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Abstract. We analyze the concepts of evolution systems of measures of sto-
chastic differential equations (SDEs) in Hilbert spaces with time-dependent

unbounded operators and give conditions for existence of a strongly mixing
of evolution systems of measures. Our studies are motivated by a stochastic
partial differential equation (SPDE) arising in industrial mathematics, which
is partly considered in [1].

1. Introduction

Let G,H be separable Hilbert spaces and W = (W (t))0≤t≤T , 0 < T < ∞,
be a G-valued Q-Wiener process, see e.g. [5], on a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P). In [1], we consider the existence and uniqueness of linear
equation with additive noise

dX(t) =
(
L(t)X(t) + F (t)

)
dt+AdW (t), 0 ≤ t0 ≤ t ≤ T,

X(t0) = ξ,
(1.1)

where L(t) : D(L(t)) ⊂ H → H, t ∈ [t0, T ], are closed linear operators, densely
defined on H, A ∈ L(G,H) (space of linear continuous mappings from G to H),
F = (Ft)t0≤t≤T an H-valued process, pathwise Bochner integrable on [0, T ], and ξ
is an Ft0 -measurable H-valued random variable. Assume that L : D(L) ⊂ H −→
H is a densely defined linear operator. Then (L∗, D(L∗)) denotes the adjoint of
(L,D(L)) with respect to ⟨·, ·⟩H .

We are concerned about special properties of the solution X(t) as t is large.
For the case of the operators are constant in time, i.e., L(t) = L(t0) for all t ∈
[t0, T ], the concept “invariant measure” of (2.1) has played an important role
for considering the large time behavior of solutions of (2.1). In the probability
theory, a measure µ on a measurable space (H,B(H)) is called invariant under
some measurable function f : H −→ H if for all O ∈ B(H), we have

µ(f−1(O)) = µ(O).
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In terms of push back measure, we have

f ∗ µ = µ.

About invariant measures and some related properties on large time behaviour of
solutions of linear SDEs for the cases time-independent operators, see [5]. In the
case of the operators depend on time, invariant measures are not applicable. Da
Prato and Röckner in [4] consider evolution systems of measures for the linear
equations with time-dependent parameters in Rn.

Our studies are motivated by a stochastic partial differential equation arising in
industrial mathematics, which is partly considered in [1]. More precisely, in [13],
see also [11] and [12] for a derivation of the deterministic equation, the following
equation for modeling the behavior of a fiber under influence of a turbulent air-flow
is derived:

dt∂tx(s, t) =
(
∂s(λ∂sx)(s, t)− b∂ssssx(s, t)

− ge3 + fdet(s, t)
)
dt+ σdw(s, t), (s, t) ∈ [0, l]× [0, T ], (1.2)

with initial condition

x(s, 0) = (s− l)e3, ∂tx(s, 0) = 0, s ∈ [0, l], (1.2a)

boundary condition

x(l, t) = 0, ∂sx(l, t) = e3, ∂ssx(0, t) = 0, ∂sssx(0, t) = 0, t ∈ [0, T ],
(1.2b)

and algebraic constraint

∥∂sx(s, t)∥euk = 1 for all (s, t) ∈ [0, l]× [0, T ]. (1.2c)

Here (w(t))0≤t≤T is a Q-Wiener process on a probability space (Ω,F ,P) together
with a filtered (Ft)0≤t≤T and x(ω) : [0, l]× [0, T ] −→ R3, ω ∈ Ω, models the fiber
at arc length s ∈ [0, l] and time t ∈ [0, T ]. The function λ : [0, l]× [0, T ] −→ [0,∞)
is the tractive force with the boundary condition λ(0, t) = 0, t ∈ [0, T ], and
e3 = (0, 0, 1). fdet : [0, l]× [0, T ] → R3 is a deterministic force, 0 < b, g, σ < ∞ are
constants (bending stiffness, constant of gravitation, amplitude of stochastic force).
Equations of the type as in (1.2) in literature are also called beam equations.

The main results of this article are on existence of strongly mixing evolution
systems of (1.1) and an application which are contained in Section 3. In Section
2, we recall some basic results on invariant measures which are introduced in [5]
and apply to (1.1) for the case time-independent operators and also describe the
invariant measures of (1.1).

2. Invariant Measures

Consider the linear equations with time-independent operators as following{
dX(t) = LX(t)dt+AdW (t)

X(0) = ξ
(2.1)

and assume as in [5], that
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Assumption 2.1. (i) the operator L generates a C0-semigroup1 of linear
operators (S(t))t≥0 in H,

(ii) TrQt =
∫ t

0
Tr
(
S(r)AQA∗S∗(r)

)
dr < ∞, for all t ≥ 0, where Tr(B) de-

notes the trace of non-negative operator B ∈ L(H).

By above assumptions, we have S(·) ∈ L2((0, T );L0
2), where L0

2 := L0
2(G,H)-

the Cameron-Martin space w.r.t. Q, and the equation (2.1) has a unique mild
solution given by

X(t) = S(t)ξ +

∫ t

0

S(t− r)dW (r), t ≥ 0.

About the Cameron-Martin space and mild solutions of SDEs, see [5].
In [5], to define invariant measures of the equation (2.1) the authors construct

the measurable function f from the solution X(·, ξ) of (2.1) as following.
Let Bb(H)(Cb(H)) be the space of all bounded (and continuous) Borel func-

tionals on H, endowed with the ”sup” norm. For every t ≥ 0, define

Ptφ(x) := Eφ(X(t, x)), φ ∈ Bb(H), t ≥ 0, x ∈ H. (2.2)

By [5, Corol. 9.9 and Corol. 9.10], for arbitrary φ ∈ Bb(H) and 0 ≤ r ≤ t ≤ T we
have

Pt(Prφ)(x) = Pt+rφ(x), x ∈ H.

Hence, the family (Pt)0≤t≤T is called transition semigroup corresponding to (2.1).

Definition 2.2. A probability measure µ is called an invariant measure of (2.1)
if for all φ ∈ Bb(H) we have∫

H

Ptφ(x)µ(dx) =

∫
H

φ(x)µ(dx).

Together with some suitable initial conditions, the existence of invariant mea-
sures of SDEs can imply some ”nice” properties of solutions . For example, if µ is
an invariant measure of (2.1) such that L(ξ) = µ, then the mild solution X(·, ξ)
of equation (2.1) is stationary, see [5, Prop. 11.5].

We mention here a basic result for existence and uniqueness of invariant mea-
sures in infinite dimension spaces.

Theorem 2.3. Let Assumption 2.1 hold. Then the following statements are equiv-
alent:

(i) There exists an invariant measure of equation (2.1).
(ii) There exists an symmetric nonnegative nuclear operator P ∈ L(H) such

that

2⟨PL∗x, x⟩+ ⟨Qx, x⟩ = 0, for all x ∈ D(L∗). (2.3)

(iii) supt≥0 TrQt := supt≥0

∫ t

0
Tr
(
S(r)AQA∗S∗(r)

)
dr < ∞, where the integral

is in strong sense.

Proof. see [5, Theorem 11.7]. □

1about C0-semigroups and related results, see [17].
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The following theorem gives a sufficient condition for uniqueness of invariant
measures.

Theorem 2.4. If for arbitrary x ∈ H, limt→+∞ ∥S(t)x∥ equals to either 0 or
+∞, then there exists at most one invariant measure of equation (2.1).

Proof. see [5, Prop. 11.10] □
It is well-known that if (S(t))t≥0 is a C0-semigroup of linear bounded operators

on H then there exist constants M ≥ 1,m ∈ R such that ∥S(t)∥ ≤ Me−mt for all
t ≥ 0. If m > 0 then

(i) Assumption 2.1(ii) is hold, i.e., mild solutions of (2.1) do exist.
(ii) Statement (iii) of Theorem 2.3 is hold. Hence, the invariant measure of

(2.1) does exist.
(iii) The assumption of Theorem 2.4 is satisfied. Combining with (ii), one can

conclude that there exists a unique invariant measure of (2.1).

Remark 2.5. If a C0-semigroup (S(t))t≥0 on a Hilbert space H satisfying that

∥S(t)∥ ≤ Me−mt for all t ≥ 0,

where M and m are some positive constants then we call (S(t))t≥0 is exponentially
stable or exponential decay with the decay rate m.

Example 2.6. We consider the linear homogeneous problem in [1, §3.1] for the
case λ(s, t) = λ0(s) > 0 for all (s, t) ∈ (0, l) × [0, T ] and λ0(0) = λ0(l) = 0. Then
the abstract setting [1, Eq.(16)] becomes{

dX(t) = (L0 + Lλ0
+ γ)X(t)dt+AdW (t), 0 < t ≤ T

X(0) = ξ.
(2.4)

Let c := sups∈[0,l]

(
λ0(s)

2 + lλ′
0(s)

2
)
, m := max{ c

b , c}. If γ < −m, then the

equation (2.4) has an invariant measure.
To prove the assertion in this example, let Hm,2((0, l);R3) denote the Hilbert

space of R3-valued, m times weakly differentiable functions on (0, l) which are
square integrable together with their weak derivatives. Recall that as in [1] the

equation (2.4) is considered on the separable Hilbert spaceH = H2,2
bc (0, l)×L2(0, l)

where

L0 =

(
0 Id

−b∂ssss 0

)
, Lλ0

=

(
0 0

∂s(λ0(s)∂s) 0

)
, A = σ

(
0 0
0 Id

)
,

and W (t) =

(
0

w(t)

)
.

Notice that Lλ0 ∈ L(H) and (L0,D) is the generator of a C0-semigroup of con-

tractions, where D := H4,2
bc (0, l)×H2,2

bc (0, l) is the domain of L0,

H2,2
bc (0, l) :=

{
v ∈ H2,2((0, l);R3)

∣∣∣v(l) = ∂sv(l) = 0
}
,

and

H4,2
bc (0, l) :=

{
v ∈ H4,2((0, l);R3)

∣∣∣v(l) = ∂sv(l) = ∂ssv(0) = ∂sssv(0) = 0 )
}
.

(2.5)
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The Laplacian (∂ss,H
2,2
bc (0, l)) is not self-adjoint as an operator on L2(0, l). How-

ever, due to the boundary condition (2.5) and by using integration by parts we
have

⟨∂ssu, ∂ssv⟩L2(0,l) = ⟨∂ssssu,v⟩L2(0,l) for all u ∈ H4,2
bc (0, l),v ∈ H2,2

bc (0, l).

Hence, the definition of norms on H2,2
bc (0, l) and on H4,2

bc (0, l) as in [1] we have⟨
L0

(
u

v

)
,

(
u

v

)⟩
H

= 0 for all

(
u

v

)
∈ D. (2.6)

Moreover, for all

(
u

v

)
∈ H we have⟨

Lλ0

(
u

v

)
,

(
u

v

)⟩
H

=

⟨(
0

∂s(λ0(s)∂su)

)
,

(
u

v

)⟩
H

= ⟨∂s(λ0(s)∂su),v⟩L2(0,l)

≤ sup
s∈[0,l]

(
λ0(s)

2 + lλ′
0(s)

2
)(1

b
∥u∥2

H2,2
bc (0,l)

+ ∥v∥2L2(0,l)

)
≤ max{c

b
, c}
∥∥∥∥(uv

)∥∥∥∥2
H

,

(2.7)

where c := sups∈[0,l]

(
λ0(s)

2 + lλ′
0(s)

2
)
. Let m := max{ c

b , c}, since by (2.6) and

(2.7) we have⟨(
(L0 + Lλ0 + γ)− (m+ γ)

)(u
v

)
,

(
u

v

)⟩
H

≤ 0 for all

(
u

v

)
∈ D.

Hence, for all α > (m+ γ)(> 0) the following holds∥∥∥∥(α− (L0 + Lλ0)
)(u

v

)∥∥∥∥2
H

≥ (α− (m+ γ))2
∥∥∥∥(uv

)∥∥∥∥2
H

for all

(
u

v

)
∈ D. (2.8)

As in [1, Prop. 3.6], the operator
(
(L0 + Lλ0 + γ),D

)
generates a C0-semigroup

(Sγ(t))t≥0 on H. Combine with (2.8), the semigroup (Sγ(t))t≥0 satisfies

∥Sγ(t)∥ ≤ Me(m+γ)t for all t ≥ 0 (2.9)

for some constant M ≥ 1. Hence, if γ < −m, there exists a unique invariant
measure of equation (2.4).

Next, we describe the invariant measure of (2.4). Note that if (S(t))t≥0 is the
C0-semigroup generated by (L0 + Lλ0 ,D) then the C0-semigroup generated by
(L0 + Lλ0 + γ,D) is Sγ(t) = eγtS(t).

First, we can check that Λ := −b∂ssss + ∂s(λ0(s)∂s) : D ⊂ L2(0, l) −→ L2(0, l)
is injective with compact inverse. Moreover, due to assumption on λ0 and the
boundary condition the operator Λ is positive and self-adjoint.

Let (λn, en), n ∈ N, be the eigensystem of Λ such that the sequence of eigen-
values (en)n∈N is an orthogonal system of L2(0, l) and λn > 0 for all n ∈ N. Due
to [9, Exam. 6.2]2, the C0-semigroup (S(t))t≥0 generated by (L0 +Lλ0 ,D) can be

2The operator L̃0 in [9, Exam. 6.2] is the Laplacian. However, for the case of Laplacian square

as our application the method and technique are also the same.
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described as following

S(t) =

(
cos(t

√
Λ)

√
Λ
−1

sin(t
√
Λ)

−
√
Λ sin(t

√
Λ) cos(t

√
Λ)

)
,

where

S(t)

(
u

v

)
=

(
cos(t

√
Λ)u+

√
Λ
−1

sin(t
√
Λ)v

−
√
Λ sin(t

√
Λ)u+ cos(t

√
Λ)v

)
for all

(
u

v

)
∈ H,

cos(t
√
Λ)u+

√
Λ
−1

sin(t
√
Λ)v : =

∞∑
n=1

cos(
√
λnt)⟨u, en⟩en

+

∞∑
n=1

1√
λn

sin(
√
λnt)⟨v, en⟩en,

and

−
√
Λ sin(t

√
Λ)u+ cos(t

√
Λ)v : = −

∞∑
n=1

√
λn sin(

√
λnt)⟨u, en⟩en

+
∞∑

n=1

cos(
√
λnt)⟨v, en⟩en.

Hence, we have

Sγ(t) = eγtS(t) = eγt

(
cos(t

√
Λ)

√
Λ
−1

sin(t
√
Λ)

−
√
Λ sin(t

√
Λ) cos(t

√
Λ)

)
.

Due to [5, Theorem 11.7], for each γ < −m the equation (2.4) has a unique
invariant measure with the covariance operator P is defined by

Px :=

∫ ∞

0

Sγ(r)AQA∗S∗
γ(r)xdr, for all x ∈ H.

3. Evolution Systems of Measures

For the case time-dependent equations, we can not apply invariant measures to
analyze long-time behaviour of solutions of SDEs. However, we can expand to the
concept evolution systems of measures. In [4], G. Da Prato and M. Röckner give
a necessary condition on existence of evolution systems on Rn. In this paper, we
consider the case of infinite dimensional Hilbert spaces.

We consider the equation{
dX(t) = L(t)X(t)dt+AdW (t)

X(τ) = ξ
(3.1)

with the following assumptions:

Assumption 3.1. (i) L(t) : D(L(t)) ⊂ H −→ H, t ∈ [0, T ], a family of
closed linear operators, densely defined on a separable Hilbert space H.

(ii) D :=
∩

t∈[0,T ] D(L(t)) and D∗ :=
∩

t∈[0,T ] D(L∗(t)) are dense in H.

(iii) A ∈ L(G,H) and ξ is an Fτ -measurable H-valued random variable.
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(iv) There exists an evolution system (U(t, τ))0≤τ≤t≤T on H generated by
(L(t),D)0≤t≤T such that∫ t

τ

∥U(t, r)A∥2L0
2
dr =

∫ t

τ

Tr[U(t, r)AQA∗U∗(t, r)]dr < +∞.

Under Assumption 3.1, the equation (3.1) has a mild solution

X(t, τ, ξ) = U(t, τ)ξ +

∫ t

τ

U(t, r)AdW (r).

As in [5, Prop. 4.13], the covariance operator (of stochastic integral)

Qτ,tx =

∫ t

τ

U(t, r)AQA∗U∗(t, r)xdr.

Let Cb(H) be the Banach space of continuous and bounded mappings φ : H −→ R
endowed with the ”sup” norm

∥φ∥0 = sup
x∈H

|φ(x)|.

We define the transition evolution operators

Pτ,tφ(x) = E(φ(X(t, τ, x))), where φ ∈ Cb(H), 0 ≤ τ ≤ t, x ∈ H.

Lemma 3.2. (Pτ,t)τ≤t is Feller, i.e., Pτ,tφ ∈ Cb(H) for all φ ∈ Cb(H) and for
all τ ≤ t.

Proof. Since φ ∈ Cb(H), we have |φ(x)| ≤ ∥φ∥0 for all x ∈ H. Hence, for all
φ ∈ Cb(H) and for all τ ≤ t we have |Pτ,tφ(x)| ≤ ∥φ∥0 for all x ∈ H, i.e., the
boundedness holds.

Next, we prove the continuity of the map H ∋ x 7−→ Pτ,tφ(x) ∈ R. Let
ντ,t := N (0, Qτ,t), τ ≤ t. For all φ ∈ Cb(H), x ∈ H, we have

Pτ,tφ(x) = E
(
φ
(
U(t, τ)x+

∫ t

τ

U(t, r)AdW (r)
))

=

∫
Ω

φ
(
U(t, τ)x+

∫ t

τ

U(t, r)AdW (r)
)
dP

=

∫
H

φ
(
U(t, τ)x+ y

)
ντ,t(dy).

(3.2)

The last equality of (3.2) holds by the Gaussian law of stochastic convolutions.
Hence, for all x1, x2 ∈ H we have

|Pτ,tφ(x1) − Pτ,tφ(x2)| ≤
∫
H

∣∣φ(U(t, τ)x1 + y
)
− φ

(
U(t, τ)x2 + y

)∣∣ντ,t(dy).
(3.3)

By the continuity of φ and U(t, τ), the boundedness of φ on H, and the Lebesgue
dominated convergence theorem, the continuity of Pτ,tφ is implied from (3.3). □
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Definition 3.3. A family (νt)t∈R of Gaussian measures on (H,B(H)) is called an
evolution system of measures indexed by R if∫

H

Pτ,tφ(x)ντ (dx) =

∫
H

φ(x)νt(dx), τ ≤ t, φ ∈ Cb(H).

The evolution system of measures (νt)t∈R is called strongly mixing if

lim
τ→−∞

Pτ,tφ(x) =

∫
H

φ(x)νt(dx), φ ∈ Cb(H), t ∈ R, t ≥ τ.

Remark 3.4. The equation (3.1) is considered for 0 ≤ τ ≤ t. In oder to give
a meaning to equation (3.1) for the case τ < 0, we shall extend W (t) and the
filtration (Ft)t≥0 for all t < 0. As in [3], we take another Wiener process W1(t)
independent of W (t) and set

W (t) =

{
W (t) if t ≥ 0,

W1(−t) if t ≤ 0,

and denote F t the σ-algebra generated by W (τ), τ ≤ t, t ∈ R.

Theorem 3.5. Assume that there exist some constants M ≥ 1,m > 0 such that

∥U(t, τ)∥ ≤ Me−m(t−τ), for all 0 ≤ τ ≤ t ≤ T

then the equation (3.1) has a strongly mixing evolution system of measures indexed
by R.

Remark 3.6. Theorem 3.5 and the following proof is based on [4, Example], which is
described evolutions systems of measures of SDEs for the case of finite dimensional
spaces.

Proof. Let νt := N (0, Q−∞,t) where Q−∞,tx :=
∫ t

−∞ U(t, r)AQA∗U∗(t, r)xdr.

We shall prove that (νt)t∈R is an evolution system of measures indexed by R. By
Definition 3.3, we need to prove∫

H

Pτ,tφ(x)ντ (dx) =

∫
H

φ(x)νt(dx), τ ≤ t, φ ∈ Cb(H). (3.4)

Choose φ = ei⟨λ,.⟩, λ ∈ H then (3.4) becomes∫
H

∫
H

ei⟨λ,U(t,τ)x+y⟩ντ,t(dy)ντ (dx) =

∫
H

ei⟨λ,x⟩νt(dx).

We have∫
H

ei⟨λ,U(t,τ)x+y⟩ντ,t(dy) = ei⟨U
∗(t,τ)λ,x⟩+i⟨λ,y⟩ντ,t(dy) = ei⟨U

∗(t,τ)λ,x⟩ν̂τ,t(λ)

Hence, ∫
H

∫
H

eiλ,U(t,τ)x+y⟩ντ,t(dy)ντ (dx) = ν̂τ,t(λ)

∫
H

ei⟨U
∗(t,τ)λ,x⟩ντ (dx)

= ν̂τ,t(λ)ν̂τ (U
∗(t, τ)λ).

So, in term of characteristic functions, to prove (3.4) we need to check

ν̂τ,t(λ)ν̂τ (U
∗(t, τ)λ) = ν̂t(λ),
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i.e.
e−

1
2 ⟨Qτ,tλ,λ⟩e−

1
2 ⟨Q−∞,τU

∗(t,τ)λ,U∗(t,τ)λ⟩ = e−
1
2 ⟨Q−∞,tλ,λ⟩,

or
⟨Q−∞,τU

∗(t, τ)λ,U∗(t, τ)λ⟩+ ⟨Qτ,tλ, λ⟩ = ⟨Q−∞,tλ, λ⟩. (3.5)

To prove (3.5), we consider for a finite time r ∈ (−∞, t]. We have

⟨Qτ,rU
∗(t, τ)λ,U∗(t, τ)λ⟩ = ⟨U(t, τ)Qτ,rU

∗(t, τ)λ, λ⟩.

Since Qτ,rU
∗(t, τ)λ =

∫ τ

r
U(τ, r1)QU∗(τ, r1)U

∗(t, τ)λdr1 and U(t, τ) is a linear
bounded operator then

⟨U(t, τ)Qτ,rU
∗(t, τ)λ, λ⟩ =

∫ τ

r

⟨U(t, τ)U(τ, r1)QU∗(τ, r1)U
∗(t, τ)λ, λ⟩dr1

=

∫ τ

r

⟨U(t, r1)QU∗(t, r1)λ, λ⟩dr1.

On the other hand,

⟨Qτ,tλ, λ⟩ =
∫ t

τ

⟨U(t, r1)QU∗(t, r1)λ, λ⟩dr1. (3.6)

Hence,

⟨Qτ,rU
∗(t, τ)λ,U∗(t, τ)λ⟩+ ⟨Qτ,tλ, λ⟩ =

∫ t

r

⟨U(t, r1)QU∗(t, r1)λ, λ⟩dr1

= ⟨Qt,rλ, λ⟩.
Let r → −∞, we obtain

ν̂τ,t(λ)ν̂τ (U
∗(t, τ)λ) = ν̂t(λ),

i.e. (νt)t∈R is an evolution system of measures.
Next, we prove the strongly mixing property of the evolution system (νt)t∈R.

Note that by further assumption of Theorem 3.5 we have the (strong) convergence
of covariance operators of centered Gaussian measures as limτ→∞ Qτ,t = Q−∞,t

for all t ∈ R, and hence, limτ→−∞ ν̂τ,t(λ) = ν̂t(λ) for all λ ∈ H. If dimH < ∞, the
(weak) convergence of finite measures is equivalent to the (strong) convergence of
its characteristic functions, see [16]. Hence, by passing the limit in (3.2) as τ goes
to −∞, we receive the strongly mixing property of the evolution system (νt)t∈R.

However, for the case dimH = ∞ the convergence of characteristic functions
does not guarantee the weak convergence of Gaussian measures. Due to [16,
Chap. 6, §2, Lem. 2.1 and Theorem 2.3], to get the convergence of Gaussian mea-
sures we need further a condition that

lim
N→∞

sup
τ∈(−∞,t]

∞∑
n=N

⟨Qτ,ten, en⟩ = 0, for all t ∈ R, (3.7)

where (en)n∈N is an orthonormal basis of H. By (3.6), ⟨Qτ,ten, en⟩ ≥ 0 for all
n ∈ N. Moreover, by the strong convergence limτ→∞ Qτ,t = Q−∞,t for all t ∈ R,
we have

∞∑
n=N

⟨Qτ,ten, en⟩ ≤
∞∑

n=N

⟨Q−∞,ten, en⟩ for all −∞ < τ ≤ t.
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Hence,

lim
N→∞

sup
τ∈(−∞,t]

∞∑
n=N

⟨Qτ,ten, en⟩ ≤ lim
N→∞

∞∑
n=N

⟨Q−∞,ten, en⟩

Since Q−∞,t is a trace class operator, we obtain limN→∞
∑∞

n=N ⟨Q−∞,ten, en⟩ = 0.
Hence, we obtain (3.7). □

Example 3.7. We consider again Example 2.6, but for the case λ(s, t) = λ(t) ≥ 0
for all (s, t) ∈ [0, l]× [0, T ]. Then the abstract setting [1, Eq.(16)] becomes{

dX(t) =
(
(L0 + L1(t) + γ)X(t)

)
dt+AdW (t)

X(0) = ξ,
(3.8)

where L1(t) =

(
0 0

λ(t)∂ss 0

)
and the others are as in Example 2.6.

Let m := max
{

1
b supt∈[0,T ] λ

2(t), 1
}
> 0. If γ < −m, then the equation (3.8)

has a strongly mixing evolution system of measures indexed by R with the family

of covariance operators Q−∞,tx :=
∫ t

−∞ U(t, r)AQA∗U∗(t, r)xdr.
To prove the assertion of this example, observe that by a similar estimation as

in Example 2.6 we have for all α > (m+ γ) the following holds∥∥∥∥(α− (L(t) + γ)
)(u

v

)∥∥∥∥2
H

≥ (α− (m+ γ))2
∥∥∥∥(uv

)∥∥∥∥2
H

for all

(
u

v

)
∈ D. (3.9)

Together with the stability of the family
(
L(t),D

)
t≥0

as in [1, Prop. 3.7] it yields

that

∥R(α : (L(t) + γ))∥ ≤ 1

α− (m+ γ)
for all α > m+ γ and t ∈ [0, T ].

Due to [1, Remark 3.9(i)], the family of operators
(
L(t) := L0+L1(t),D

)
generates

an evolution systems (U(t, τ))0≤τ≤t≤T on H in the sense of [17, p. 129] satisfying

∥U(t, τ)∥ ≤ e(m+γ)(t−τ) for all 0 ≤ τ ≤ t ≤ T.

By Theorem 3.5, if we choose γ < −m then the equation (3.8) has a strongly
mixing evolution system of measures indexed by R with the family of covariance

operators Q−∞,tx :=
∫ t

−∞ U(t, r)AQA∗U∗(t, r)xdr.

Example 3.8. We consider the linear homogeneous part of [1, §3.1], as following.{
dX(t) =

(
(L0 + L1(t) + γ

)
X(t)dt+AdW (t)

X(τ) = ξ,
(3.10)

where L1(t) =

(
0 0

∂s(λ(t)∂s) 0

)
and the others are as in Example 2.6. We mention

here Assumption [1, Ass. 3.1], especially the condition on λ that

λ(0, t) = λ(l, t) = ∂sλ(0, t) = ∂sλ(l, t) = 0 and

λ(s, t) > 0 for all (s, t) ∈ [0, l]× [0, T ].
(3.11)

Then there exists γ which is dependent on λ and b such that the equation (3.10)
has a strongly mixing evolution system of measures indexed by R.
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To show the assertion in this example, we also estimate as in (2.7). We have⟨
L1(t)

(
u

v

)
,

(
u

v

)⟩
H

= ⟨∂s(λ(t)∂s)u,v⟩L2(0,l)

= ⟨∂sλ(t)∂su,v⟩L2(0,l) + ⟨λ(t)∂ssu,v⟩L2(0,l).

For all u ∈ H2,2
bc (0, l) and v ∈ L2(0, l) we have

⟨∂sλ(t)∂su,v⟩L2(0,l) ≤ ∥∂sλ(t)∂su∥2L2(0,l) + ∥v∥2L2(0,l)

≤ sup
s∈[0,l]

∥∂sλ(s, t)∥2euk∥∂su∥2L2(0,l) + ∥v∥2L2(0,l)

≤ C̃1(∥u∥2H2,2
bc (0,l)

+ ∥v∥2L2(0,l))

and

⟨λ(t)∂ssu,v⟩L2(0,l) ≤
1

b
sup

s∈[0,l]

∥λ(s, t)∥2euk∥u∥2H2,2
bc (0,l)

+ ∥v∥2L2(0,l)

≤ C̃2

(
∥u∥2

H2,2
bc (0,l)

+ ∥v∥2L2(0,l)

)
,

where C̃1 and C̃2 are some positive constants. Hence, let m := max{C̃1, C̃2} > 0,
we have⟨

L1(t)

(
u

v

)
,

(
u

v

)⟩
H

≤ m

⟨(
u

v

)
,

(
u

v

)⟩
H

for all

(
u

v

)
∈ D and all t ∈ [0, T ].

Repeat the statements as in Example 3.7, the two-parameters semi-group of op-
erators (U(t, τ))0≤τ≤t≤T on H generated by (L(t))0≤t≤T satisfying

∥U(t, τ)∥ ≤ em(t−τ) for all 0 ≤ τ ≤ t ≤ T.

Note that if (U(t, τ))0≤τ≤t is the two-parameters semi-group of operators gener-
ated by (L(t))0≤t≤T then the family (L(t)+γ)0≤t≤T generates an evolution system
(Uγ(t, τ))0≤τ≤t≤T where

Uγ(t, τ) := eγ(t−τ)U(t, τ) for all 0 ≤ τ ≤ t ≤ T.

Moreover, we have

∥Uγ(t, τ)∥ ≤ e(m+γ)(t−τ) for all 0 ≤ τ ≤ t ≤ T.

By Theorem 3.5, if γ < −m then the equation (3.8) has a strongly mixing evolution
system of measures indexed by R with the family of covariance operators

Qγ
−∞,tx :=

∫ t

−∞
Uγ(t, r)AQA∗U∗

γ (t, r)xdr for all x ∈ H.
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