $= \max\{\max\{\mu_1((xy)z), \mu_2((xy)z)\}, \max\{\mu_1(y), \mu_2(y)\}\} = \max\{\overline{\mu}((xy)z), \overline{\mu}(y)\}.$

Thus $\mu(xz) \le \max{\{\mu((xy)z), \mu(y)\}}$ for all $x, y, z \in X$. Therefore is an anti fuzzy SU-ideal in.

Corollary 4.4: Let X be a SU-algebra. If μ_1 , μ_2 , μ_2 ,... μ_n are anti fuzzy SU-ideals in X, then $\overline{\mu}$ is an anti fuzzy SU-ideal in X, where $\overline{\mu}(x) = \max\{\mu_1(x), \mu_2(x), \mu_2(x), \dots, \mu_n(x)\}$ for all $x \in X$ and n is positive integers.

Theorem 4.5: Let X be a SU-algebra and μ be a fuzzy set in X. Then μ is an anti fuzzy SU-ideal in X if and only if μ^c is a fuzzy SU-ideal in X.

Proof: Assume μ is an anti fuzzy SU-ideal in *X*. Let *x*, *y*, *z* \in *X*.

(i)
$$\mu^{c}(0) = 1 - \mu(0) \ge 1 - \mu(x) = \mu^{c}(x)$$

(ii) $\mu^{c}(xz) = 1 - \mu(xz) \ge 1 - \max\{\mu((xy)z), \mu(y)\} = \min\{1 - \mu((xy)z), 1 - \mu(y)\}$

= min{ $\mu^c((xy)z), \mu^c(y)$ } Hence $\mu^c(xz) \ge min{\{\mu^c((xy)z), \mu^c(y)\}\}}$. From (*i*) and (*ii*), we have μ^c is a fuzzy SU-ideal in *X*. Conversely, let μ^c be a fuzzy SU-ideal of *X*. Let *x*, *y*, *z*, $\in X$.

(iii) $\mu(0) = 1 - \mu^c(0) \le 1 - \mu^c(x) = \mu(x)$

(iv)
$$\mu(xz) = 1 - \mu^{c}(xz) \le 1 - \min\{\mu^{c}((xy)z), \mu^{c}(y)\} = \max\{1 - \mu^{c}((xy)z), 1 - \mu^{c}(y)\}$$

= max{ $\mu((xy)z), \mu(y)$ }. Hence $\mu(xz) \le \max{\{\mu((xy)z), \mu(y)\}}$. From (*iii*) and (*iv*), we have μ is an anti fuzzy SU-ideal in *X*.

Theorem 4.6: Let X be a SU-algebra and μ be a fuzzy set in X. Then μ^t is a SU-ideal in X for $t \in [0, 1]$ and $\mu^t \neq \phi$ any and if and only if μ is an anti fuzzy SU-ideal in X.

Proof: The proof is similar to the proof of Theorem 3.4.

Theorem 4.7: Let *X* be a SU-algebra and *A* be a SU-ideal in *X*. Then for any $t \in [0, 1)$, there exists an anti fuzzy SU-ideal of μ of *X*, such that $\mu^t = A$.

Proof: The proof is similar to the proof of Theorem 3.5.

Theorem 4.8: Let X be a SU-algebra and μ be an anti fuzzy SU-ideal in X. If $\mu^s = \mu^t$, for some $0 \le s < t \le 1$, are lower level subsets of μ , then $\mu^s = \mu^t$ if and only if $\{x \in X \mid s < \mu(x) \le t\} = \phi$.

Proof: The proof is similar to the proof of Theorem 3.6.

Theorem 4.9: Let X be a SU-algebra and μ , be a fuzzy set in X. Then μ is an anti fuzzy SU-subalgebra in X if and only if μ is an anti fuzzy SU-ideal in X.

Proof: If μ is an anti fuzzy SU-subalgebra in *X*, then μ^c is a fuzzy SU-subalgebra in *X*.

We have μ^c is a fuzzy SU-ideal in X. Thus μ is an anti fuzzy SU-ideal in X.

Conversely, let μ be an anti fuzzy SU-ideal in X. Then μ^c is a fuzzy SU-ideal in X.

We have μ^c is a fuzzy SU-subalgebra in X. Thus μ is an anti fuzzy SU-subalgebra in X.

Theorem 4.10: Let X be a SU-algebra and μ be a fuzzy set in X. If μ is an anti fuzzy SU-ideal in X, then μ is an anti fuzzy BCI-ideal in X.

Proof: Assume μ is an anti fuzzy SU-ideal in X. Let $x, y, \in X$. We have $\mu(0) \leq \mu(x)$. We put z = 0 in (AF_2) , we have $\mu(x) \leq \max \{\mu(xy), \mu(y)\}$. Thus μ is an anti fuzzy BCI-ideal in X.

Corollary 4.11: Let X be a SU-algebra and μ be a fuzzy set in X. If μ is an anti fuzzy SU-subalgebra in X, then μ is an anti fuzzy BCI-ideal in X.

Acknowledgements

The author are highly grateful to the referees for several useful suggestions and valuable comments. Moreover, this work was supported by a grant from Kasetsart University.

REFERENCES

- Biwas. R. Fuzzy Subgroups and Anti Fuzzy Subgroups. 1990. Fuzzy Sets and System. 35: pp. 121-124.
- Hong S.M. and Y.B. Jun. 1998. Anti Fuzzy Ideals in BCK-Algebras. *Kyung Pook Math J.* 38: pp. 145-150.
- [3] Samy M. Mostafa Mokhtar, A.Abd-Elnaby and Mouustafa M.M. Yousef. 2011. Fuzzy KU-ideals of KU-Algebras. *International Mathematical Forum*. **6**: pp. 3139-3149.
- [4] Keawrahun. S.and U. Leerawat. 2011. On Classification of a Structure Algebra : SU-Algebras. Scientia Magna Journal. 7: pp. 69-76.
- [5] Sukklin.R and U.Leerawat. Fuzzy SU-Subalgebras and Fuzzy SU-ideals. 2013. Far East Journal of Mathematical Sciences. 74: pp. 191-200.
- [6] Zadeh. L.A. 1965. Fuzzy Sets. Inform and Control. 8: pp. 338-353.
- [7] Kim. K.M., Y.B. Jun and Y.H. Yon. 2005. On Anti Fuzzy Ideals in Near-Rings. Iranian Journal of Fuzzy Systems. 2: pp. 71-80.

Utsanee Leerawat¹ and Rattana Sukklin²

Department of Mathematics Kasetsart University, Bangkok, Thailand *E-mails: fsciutl@ku.ac.th*