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1. INTRODUCTION

There are many research directions were the theory of fractals occupies a significant part: plasma physics,
turbulence, porous media, biological systems, image compression, data traffic, financial markets,
neuroscience, etc. Theoretical concepts such as deterministic and random fractals, multifractal measures,
fractal dimensions, singularity spectra and fractional analysis play an important role in the present-day
development of mathematics and natural science (see, for example, [2, 5, 7, 8, 18, 19, 20, 31]).

Smooth lines, surfaces and polyhedrons are usually not regarded as fractals. Specific for fractals is
some irregularity which cannot be described properly by the concepts of traditional geometry. Fractals
reveal a fine structure with details on several smaller resolution-distances or scales. On these scales sometimes
a self similarity is present, this may exist only approximately or in a random sense. Real examples of
fractals are fronds of the fern, cloud boundaries, coastlines, Brownian motion of particles in a liquid, the
surface of the human brain cortex, or fMRI time series measuring brain activity. There is no strict
mathematical definition separating a fractal from a non-fractal [7], accordingly the quantification of the
degree of fractality, the fractal dimension, can be applied also to smooth geometric objects. But for non-
fractals usually traditional geometry with minor numerical expenditure is equally informative.

The main property of a fractal is its fractal dimension, which is typically non-integer in contrast to the
traditional topological dimension. For instance, the fractal dimension of the Cantor set on the real line is
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0.63, while its topological dimension is 0. The topological dimension of the Sierpinski carpet on the plane
and the Menger sponge in space is equal to 1, but their fractal dimensions are equal to 1.58 and 2.73,
respectively. The concept of dimension, and of a fractal dimension in particular, is not trivial. Like in case
of the fractal, the fractal dimension is not defined uniquely, there exist many non equivalent definitions [3].
However a list of characteristic properties of a fractal dimension can be given [7, 26]. A fractal dimension
FD

 
(F) � � of a set F has at least the following properties:

1. motion invariance: FD
 
(

 
f

 
(F)) = FD

 
(F), if f is a translation or a rotation

2. scale invariance: FD
 
(

 
f

 
(F)) = FD

 
(F), if f is a similarity or an affine transformation

3. monotony: if E � G, then FD
 
(E) � FD

 
(G)

4. maximum property: FD
 
(E � G) = max

 
{FD

 
(E), FD

 
(G)}

5. extension of topological dimension: If M is a smooth m-dimensional manifold (curve, surface, etc.),
then FD

 
(M) = m.

Fractal dimension characterizes the irregularity or complexity of the whole set under investigation and
is governed by the most complex area of the set because of property 4. A refinement of the concept of a
fractal is the multifractal. There the degree of irregularity in the object under consideration changes locally.
Real examples are the energy dissipation in turbulent flows or the mass distribution of gold on earth. To
quantify multifractality of e.g. a time series, a local measure of the singularity behavior of the series (the
Holder exponent �) is introduced. The value of the singularity spectrum f

 
(�) quanties the FD of the time

points which correspond to � [7].

The analytical definitions of FDs and the spectrum use a limit for “scale � 0" assuming that the set is
known for arbitrary fine detail. Real data with “scale > 0” need often sophisticated numerical methods to
approximate FD or the spectrum which may pose restrictions to their applicability. For instance, the numerical
calculation of the frequently used box counting dimension is based on a linear regression of a log-log plot.
For self-similar irregular data this plot is approximately linear, however there exist fractals without this
property [26]. Numerical analysis of fractal and multifractal structures, and, the estimation of their fractal
dimensions or spectra is a significant research problem. In spite of the variety of developed numerical
methods (see, for example, [7, 29]) the problem of their validity remains topical.

In the following we present a unifying discussion of basic concepts and introduce software with examples.
The software is available on the internet, see [35], and shall encourage the researchers in different applied
disciplines to make use of methods quantifying complexity. Our algorithms were developed through several
years of research on fractal dimensions, see, for example, [10, 11, 16, 22, 23, 24, 26, 27, 28].

2. DESCRIPTION OF NUMERICAL METHODS

In 1919 Felix Hausdorff presented his concept of dimension [13]. The Hausdorff dimension of a bounded
set A � Rn is defined as a (unique) real number

dim
H 

A = sup
 
{d : S

d 
(A) = �} = inf

 
{d : S

d 
(A) = 0},

where

0
( ) lim inf [diam( )]d

d i
i

S A B
� �

� ,

and infimum in the last equality is taken over all collections of open balls {B
i
} in Rn with diameters not

greater than � whose union covers A. For numerical analysis it is hard to use this definition directly. That is
why many other concepts and specific computational methods where proposed to study fractal properties
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of sets. One of the approaches that enable us to measure fractal dimension is connected with the concept of
the box(-counting) dimension and the box-counting method.

Below we describe a few estimators of the generalized dimensions (Rényi dimensions), including
box-counting, information and correlation dimensions.

2.1 Box-Counting Method and its Modifications

According to [7] p. 41, the definition of box dimension “goes back at least to the 1930s and it has been
variously termed Kolmogorov entropy, entropy dimension, capacity dimension (a term best avoided in
view of potential theoretic associations), metric dimension, logarithmic density and information dimension”.

Definition of box dimension: If a bounded set A is a subset of Rn, then the box dimension is defined as
a limit (assuming its existence)

*

0

ln ( )
dim lim

lnB

N
A

� �

�
�

� � , (1)

where N
*
(�) is the smallest number of sets of diameter � which can cover A. It can be shown that

0 � dim
H 

A � dim
B 

A � n,

and

0

ln vol( )
dim lim

lnB

A
A n �

��
� �

�
, (2)

where vol
 
(A�) is the n-dimensional volume of the �-neighborhood

A� = {x � Rn : |
 
x – y | � � for some y � A}.

The quantity (2) also is often called Minkowski or Minkowski-Bouligand dimension (see details in [7],
p. 46).

Obviously, direct usage of (1) for numerical estimation of box dimension is meaningless. Consider
n-dimensional cube A with volume V = X n and assume that X

 
/� is integer. Then N

*
(�) = (X

 
/�)n and (1) gives

the following “approximation” r of dim
B 

A = n:

ln ln
1

ln ln

X V
r n n

� �
� � � �� �� �� �

.

So, the value r is strongly dependent on the size of the set and it can not be used as a reliable approximation
of dimension n. This simple consideration brings to conclusion, that to estimate dimension we ought to
compute N

*
(�) for several values of �.

Two-scale box counting dimensions: In what follows, we assume that the inclusive n-dimensional
space is represented as a union of disjoint n-dimensional cubes (boxes) of size �, and we can count number
N

 
(�) of all cubes, which contain points of the set A. Informally, the statement “the box-counting dimension

of the fractal A is equal to d” means that the ‘d-dimensional volume’ V of the bounded set A is finite,
non-zero and can be approximated by

V � �d N
 
(�), (3)

at least for small �. If we know N
 
(�

1
) and N

 
(�

2
) for two different ‘scales’ �

1
, �

2
, then (3) gives us the

following estimator
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1 2
1 2

2 1

ln [ ( )/ ( )]
dim [ , ]( )

ln [ / ]B

N N
d A

� �
� � � �

� �
, (4)

while

1 2 1 2dim [ , ]( ) dim [ , ]( )
1 1 2 2( ) ( )B BA AV N N� � � �� � � � � � . (5)

A numerical method based on (4) we shall call the two-scale box-counting method. In contrast to the
value ln

 
N

 
(�)

 
/
 
|
 
ln �

 
|, the two-scale box counting method is stable with respect to the size of the set.

Extended counting method: A modification of the two-scale box counting method was proposed in
the papers [26, 27, 28]. This modification, called extended counting method, can be described in the following
way. Assume that � is the size of n-dimensional cubes of a given fine box grid. Let us fix a natural number
M (which is a parameter of the extended counting method) and consider cubes of size M� containing Mn

boxes of the fine grid. Such larger cubes will be called exploratory cubes. For an exploratory cube E by
N

E
 we denote the number of boxes of the fine grid belonging to E which contain at least one point of set A.

The value

log

log
E

E

N
d

M
�

can be interpreted as the two-scale box-counting dimension of A � E with �
1
 = � and �

2
 = M�. According to

the extended counting method dimension of A is estimated by

x
 
dim

 
[M](A) = max

 
d

E
 = 

log
max

log
EN

M
, (6)

where maximum is taken over all exploratory cubes E. One of the basic ideas underlying the extended
counting method is to reproduce the maximum property of fractal dimension:

dim
 
(A

1
 � A

2
) = max

 
{dim

 
(A

1
), dim

 
(A

2
)}.

The detailed study and applications of the extended counting method are presented in [27]. Note, that
estimator (6), called below x-dimension, depends on two parameters: size of atomic cubes � and exploratory
factor M. A fast implementation of the method is given in [26].

Conventional box-counting method and its “adjusted” modification. Similar to the two-scale method,
the conventional (multi-scale) box counting is based on relation (3):

d ln � – ln V � – ln N
 
(�). (7)

The values N
 
(�

i
) are computed for several �

i
 and then d (together with ln V ) is estimated by the method

of least squares. Typically �
i
 = �

i – 1
/2 and several tricks are known to minimize errors and computational

costs (see, for example, [14, 17, 32, 33]).

Relation (3) can be rewritten using a function c
 
(�)

V = c
 
(�)

 
�d N

 
(�), (8)

with c
 
(�) � 1 for � � 0. It seems reasonable to take c

 
(�) = exp

 
(�) with � < 0, as we assume that c

 
(�) < 1

because the ‘d-dimensional volume’ of the set should be less than the ‘d-dimensional volume’ of the covering
boxes. Then (7) transforms to

d ln � – ln V + �� = – ln
 
N

 
(�). (9)
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If N
 
(�

i
) are known for three or more different values of �, then all three parameters d, ln V and � can be

found by least squares (with constraints d > 0, V > 0, � < 0). Such a method to find box dimension d will be
called “adjusted”.

2.2 Generalized Dimensions, the Renyi Entropy, and the Multifractal Spectrum

For a set A � Rn with a probability measure P concentrated on A the generalized dimensions dim
q 
(A, P) are

defined [29] by formula

0

( )
dim ( , ) lim , ( , )

ln
q

q

S
A P q

� �

�
� � �� ��

�
, (10)

if the limit exists. Here

1

1

( ) ln ( ) , 1
q

q
q i

i

S p q
�

� �
� �� �� � � �� �� �� �� �
� �
� , (11)

is the Renyi entropy of a discrete distribution with probabilities p
i
(�) and

1( ) ( ) ln ( )i i
i

S p p� � � � �� , (12)

is the well-known entropy that can be obtained from (11) as q � 1. The sums in (11) and (12) are taken
over a lattice of disjoint n-dimensional cubes U

i
� of size �, and p

i 
(�) is a simplied notation for P

 
(U

i
�),

�i
 p

i 
(�) = 1.

It can be shown using the Jensen’s inequality that the Renyi entropy S
q
 and the generalized dimension

D
q
 = dim

q 
(A, P) are nonincreasing functions with respect to q,

S� � S
q
 � S

q� � S
– �, D� � D

q
 � D

q� � D
– �, for q > q�, (13)

and S
q
 = S

q� for q � q� if and only if the discrete distribution p is uniform. The value S� in (13) is called
min-entropy (or the Chebyshev entropy), S� = min

i 
[– ln p

i 
(�)] = – ln max

i 
p

i 
(�), S

0
 is called Hartley’s

entropy, S
1
 is called the Kolmogorov entropy, and S

– � = max
i 
[–

 
ln p

i 
(�)] = –

 
ln min

i 
p

i 
(�).

Box dimension corresponds to q = 0, and for q = 1, 2 the generalized dimensions are called information
and correlation dimensions, respectively:

1 0

max ( ) ln ( )
dim ( , ) lim

ln

i ii
p p

A P
� �

� � �
�

�
�

, (14)

2

2 0

max ( )
dim ( , ) lim

ln

ii
p

A P
� �

� �
�

�
�

. (15)

Correlation dimension D
2
 is associated with the probability P

2
(�) that the distance between two points

sampled from A according to P is smaller than �:

22
2 2

1
( ) lim ( , ) ( ) ~ D

i
N

i

P f N p
N���

� � � � � �� .

The second term in this relation, where f
 
(�, N) is the number of pairs (from a set of N points) with

distance smaller than �, is called correlation integral [9].
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Numerical estimation of generalized dimensions. As we discussed before, the formal definitions are
not used directly for numerical estimation. Let i be a number of a cube of �-lattice, and assume now that we
know which ‘part’ p

i 
(�) � [0, 1] of the set A is contained in this cube, while � p

i 
(�) = 1 for the sum over all

disjoint cubes. Instead of d-dimensional volume (3) now we consider

1

1

( ) , 1
q

d q
q i

i

V p q
�� �� � � �� �� �

� , (16)

� �1 exp ( ) ln ( )d
i i

i

V p p� � � � �� . (17)

(Note, that for an “ordinary” set A � Rn with volume V and uniform probability distribution P on A we
have V

q
 = V for all q.) Then the analog of (4) gives the following two-scale estimators for the generalized

dimensions dim
q 
(A, P).

1 2

1 2

ln ( ) ( )1
, 1

1 ln [ / ]

q q
i ii i

p p
d q

q

� �� �� �� �
� � �

� �
, (18)

1 1 2 21 1

1 2

( ) ln ( ) ( ) ln ( )
, ( 1)

ln [ / ]

i i i ii i
p p p p

d q� �
� � � � �

� �
� �

� �
. (19)

Obviously, the generalized dimensions can be found by least squares from (7) and (9), where N
 
(�)

should be substituted by exp
 
(S

q 
(�)).

Multifractals. If generalized dimensions dim
q 
(A, P) are equal for all q, then the set A (with measure P)

is called monofractal. The concept of multifractal (or singularity) spectrum f
 
(�) is used in so-called

multifractal analysis (see, for example, [7, 29]). For self-similar multifractals (see [7], p. 288) a specific
value f

 
(�) of the multifractal spectrum at point � for a measure P in Rn, n � 2, is the Hausdorff dimension

of the set of points x � Rn with local dimension (or Hölder exponent) equal to �. The Hölder exponent is
defined by

0

log ( ( , ))
lim

logr

P B x r

r�
� � ,

where B
 
(x, r) denotes the open ball of radius r centered in x. The generalized dimensions are connected

with the multifractal spectrum f
 
(�):

f
 
(�

 
(q)) = �

 
(q) + q�

 
(q), (20)

where function �
 
(q) satisfies

( ) ( )
d

q q
dq

� � � � , (21)

or

[ ( )] 0
d

q f
d
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�

,

df
q

d
�

�
,

and the values

�
 
(q) = (1 – q)

 
D

q
 = f

 
(�

 
(q)) – q�

 
(q),
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are called mass exponents. Equations (20), (21) represent a Legendre transform from the variables q and �
to the variables � and f. Singularity spectrum f

 
(�) is a concave function for a self-similar multifractal with

max� f 
(�) = D

0
; see, for example, [12].

3. A BRIEF DESCRIPTION OF THE SOFTWARE WITH EXAMPLES OF NUMERICAL EXPERIMENTS

In [35] we collected software (MS Windows executables) to estimate fractal dimension for specific classes
of time series, surfaces, and general sets in 2D and 3D spaces. Below we present a list of programs that can
be downloaded from [35] with a brief description. For multifractals we refer to software from [35, 36, 37].

3.1 Dimension Estimators for Time Series

Program xDim_ts is destined to estimate fractal dimension of a time series by the extended counting
method [26, 27, 28]. Here we realized method X2 with scaling factor 1 and exploratory factor equal to the
length of time series divided by 10, see a detailed description of the algorithm in [22]. In program vDim_ts
the variance counting method is realized. This is a simple (two-scale) and fast method based on analysis of
variances of the time series increments for the smallest step and the step twice larger. The method is
appropriate to estimate Hausdorff dimension for some types of random processes (in particular, Gaussian
processes with stationary increments). A study and a few applications of the variance counting method are
presented in [23]. About comparison of these two methods realized in programs xDim_ts and vDim_ts see
[22]. The programs are easy to use and they don’t need any subsidiary input parameters. Computing time
for program xDim_ts can be considerably larger than for vDim_ts, particularly if the studied sample is
large. Additional examples of time series with dimensions 1.1, 1.3, 1.5, 1.7, 1.9 are included in the
downloaded zip-file, see Fig. 1. These time series are realizations of the fractional Brownian motion and
they can be used to test the programs. A program to simulate realizations of the fractional Brownian motion
can be downloaded, as well.

3.2 Estimation of Multifractal Spectra

In a comparative study by Turiel et al., [34] multifractal time series, s
 
(t), t � T � R+, are analyzed by four

different numerical methods. Benchmark tests favour the gradient modulus wavelet projection method
(GMWP). Corresponding software can be downloaded from Turiel’s web page [36]. Another source of
convenient software can be found on the web page [37]. The GMWP for time series is described in the
following: In this method for the derivative �s

 
(i) = s

 
(i + 1) – s

 
(i) of signal s, wavelet projections

( ) ( ) ( ) /t
r r rs t d s r� �� � � � ��  for different scales r are calculated. The local Holder exponents �

 
(t)

can then be estimated by a linear regression of the log-log plot of s � �
r 
(t) ~ r �(t) for different scales r at

every time point t. As analyzing wavelet � the positive Lorentz function �(t) ~ 1/(1 + [t/r]2)�, for � = 0.5 is
applied. Positive wavelets allow smaller r, because the minimal resolution of a wavelet projection is restricted
by the number of zero-crossings of the wavelet. The singularity spectrum f

 
(�) is estimated finally by the

histogram method [7], f
 
(�) = 1 – log

 
(�

 
(�)

 
/
 
max� 

�
 
(�)

 
/
 
log

 
(min r), where �

 
(�) is the frequency histogram

of the set {�
 
(t)

 
| t � T }. As an example of a GMWP application, in Fig. 2 for two mice the EEG time series

are presented: left panel (A) for a normal mouse, right panel (B) for a genetically modified knock out
mouse type with epileptic spikes and a higher noise level. The calculated singularity spectra f

 
(�) are

presented in panels (C)-(D). For the normal mouse (C) the range of the Holder exponents is roughly [0.7, 0.9],
while for the knock out mouse the range is [0.6, 0.95]. The spectrum (indicating for fixed � the fractal
dimension of the corresponding set of time points) has for the knock out mouse a distinct shoulder for
low �. Low � corresponds to high spikes, the low dimensions of the shoulder to the fact that high spikes are
often isolated. Another example for an application of fractal concepts to such data can be found in [24].
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Figure 1: Realizations of the Fractional Brownian Motion with Dimensions 1.1, 1.3 (Two Upper Diagrams),
1.5 (Conventional Brownian Motion is in the Middle), 1.7 and 1.9 (Two Lower Diagrams)
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3.3 Measuring Fractal Dimension of Random Surfaces

Several estimates can be computed by program get-vDim-2D to measure fractal dimension of a random
field on the plane (i.e. dimension of its graph in 3D space). The estimates are versions of the variance
counting method described in [24] and they depend on two input parameters. Two ASCII files are included
to test the program. The files contain realizations of random fields with dimensions 2.5 (a specific isotropic
Gaussian moving average field) and 2.75 (fractional Brownian motion). In addition, programs to simulate
realizations of the isotropic Gaussian moving average field, the fractional Brownian motion and sheet can
be downloaded.

Remark 1: To simulate the fractional Brownian motion and sheet we used a conventional algorithm
for Gaussian distributions based on the Cholesky decomposition of the correlation matrix. This method is
exact, but it is slow and storage-consuming for comparatively large samples. About other simulation
algorithms for the fractional Brownian processes and fields see, for example, [21, 25, 30].

Remark 2: Variance counting method from [22, 23, 24] is a simplified (two-scale) variant of a general
approach developed for some classes of random processes and fields, see [4, 5, 6, 15] and references
therein.

3.4 Estimation of fractal Dimension for Sets on the plane and in space

To estimate fractal dimensions of sets on the plane we propose to use several programs: 012-dim_2D,
xdim_2D, gen-dim-tab_2D, gendim2D. Twoscale methods are realized in programs 012-dim_2D and
gen-dim-tab_2D to compute the generalized dimensions, including box, information and correlation
dimensions. Program xdim_2D can be used to estimate the fractal dimension by the extended counting
method, and program gendim2D is aimed to compute the generalized dimensions by least squares (including
adjusted modifications). Formally, program gendim2D covers possibilities of “two-scale” programs
012-dim_2D and gen-dim-tab_2D, but it may turn out to be less convenient in some cases. Several 2D
fractal sets (the Sierpinski carpet and its stochastic modifications, the Cantor dust, the fractal percolation
model, the Henon attractor) can be simulated by supplementary programs presented in [35].

Figure 2: Comparison of EEG Time Series and Their Singularity Spectra for a Normal Mouse (Panels A, C),
and for a Knock Out Mouse (Panels B, D).
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randomly chosen and claimed to be empty (i.e., they do not contain points of the set). The estimates of box,
information and correlation dimensions calculated by program gendim2D are presented in Table 1.
The estimates were obtained by least squares using boxes of size 1, 2, 4, and 8. One can see from Table 1
that adjusted estimates based on (9) are more precise. The exact values of the dimensions are equal to
ln 13/ln 4 � 1.85022 in this case (for infinite number of iterations). Results for similar numerical experiments
with K = 5, 8 and respective dimensions ln 5/ln 4 � 1.16096, ln 8/ln 4 = 1.5 show that adjusted method can
considerably improve the estimates of dimensions.

Table 1
Estimates of Box, Information and Correlation Dimensions of Three Realizations of

Stochastic Carpets (See Details in the Text)

dimension box information correlation

exact = 1.85022 (K = 13)
least squares 1.82026 1.82729 1.83319

“adjusted” least squares 1.85022 1.85032 1.85038

exact = 1.5 (K = 8)
least squares 1.41147 1.43393 1.4525

“adjusted” least squares 1.49979 1.50006 1.50011

exact = 1.16096 (K = 5)
least squares 1.04981 1.07311 1.09549

“adjusted” least squares 1.16188 1.1628 1.16406

Example 1: Let us consider a realization of stochastic carpet in Fig. 3. This realization was simulated
by six iterations as a 4096 � 4096-matrix with zero-one elements. For each iteration every non-empty
square of the previous iteration is divided into 16 smaller squares, then 16 – K

 
(K = 13) of them are

Figure 3: A Realization of a Stochastic Carpet on the Plane with Fractal Dimension 1.85022
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Example 3: A cortex surface is presented in [35] as an array of size 175 � 117 � 144 with 0 – 1 elements
(see Fig. 5). Its fractal dimension was estimated by programs x-dim3D and box-dim3D. Box dimension of
the cortex surface is equal to 2.402. The values computed by program x-dim3D are shown in Fig. 6 for
different exploratory factors and unit atomic cubes.

For sets in 3D space we propose two programs: x-dim3D to estimate fractal dimension by the extended
counting method and box-dim3D to estimate the box dimension. A fast box counting algorithm from [14]
is realized in program box-dim3D, where a cube containing a fractal set is consequently divided in 8, 82, ..., 810

boxes. This program generates a table of box dimensions by least squares for different scales and propose
an optimal estimate by a heuristic algorithm. In contrast to this realization of box-counting method, program
x-dim3D requires two input parameters (see description of the method in the previous section). Simulation
programs for the Menger sponge (3D analogue of the Sierpinski carpet) and the fractal foam are presented
in [35] as well.

Example 2: The Menger sponge (dimension log 20
 
/
 
log 3 � 2.727), simulated by 3 iterations as an

array of size 81 � 81 � 81 with 0 – 1 elements, was analyzed by programs x-dim3D and box-dim3D.
Program box-dim3D gave out value 2.764. The estimates generated by program x-dim3D are presented in
Fig. 4 for different exploratory factors (the size of atomic cubes is equal to 1).

Figure 4: Dependence of x-Dimension of the Menger sponge on the Exploratory Factor. Estimate of the Box Dimension is 2.764
(Dash Line). Exact Dimension of the Menger Sponge is Equal to 2.7268 (Dot Line)

Figure 5: Slices of a Cortex Surface
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4. NUMERICAL METHODS, PARAMETERS AND AMBIGUITIES

In the software [35] several numerical methods are implemented to estimate fractal dimensions of time
series, sets in the plane, surfaces and sets in 3D space. The computed results are strongly affected by the
choice of the numerical method and by their input parameters, examples in section 3 show this clearly. The
numerical estimation of fractal dimensions is an ambiguous problem, as there is often no “best” solution.

Let us be more specific and recall basic input parameters and methods presented in our paper and in
[36]. For the conventional box-counting method and its adjusted modification it is necessary to set parameters
J, �

1
, ..., �

J
 to solve (7) and (9) by least squares. Formally, J must be equal or larger than 2 for the box-counting

(J = 2 in case of two-scale methods) and J � 3 for the adjusted modification. Two parameters must be fixed
for the extended counting method: the size of atomic cubes �

1
 and the exploratory factor M which defines

the size �
2
 = M�

1
 of exploratory cubes, see (6). The variance counting method realized in [35] for time

series and random surfaces is a two-scale method and it is defined by two parameters, as well. Behavior of
the variance counting method depending on the parameters was studied particularly in [22, 23, 24]. In
some programs presented in [35] the basic input parameters are hidden, but in many cases they must be
fixed manually. The question, what numerical method is more convenient is a point of discussion [26].
Analytically, fractal dimension is a characterization of a set revealing only in the limit � � 0. No discrete
approximation can achieve this limit. Therefore it is hard to validate the quality of numerical algorithms
calculating fractality. A close agreement between numerical and analytical dimension may be test-set
dependent. Even simple transformations (translation, rotation) of the test-set can change numerical results
[7, 11, 26]. A trivial recommendation to remove some ambiguities: If we want to compare fractal dimensions
of different sets numerically, the same method with the same input parameters should be used for every set.
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