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AXISYMMETRIC DISTRIBUTION OF THICK
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WITH MASS DIFFUSION AND PHASE LAGS
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Abstract: The present problem is concerned with an axisymmetric problem of
thick circular plate in a viscothermoelastic diffusive body within the context of
dual-phase-lag diffusion (DPLD) and dual-phase-lag heat transfer (DPLT) models.
The lower and upper surfaces of the thick plate are traction free and are subjected
to particular types of thermal and chemical potential sources to depict the utility
of the solution obtained. The solution has been found by using Laplace and Hankel
transform technique and without using the potential functions, a direct approach
has been used. The analytical expressions of components of stresses, displacement
and chemical potential have been computed in the transformed domain. The
resulting quantities in the physical domain have been obtained by using numerical
inversion technique. Numerically simulated results have been depicted graphically.
The effect of viscosity is shown on the various physical quantities. From the present
investigation, some particular cases of results are also deduced.

Keywords: Dual phase lag, isotropic viscothermoelastic, Laplace Transform,
Hankel Transform, plane axisymmetric, diffusion.

1. INTRODUCTION

Classical Fourier heat conduction law has very short timescales and small
dimensions, due to this it implies an infinitely fast propagation of a thermal signal.
This signal is violated in ultra-fast heat conduction system. Catteno [1] and Vernotte
[2] studied a thermal wave with a single phase lag. In this, the temperature gradient

was given by ,q

q
q k T

t
after a certain elapsed time. Here �

q
 is the

relaxation time required for thermal physics to take account of hyperbolic effect

within the medium. When �
q
 > 0, the thermal wave with a finite speed of ,

q

propagates through the medium, where � is known as thermal diffusivity. The
thermal wave has an infinite speed when �

q
 approaches zero. This leads to reduction

of the single phase lag model to traditional Fourier model. Tzou [3] proposed the

dual phase lag model of heat conduction ,q t

q
q k T T

t t
 here
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�T is known as temperature gradient of the material at a point P. This corresponds
to the heat flux vector q at the t + �

q
 and k is known as thermal conductivity of the

material. Due to microstructural interactions, the delay time �
t
 is caused. This is

referred as the phase lag of temperature gradient. Whereas due to the fast transient
effects of thermal inertia, there is another delay time �

q
 which is referred as the

phase lag of heat flux. When �
t 
= 0, the model proposed by Tzou [3] is referred as

single phase model. Various attempts have been done for the evolution of an explicit
mathematical solution, which has been applied to equation of heat conduction under
DPL model. The stability of two different mathematical hyperbolic models proposed
by Tzou have been compared by Quintanilla [4]. El-Karamany and Ezzat [5] studied
dual-phase-lag thermoelasticity theory and further proved the uniqueness and
reciprocal theorems and also established variational principle.

Different authors discussed different types of problems in viscoelasticity.
Freudenthal [6] pointed out that many solids exhibit viscous effects when subjected
to dynamic loading. To describe the viscoelastic behaviour of a material, Kelvin-
Voigt model is used. This is the macroscopic mechanical model. When the
deformation is time dependent, Kelvin-Voigt model shows delayed elastic response
due to stress. Iesan and Scalia [7] studied some theorems in the theory of
thermoviscoelasticity. Sharma, Sharma and Bhargava [8] analysed effect of viscosity
on wave propagation in anisotropic thermoelastic with Green-Naghdi theory Type-
II and Type-III. AI-Basyouni, Mahmoud and Alzahrani [9] discussed effect of
rotation, magnetic field and a periodic loading on radial vibrations thermo-
viscoelastic non-homogeneous media. Arefi and Zenkour [10] discussed nonlocal
electro-thermo-mechanical analysis.

The process in which the particles spontaneously move from higher
concentration region to the lower concentration region, is known as diffusion. This
happens in response to a concentration gradient, which is expressed as the change
in concentration due to change in position. To accomplish isotope separation, the
transfer of heat across a thin gas or liquid is utilized by thermal diffusion.

Podstrigach [11] analyzed the differential equations of the problem of
thermodiffussion in isotropic deformable solids. Podstrigach and Pavlina [12, 13]
gave the general relationships based upon the thermodynamics of solid solutions
and discussed the fundamental equations of plane thermodiffusion problem.
Nowacki [14, 15, 16, 17, 18] did the further work in a series of papers by giving
various theorems. Sharma [19] discussed reflection of plane waves in
thermodiffusive elastic half? space with voids. Tripathi et al. [20] studied a problem
of generalized thermoelastic diffusion. In which a thick circular plate was analysed
with axisymmetric heat supply. Kumar, Devi and Sharma [21] discussed plane
waves and fundamental solution in a modified couple stress generalised
thermoelastic with mass diffusion. Kumar, Sharma and Lata [22] discussed effects
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of the diffusion and thermal phase-lags with an axisymmetric heat supply in a
plate. Zenkour [23] analysed effects of phase-lags and variable thermal conductivity
in a thermoviscoelastic solid with a cylindrical cavity. Zenkour et al. [24] studied
two-temperature dual-phase-lags theory in a thermoelastic solid half-space due to
an inclined load. Abbas and Marin [25] discussed a two-dimensional generalized
thermoelastic diffusions problem due to laser pulse.

Here in this problem, by using two diffusion phase-lags, a generalized form of
mass diffusion equation has been introduced. The delayed time needed for the
diffusion of the mass flux is represented by one-phase-lag of diffusing mass flux
vector. Whereas the delayed time needed for the establishment of the potential
gradient is represented by another phase-lag of chemical potential. The basic
equations for the isotropic viscothermoelastic diffusion medium in the case of dual-
phase-lag diffusion (DPLD) and dual-phase-lag heat transfer (DPLT) models in
axisymmetric form are presented. The components of stresses, temperature,
displacements, mass concentration and chemical potential are obtained by using
Laplace and Hankel transform technique. A direct approach without the use of
potential functions is applied here. Numerical computation is performed by using
a numerical inversion technique and the resulting quantities subjected to chemical
potential and thermal sources are shown graphically. The various effects of thermal
phase-lags diffusion and viscosity have been shown on the various physical
quantities.

2. BASIC EQUATIONS

The equations of motion, heat conduction and mass diffusion in a homogeneous
isotropic thermoelastic solid with DPLD and DPLT models in the absence of body
forces, heat sources and mass diffusion sources are

(1)

(2)

(3)

and constitutive relations are

(4)

(5)

(6)
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(7)

(8)

here �*, µ* and � are Lame's constants and density (assumed to be independent of
time) respectively. D, P and C are the diffusivity, chemical potential per unit mass
and mass concentration respectively. u

i
 are components of displacement vector u.

C
E
, K are the specific heat at constant strain and the coefficient of thermal

conductivity respectively. T = ��– T
0
 is small temperature increment, where � is

the absolute temperature of the medium and T
0
 is the reference temperature of the

body such that 
0

1.
T

T  a and b are the coefficients describing the measure of

thermodiffusion and mass diffusion effect respectively. e
ij
 and �

ij
 are the components

of strain and stress respectively. e
kk

, S are dilatation and entropy per unit mass,
�

1 
= (3��+ 2µ)�

t
, �

2 
= (3��+ 2µ)�

c
, where �

c
, �

t
 are the coefficient of linear diffusion

expansion and coefficient of thermal linear expansion. �
t
, ��, �q

, �
p
 are phase lag of

temperature gradient, phase lag of diffusing mass flux vector, the phase lag of heat
flux and phase lag of chemical potential. In all the above equations, a superposed
dot means derivative with respect to time and a comma followed by suffix means
spatial derivative.

3. FORMULATION AND SOLUTION OF
THE PROBLEM

Consider a thick circular plate of thickness 2b which is occupying the space D
defined by 0 � r � �, –b � z � b in viscothermoelastic diffusion with dual phase lag
model. . Let the plate be subjected to chemical potential source and an axisymmetric
heat supply with stress free boundary which depends on the axial and radial
directions of cylindrical co-ordinate system. The chemical potential source of unit
magnitude and heat flux are directed along with vanishing components of stress on
the lower and upper boundary surfaces along with traction free boundary z = ±b.
The viscothermoelastic quantities are required to be determined in a thick circular
plate, under the given conditions. T

0
 is called initial temperature in thick circular

plate. A cylindrical polar co-ordinate system (r, �, z) has been considered, whose
symmetry is about the z -axis. The field component u��= 0, as the problem considered
is plane axisymmetric. Also, u

r
, u

z
, C and T are not dependent on � and we restrict

this analysis to two dimensional problem with

u = (u
r
, 0, u

z
) (9)

 Eqns. (1)-(6), on using (9) take the form
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(10)

(11)

(12)

(13)

and constitutive relations

(14)

(15)

(16)

(17)

(18)

where

(19)

The following dimensionless quantities are introduced to facilitate the solution
* * *

*1 1 1
1

1 1 1

, ( , ) ( , ), ,r z r z

w
r r u u u u t t z z

c c c

(20)

Using (20) in equations (10)-(13) and thereafter dropping the primes. Then
applying the Laplace transform, which is defined by

(21)

(22)

on the obtained quantities and solving them, we get
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(23)

(24)

(25)

where 

Eliminating T , e  and C  from equations (23)-(25),we get

(26)

The solutions of the equation (26) can be written in the form

(27)

where  and C are solutions of the following equation

(28)

Applying Hankel transform, which is defined by (22) on (28), we get

(29)

(30)

(31)

(32)

,
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On applying the inversion of Hankel transform on (30), (31) and (32), we
obtain

(33)

(34)

(35)

With use of (10)-(13), (20) and (33)-(35), we get the components of
displacement in transformed domain as

(36)

(37)

where

Substituting the values of ru and zu  in (14)-(17) and using (20) yield stress

components and chemical potential

(38)

(39)
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(40)

(41)

(42)

where

4. BOUNDARY CONDITIONS

We consider a chemical potential and thermal source along with vanishing of
components of stress at the surface z = ± b. These can be expressed mathematically
as

(43)

(44)

(45)

(46)

where F(r, z) = z2 e–�r,

g
0
 is known as constant temperature on the boundary, � ( ) is called Dirac delta

function.

H( ) is the Heaviside unit step function.

On both sides of the boundary conditions (43)-(46), applying Laplace and
Hankel transform, we obtain

(47)

(48)

(49)
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(50)

where

 Substitute the values of  for (47) - (50), the values of unknown
parameters have been obtained as

where

11 12 13

2
21 22 23

1 0

2 2

31 32 33

41 42 43

0

2
cos( )

sinh ( )

0

µ
q qb

T

q
qb

q

�
1i

 = q
i
 sinh(q

i
 b), �

2i
 = (µ

i
 q

i
2 + �

i
) cosh?(q

i
 b), �

3i
 = µ

i
 q

i
 sinh (q

i
b), �

4i 
= �

i
 cosh (q

i

b), i = 1, 2, 3 and �
i
 is obtained from �, by interchanging ith column with

1
0

( )
( , ) 0 0 ,

t
aJ a

g F b  where t denotes transpose.

5. INVERSION OF DOUBLE TRANSFORM

Inverse of Laplace transform has been obtained by applying the Gaver - Stehfast
algorithm, in order to avoid the complexity of the solution in the Laplace transform
domain. Gaver [26] and Stehfast [27, 28] derived the formula, which is given below.

The inverse f(t) of Laplace transform ( )f s is approximated by using this method

1

log 2 log 2
( ) ( , )

k

j

f t D j K F j
t t

with

min ( , ) (2 )!
( , ) ( 1)

!( )! ( )! ( 1)! (2 )!

j M M
j M

n m

n n
D j K

n M n j n n n j



198 RAJNEESH KUMAR, PRIYANKA KAUSHAL AND RAJNI SHARMA

Where m is an integer part of (j + 1)/2 and M = K/2, here the value of K (an
even integer) depends on the word length of computer used. Gaver-Stehfast
algorithm suggests the optimal value of K for the fast convergence of results with
desired accuracy.

The Romberg numerical integration technique; Press et al. [29], with variable
step size was used to evaluate the results involved.

6. PARTICULAR CASES

(i) If we ignore the diffusion effect (i.e. �
2
, b, a = 0), we obtain the expressions

for stress components, components of displacement, chemical potential
and temperature change for viscothermoelastic isotropic half space.

(ii) �
p 
= �� = 0, then the corresponding relation reduces to thermoelastic with

dual phase lag model.

(iii) �
q 
= 0 and �

p 
= 0, then DPLD and DPLT models reduce to single phase-lag

diffusion model (SPLD) and single phase-lag heat model (SPLT).

7. NUMERICAL RESULTS AND DISCUSSION

For the purposes of numerical computation, the mathematical model is prepared
with copper material. The material constants of copper for the problem have been
taken from Dhaliwal and Singh [30]

K = 386JK–1 m–1 s–1, µ = 3.86 × 1010 Nm–2, ��= 8954 Kgm–3, D = 0.88 × 10–8 kgs/m3

��= 7.76 × 1010 Nm–2, �
1 
= 5.518 × 106 Nm–2 deg–1, a = 1.2 × 104 m2/s2 kb = 0.9 × 106

m5/kgs2, T
0 
= 293K, �

2 
= 61.38 × 106 Nm–2 deg–1, C

E 
= 383.1 Jkg–1 K–1

To study the effect of viscosity, the graphs have been plotted on the various
quantities for the range 0 ��r � 10. g

0
 = 1

For viscoelastic medium we take the values Q
1 
= 0.5, Q

2 
= 1.0

(i) Solid line represents the thermoelastic diffusion with viscosity (VS)

(ii) Small dashed line corresponds to thermoelastic diffusion without viscosity
(W VS)

Fig. 1 exhibits the variations of displacement component u
r
 with distance r.

Near the loading surface, the values of displacement component u
r
 for both the

cases decrease sharply and follow opposite oscillatory trends afterwards for the
rest of region attaining minima at r = 5.5. Viscosity effect decreases the value of
displacement component u

r
.

Fig. 2. shows the variations of normal displacement component u
z
 with distance

r. it is noticed that the values of u
z
, with and without viscosity follow similar
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oscillatory trends with change of amplitude. Viscosity increases the value of
displacement component u

z
. It is maximum at r = 1, whereas the variation

corresponding to without viscosity decreases for range 0 � r � 2.5, thereafter follows
oscillatory trend.

Fig. 3 depicts the variations of radial stress component �
rr
 with distance r. it is

evident that the variations corresponding to without viscosity decrease
monotonically for the range 0 � r � 3 and oscillate afterwards whereas viscosity
increases the value near the boundary surface. The trends are monotonically
decreasing for the range 2 � r � 6, thereafter; it shows a sharp increase for 6 � r �
8 and then decreases.

Fig. 4 shows the behaviour and variation of hoop stress component ��� with
distance r which is similar as �

rr
 with difference in their magnitude value.

Fig. 5. shows the variations of shear stress component �
rz
 with distance r. Near

the loading surface, there is a sharp decrease for the range 0 � r � 2 and as r moves
away, the variations are near boundary surface and follow similar oscillatory trends
with change of amplitude for both the cases with and without viscosity effect
although their magnitude value are different.

Figure 1: Variations of displacement component u
r
 with distance r
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Figure 2: Variations of displacement component u
z
 with distance r

Figure 3: Variations of radial stress component 
rr
 with distance r
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Figure 4: Variations of hoop stress component  with distance r

Figure 5: Variations of shear stress component 
rz
 with distance r
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Fig. 6 explains the variations of vertical stress component �
zz
 with distance r.

It is evident that viscosity decreases the value of normal stress for the range 0 � r
� 2, the variations decrease sharply corresponding to both the cases and follow
opposite oscillatory trends afterwards. As r � 2, there is up and down in comparison
to without viscosity effect.

Figure 6: Variations of vertical stress component 
zz
 with distance r

Figure 7: Variations of chemical potential function P with distance r
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Fig. 7 shows the variations of chemical potential function P with distance r.
Here, it is noticed that the trends corresponding to with and without viscosity are
also oscillatory with less amplitude. There is a sharp decrease for range 0 � r � 2
without viscosity, thereafter it shows oscillatory behaviour. Viscosity effect
decreases the value of chemical potential near the boundary surface and shows
oscillatory behaviour thereafter.

8. CONCLUSION

The present investigation is focused on the behaviour of thick circular plate in
viscothermoelastic diffusion with and without dual phase lag due to thermal and
chemical potential source. The basic equations for the isotropic thermoelastic
diffusion medium in the context of dual-phase-lag heat transfer (DPLT) and dual-
phase-lag diffusion (DPLD) models in axisymmetric form are presented. Laplace
and Hankel transform are used to solve the problem.

Near and away from the application of the source values of displacement
components u

r
, u

z
, radial stress �

rr
, hoop stress ��� shear stress �

rz
 get higher due to

viscosity and for the intermediate range their values are oscillatory in nature. Near
and away from the application of the source, the values of vertical stress �

zz
 and

chemical potential P are small due to viscosity and for the intermediate range
oscillate, although the values of �

zz
 for away from the source are increasing due to

viscosity effect.

A more realistic model of viscothermoelastic diffusion media is obtained by
Using of diffusion phase-lags in mass diffusion equation as it allows a delayed
response between the potential gradient and the relative mass flux vector.

For two dimensional problem of dynamic response, the results of the problem
are of great use. Due to various sources in viscothermo diffusion it has various
industrial and geophysical applications. A sound impact of viscosity on the various
components of displacements, stresses, and chemical potential function in the thick
circular plate has been observed.
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