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Abstract 

Association rules are initially discovered in the market basket analysis [1] to 

identify frequently purchased items by customers. It gives certain 

regularities and dependencies within a data by finding frequent co-

occurrence of items with a set of transactions. Usually support and 

confidence are the two important quality measures used to assess the quality 

of association rules. In fuzzy association rule mining, fuzzy support and 

confidence are used, which are based on t-norm operators. In addition to 

this opposition measures are also defined using s-norm operators. These 

measures were aroused during the categorization of transactions into 

positive and negative examples [5, 6], which we here redefined as true 

positive and true negative examples. Also we tried to extend these quality 

measures and analyzed its semantics and studied their properties. 

Keywords: Fuzzy association rules, true positive and true negative 

examples, Support, Opposition, fuzzy average support, fuzzy average 

opposition. 

1. INTRODUCTION 

Data mining is the process of extracting previously unknown and potentially 

useful hidden predictive information from large amounts of data [1]. Association 

rules are initially discovered in the market basket analysis to identify frequently 

purchased items by customers. It give certain regularities and dependencies 

within a data by finding frequent co-occurrence of items with a set of 

transactions and relationships hidden in large data sets. The uncovered 

relationships can be expressed as association rules or frequent itemsets. In 

classical association rules, it is not possible to use every data for mining. In most 

real life applications, the database contains many attributes which are difficult to 
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represent using binary values. In such cases fuzzy sets play a major role. So in 

the process of association rule mining, fuzzy sets can handle both quantitative 

and categorical data, providing the necessary support to use uncertain data types 

with existing algorithms. The approach of quantitative mining allow attributes to 

be either members or non-members of an interval which tends to make an under 

or over estimation of values leading to sharp boundary problems. The use of 

fuzzy sets in association analysis widens the type of relationships between 

attributes by allowing the intervals to overlap, giving partial memberships to 

different sets thus avoiding unnatural boundaries in the partitioning of the 

attribute domain and thus making the interpretation of rules in linguistic terms 

easier. Thus the obtained results using fuzzy approaches are easy to understand 

and to apply. 

An association rule is of the form 𝐴 ⇀  𝐵, where 𝐴 and 𝐵 are attributes or 

sets of attributes, which tells the idea that when 𝐴 occurs in a transaction, 𝐵 is 

likely to occur as well. The strength of association rules can be realized by a 

number of quality measures. Support and confidence are the two important 

quality measures used essentially. Support measures the validity of an association 

rule where as confidence measures the quality of the rule. Thus mining 

association rules means, to generate all association rules 𝐴 ⇀  𝐵 that have 

support and confidence greater than the user specified thresholds. These 

measures can be generalized for fuzzy association rules as well. Here we study 

about the transaction types and redefined their terminologies as true positive, true 

negative, false positive, false negative examples to understand the true semantics 

of the transactions. In this paper we tried to extend some of these measures, 

analyzed its semantics and studied their properties. 

The next section explains the definition of association rules, their support 

and confidence measures. Section 3 gives the definition of fuzzy set and fuzzy set 

operations. Section 4 is devoted to fuzzy association rules, fuzzy support and 

confidence measures, and fuzzy average support measures. Section 5 explains the 

semantics of the defined measures. Section 6 contains some of the properties of 

the existing and defined measures and section 7 is the conclusion. 

2. ASSOCIATION RULES 

An association rule gives an efficient way to identify and explore certain 

dependencies and regularities in a database. Association rule mining was 

introduced by Agrawal et al. [1] as a way to discover frequently purchased items 

by customers in the market basket analysis. 

Association rule mining is traditionally performed on a non-empty data table 

𝐷 with binary attributes. Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} be the universe of items. Let 𝑇 =
{𝑡1, 𝑡2, … , 𝑡𝑛} be the transaction database (sets of objects) and let 𝑡𝑖 represent the 

𝑖𝑡ℎ transaction set in 𝐷 such that 𝑡𝑖 ⊆  𝐼. Each transaction 𝑡𝑖 is represented as a 
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binary vector with 𝑡𝑖(𝑖𝑗) =  1 if 𝑡𝑖 bought the item 𝑖𝑗 and 𝑡𝑖(𝑖𝑗) =  0 otherwise. 

An association rule is a direct association 𝐴 ⇀ 𝐵 with 𝐴, 𝐵 ⊆ 𝐼 and 

𝐴 ∩ 𝐵 = ∅, where 𝐴 is the antecedent and B is the consequent of the rule. A set 

of items 𝑋 in 𝐼 is called an itemset. If 𝑋 contains 𝑘 items, then 𝑋 is called the 

𝑘 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡, 𝑇𝑋 is the set of transactions that contain the itemset 𝑋, |𝑇| is the 

total number of transactions. Also we denote 𝑇�̃� the set of transactions that does 

not contain the item 𝐴. 

The validity and interestingness of an association rule is determined by the 

quality measures such as support and confidence. Support measures the extend of 

the simultaneous occurrence (proportion) of the items 𝐴 and 𝐵 in the database 

whereas confidence indicates the proportion of correct application of the rule. 

2.1. Support Measures 

Definition 2.1: The support count and respectively support of an association rule 

𝐴 ⇀ 𝐵 is defined as:  

𝑠𝑢𝑝𝑝#(𝐴 ⇀  𝐵 )  = |𝑇𝐴 ∩  𝑇𝐵| 

and respectively  

𝑠𝑢𝑝𝑝(𝐴 ⇀  𝐵 )  =
|𝑇𝐴 ∩  𝑇𝐵|

|𝑇|
 

This definition of support count positive examples as it represents the 

transactions that explicitly support the association expressed by the rule. De Cock 

et al.[5, 6] classified transactions with respect of an association rule as positive 

example, non-positive example, negative example, non-negative example. 

In order to explore the true semantics of the transaction classification, we 

introduce some new terminologies encouraging from the definition of confusion 

matrix. Thus we define 

Definition 2.2: Let 𝐴 ⇀  𝐵 be an association rule and 𝑡 be a transaction. Then 

 𝑡 is a true positive example iff 𝑡 ∈  𝑇𝐴 ∧  𝑡 ∈  𝑇𝐵 . 

 𝑡 is a true negative example iff ∉  𝑇𝐴 ∨  𝑡 ∉  𝑇𝐵 . 

 𝑡 is a false positive example iff 𝑡 ∈  𝑇𝐴 ∧  𝑡 ∉  𝑇𝐵 . 

 𝑡 is a false negative example iff ∉ 𝑇𝐴 ∨  𝑡 ∈  𝑇𝐵 . 

This indicates how effective is our expectations. In true positive and true 

negative example, we got what we expect, according as presence or absence of 

items. In false positive examples we assume the presence of some items, but it 

was a false one and in false negative examples, we assume the absence of some 

items and it appeared to be false. 

Based on this classification, we get the following different measures: 
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Definition 2.3: Let 𝐴 ⇀ 𝐵 be an association rule. Then 

1. minimum support count: 𝑚𝑖𝑛𝑠𝑢𝑝𝑝#(𝐴 ⇀ 𝐵) = |𝑇𝐴 ∩  𝑇𝐵| 

2. maximum opposition count: 𝑚𝑎𝑥𝑜𝑝𝑝#(𝐴 ⇀ 𝐵) = |𝑇�̃� ∪  𝑇�̃�| 

3. minimum opposition count: 𝑚𝑖𝑛𝑜𝑝𝑝\#(𝐴 ⇀ 𝐵) = |𝑇𝐴 ∩  𝑇�̃�| 

4. maximum support count: 𝑚𝑎𝑥𝑠𝑢𝑝𝑝\#(𝐴 ⇀ 𝐵) = |𝑇�̃� ∪  𝑇𝐵| 

and the corresponding measures is given by 

1. minimum support : 𝑚𝑖𝑛𝑠𝑢𝑝𝑝(𝐴 ⇀ 𝐵) =
|𝑇𝐴∩ 𝑇𝐵|

|𝑇|
 

2. maximum opposition count: 𝑚𝑎𝑥𝑜𝑝𝑝#(𝐴 ⇀ 𝐵) =
|𝑇�̃�∪ 𝑇�̃�|

|𝑇|
 

3. minimum opposition count: 𝑚𝑖𝑛𝑜𝑝𝑝\#(𝐴 ⇀ 𝐵) =
|𝑇𝐴∩ 𝑇�̃�| 

|𝑇|
 

4. maximum support count: 𝑚𝑎𝑥𝑠𝑢𝑝𝑝\#(𝐴 ⇀ 𝐵) =
|𝑇�̃�∪ 𝑇𝐵|

|𝑇|
 

Remark 2.4 

1. 𝑚𝑖𝑛𝑠𝑢𝑝𝑝(𝐴 ⇀  𝐵) ≤  𝑚𝑎𝑥𝑠𝑢𝑝𝑝(𝐴 ⇀  𝐵) 

2. 𝑚𝑖𝑛𝑜𝑝𝑝(𝐴 ⇀  𝐵) ≤  𝑚𝑎𝑥𝑜𝑝𝑝(𝐴 ⇀  𝐵) 

2.2. Confidence Measures 

Definition 2.5: The confidence of a rule 𝐴 ⇀ 𝐵 is defined as: 

𝑐𝑜𝑛𝑓(𝐴 ⇀  𝐵)  =
𝑠𝑢𝑝𝑝#(𝐴 ⇀  𝐵)

𝑠𝑢𝑝𝑝#(𝐴)
 

Confidence can be treated as the conditional probability (𝑃(𝐵|𝐴)) or the 

relative cardinality of 𝐵 with respect to  . 

Definition 2.6: (Hullermeier, [9]) The confidence measure, 𝑛 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is 

defined as: 

𝑐𝑜𝑛𝑓𝑛 (𝐴 ⇀ 𝐵) =
𝑚𝑖𝑛𝑠𝑢𝑝𝑝#(𝐴 ⇀  𝐵)

𝑚𝑖𝑛𝑜𝑝𝑝\#(𝐴 ⇀  𝐵)
 

Definition 2.7: (DeCook et al.,[5]) The pessimistic confidence 𝑝 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

and the optimistic confidence 𝑜 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 are defined as: 

𝑐𝑜𝑛𝑓𝑝 (𝐴 ⇀  𝐵) =
𝑚𝑖𝑛𝑠𝑢𝑝𝑝#(𝐴 ⇀  𝐵)

𝑚𝑎𝑥𝑜𝑝𝑝#(𝐴 ⇀  𝐵)
 

𝑐𝑜𝑛𝑓𝑜 (𝐴 ⇀  𝐵) =
𝑚𝑎𝑥𝑠𝑢𝑝𝑝#(𝐴 ⇀  𝐵)

𝑚𝑖𝑛𝑜𝑝𝑝#(𝐴 ⇀  𝐵)
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Definition 2.8: ([11]) Given a pair (𝑀1, 𝑀2) of quality measures for association 

rules, with the property 𝑀1(𝐴 ⇀ 𝐵) ≤  𝑀2(𝐴 ⇀ 𝐵), the inferior confidence and 

superior confidence are defined as 

(a) inferior confidence 

𝑐𝑜𝑛𝑓∗(𝐴 ⇀ 𝐵)  =
𝛼. 𝑀1(𝐴 ⇀ 𝐵)

(1 − 𝛽). 𝑀1(𝐴 ⇀  𝐵) + 𝛽 . 𝑀2(𝐴 ⇀  �̃�)
 

(b) superior confidence 

𝑐𝑜𝑛𝑓∗(𝐴 ⇀  𝐵)  =
𝛼. 𝑀2(𝐴 ⇀ 𝐵)

(1 − 𝛽). 𝑀1(𝐴 ⇀ 𝐵) + 𝛽 . 𝑀1(𝐴 ⇀ �̃�)
 

Remark 2.9 

𝑐𝑜𝑛𝑓𝑝(𝐴 ⇀  𝐵) ≤  𝑐𝑜𝑛𝑓𝑛 (𝐴 ⇀  𝐵) ≤  𝑐𝑜𝑛𝑓𝑜(𝐴 ⇀  𝐵) \\ 

𝑐𝑜𝑛𝑓∗(𝐴 ⇀  𝐵) ≤  𝑐𝑜𝑛𝑓∗(𝐴 ⇀  𝐵) 

3. FUZZY SETS AND FUZZY SET OPERATIONS 

A fuzzy set 𝐴 in a given universal set 𝑋 is a mapping from →  [0,1] , usually 

denoted as 𝐴 = { (𝑥, 𝐴(𝑥)): 𝑥 ∈  𝑋} where 𝐴(𝑥) is called the grade of 

membership of each 𝑥 ∈  𝐴 . The cardinality of a fuzzy set 𝐴 in 𝑋 is defined 

as |𝐴| = ∑ 𝐴(𝑥)𝑥∈ 𝑋  . 

A monotonic, associative and commutative mapping from [0,1]2 →  [0,1] is 

called 𝑡 − 𝑛𝑜𝑟𝑚 𝑇 , if it satisfies 𝑇(𝑥, 1) = 𝑥 for all 𝑥 ∈  [0,1] and a 

𝑡– 𝑐𝑜𝑛𝑜𝑟𝑚 𝑆 if it satisfies 𝑆 (𝑥, 0) = 𝑥 for all 𝑥 ∈  [0,1]. A fuzzy complement 𝑁 

is a decreasing mapping from [0,1] →  [0,1] satisfying (0) = 1 𝑎𝑛𝑑 
 𝑁(1) = 0 . 

For the fuzzy sets 𝐴 and 𝐵 in  , the complement, intersection and union can 

be defined by 

  𝑐𝑜 𝐴(𝑥) = �̃�(𝑥) = 𝑁(𝐴(𝑥)) 

 (𝐴 ∩𝑇 𝐵)(𝑥) = 𝑇(𝐴(𝑥), 𝐵(𝑥)) 

 (𝐴 ∪𝑆 𝐵)(𝑥) = 𝑆(𝐴(𝑥), 𝐵(𝑥)) 

4. FUZZY ASSOCIATION RULES 

For quantitative and categorical attributes, binary rules are not satisfactory. As 

association rule mining deals with only binary transaction data, a new approach 

emerged out using fuzzy sets to mine quantitative data frequently present in 

databases efficiently, called fuzzy association rules. 
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Let 𝑇 =  {𝑡1 , 𝑡2 , … , 𝑡𝑛 } be the transaction database (sets of objects) and let 

𝑡𝑖 represents the 𝑖𝑡ℎ transaction in 𝐷. Let 𝐼 = {𝑖1 , 𝑖2 , … , 𝑖𝑚 } be the universe of 

items. Each attribute 𝑖𝑘 will associate with several fuzzy sets. In order to 

represent the fuzzy sets associated with 𝑖𝑘, we use the notion 𝐹𝑖𝑘
=

{ 𝑓𝑖𝑘
1  , 𝑓𝑖𝑘

2  , … , 𝑓𝑖𝑘
𝑙 } where 𝑓𝑖𝑘

𝑗
 is the 𝑗𝑡ℎ fuzzy set in 𝐹𝑖𝑘

 . 

Definition 4.1: A fuzzy association rule is of the form: (𝑋 ∈  𝐹𝑋) ⇀  (𝑌 ∈  𝐹𝑌) 

where 𝑋, 𝑌 ⊂ 𝐼, 𝑋 ∩  𝑌 = ∅, 𝑋 = { 𝑥1 , 𝑥2 , … , 𝑥𝑝 } and 𝑌 =  { 𝑦1 , 𝑦2 , … , 𝑦𝑞} are 

attributes, and 𝐹𝑋 =  {𝑓𝑥1
 , 𝑓𝑥2

 , … , 𝑓𝑥𝑝
 } and 𝐹𝑌 =  {𝑓𝑦1

 , 𝑓𝑦2
 , … , 𝑓𝑦𝑞

} are fuzzy 

sets that characterize 𝑋 and 𝑌 respectively. For each fuzzy set 𝑓𝑖𝑘
𝑙  we can 

associate a membership function 𝜇(𝑓𝑖𝑘
𝑙 ): 𝑑𝑜𝑚(𝑖𝑘) →  [0,1] corresponding to the 

attribute 𝑖𝑘. Fuzzy sets and their corresponding membership functions have to be 

defined by domain experts. 

Now we define the support and confidence measures of fuzzy association 

rules, extending the crisp association rules. Here we work on simple association 

rules 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 in which 𝐴 and 𝐵 are both attributes, not the sets of 

attributes. 

4.1. Fuzzy Support Measures 

Definition: 4.2: The fuzzy support count and respectively fuzzy support of a 

fuzzy association rule 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 is usually defined as: 

𝑓𝑠𝑢𝑝𝑝# ( 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉) = ∑ FA ∩T FB(x)

x∈T

 

and respectively 

𝑓𝑠𝑢𝑝𝑝( 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉) =
∑ FA ∩T FB(x)x∈T

|𝑇|
 

Definition 4.3: Let 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 be a fuzzy association rule. Then we 

define: 

(a) fuzzy minimum support:  

𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
∑ (𝐹𝐴 ∩𝑇 𝐹𝐵)(𝑥)𝑥∈𝑇

|𝑇|
 

(b) fuzzy maximum opposition: 

𝑓𝑚𝑎𝑥𝑜𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
∑ (𝐹�̃� ∪𝑆 𝐹𝐵)(𝑥)𝑥∈𝑇

|𝑇|
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(c) fuzzy minimum opposition: 

𝑓𝑚𝑖𝑛𝑜𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
∑ (𝐹𝐴 ∩𝑇 𝐹�̃�)(𝑥)𝑥∈𝑇

|𝑇|
 

(d) fuzzy maximum support: 

𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
∑ (𝐹�̃� ∪𝑆 𝐹𝐵)(𝑥)𝑥∈𝑇

|𝑇|
 

4.2. Fuzzy Average Support Measures 

Studying the above definitions in view of averaging operators we define another 

two measures, fuzzy average support and fuzzy average opposition of the fuzzy 

association rule. 

Definition 4.4: The fuzzy average support and fuzzy average opposition of a 

fuzzy association rule 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 is defined as: 

(a) Fuzzy average support:  

𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )

=
∑ [𝜆(𝐹�̃� ∪𝑆  𝐹𝐵)(𝑥) + (1 − 𝜆 )(𝐹𝐴 ∩𝑇 𝐹𝐵)(𝑥)]𝑥∈ 𝑇

|𝑇|
 

 where, 𝜆 ∈  [0,1]. 

(b) fuzzy average opposition: 

𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )

=
∑ [𝜆(𝐹𝐴 ∪𝑆  𝐹�̃�)(𝑥) + (1 − 𝜆 )(𝐹𝐴 ∩𝑇 𝐹𝐵)(𝑥)]𝑥∈ 𝑇

|𝑇|
 

 where, 𝜆 ∈  [0,1]. 

Similarly we can define the corresponding count measures: 

𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝# , 𝑓𝑚𝑎𝑥𝑜𝑝𝑝# , 𝑓𝑚𝑖𝑛𝑜𝑝𝑝# , 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝# , 𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝# , 𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝# . 

4.3. Fuzzy Confidence Measures 

Definition 4.5: The fuzzy confidence of a fuzzy association rule 〈 𝐴, 𝐹𝐴〉 ⇀
〈 𝐵, 𝐹𝐵〉 is defined as 

 𝑓𝑐𝑜𝑛𝑓(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉) =
∑ (𝐹𝐴 ∩𝑇 𝐹𝐵)(𝑥)𝑥∈ 𝑇

∑ 𝐹𝐴(𝑥)𝑥∈ 𝑇
 

Now we define fuzzy version of 𝑐𝑜𝑛𝑓𝑛, 𝑐𝑜𝑛𝑓𝑝, 𝑐𝑜𝑛𝑓𝑜 defined by 

Hullermeier, [9] and DeCook et al.,[5]. 
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Definition 4.6: The fuzzy confidence measures 𝑛 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑝 −
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and 𝑜 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 of a fuzzy association rule 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉  
is defined as: 

(a) fuzzy 𝑛 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

𝑓𝑐𝑜𝑛𝑓𝑛 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )

𝑓𝑚𝑖𝑛𝑜𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )
 

(b) fuzzy pessimistic confidence 

𝑓𝑐𝑜𝑛𝑓𝑝 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉)

𝑓𝑚𝑎𝑥𝑜𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉)
 

(c) fuzzy optimistic confidence 

𝑓𝑐𝑜𝑛𝑓𝑜 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉) =
𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉)

𝑓𝑚𝑖𝑛𝑜𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )
 

Now we define two more confidence measure fuzzy 𝑚 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 and 

fuzzy 𝑚𝑛 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

Definition 4.7: The fuzzy confidence measure 𝑚 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 of a fuzzy 

assocaition rule 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 is defined as: 

𝑓𝑐𝑜𝑛𝑓𝑚 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =
𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )

𝑓𝑚𝑎𝑥𝑜𝑝𝑝\#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 
 

Definition 4.8: The fuzzy confidence measure 𝑚𝑛 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 of a fuzzy 

assocaition rule 〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 is defined as: 

𝑓𝑐𝑜𝑛𝑓𝑚𝑛 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) =  
𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 )

𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝#(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉) 
 

Remark 4.9: 

(i) For 𝜆 = 0, 𝑓𝑐𝑜𝑛𝑓𝑚𝑛 = 𝑓𝑐𝑜𝑛𝑓𝑛 

(ii) For 𝜆 = 1, 𝑓𝑐𝑜𝑛𝑓𝑚𝑛 = 𝑓𝑐𝑜𝑛𝑓𝑚 

Definition 4.10: [Refer Definition 2.8] The fuzzy inferior confidence and 

respectively fuzzy superior confidence of the fuzzy association rule 〈 𝐴, 𝐹𝐴〉 ⇀
〈 𝐵, 𝐹𝐵〉 is defined as: 

(a) fuzzy inferior confidence 

 𝑓𝑐𝑜𝑛𝑓∗〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 

=
𝛼. 𝑀1 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉)

(1 − 𝛽). 𝑀1(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) + 𝛽 . 𝑀2(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹�̃� 〉)
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(b) superior confidence 

 𝑓𝑐𝑜𝑛𝑓∗〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 

=
𝛼. 𝑀2 (〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉)

(1 − 𝛽). 𝑀2(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹𝐵〉 ) + 𝛽 . 𝑀1(〈 𝐴, 𝐹𝐴〉 ⇀ 〈 𝐵, 𝐹�̃� 〉)
 

 with 𝛼 , 𝛽 ∈  [0,1]. 

5. INTO THE SEMANTICS OF THE DEFINED MEASURES 

Based on the confusion matrix terminology Table1, we divide the transaction into 

true positive (TP), true negatives (TN), False Positive (FP) and False Negative 

(FN) examples. For an association rule ⇀ 𝐵 , where 𝐴 is the antecedent and 𝐵 is 

the consequent of the rule, TP is the number of instances which match with rule 

antecedent and consequent, TN is the number of instances which match rule 

antecedent and consequent FP is the number of instances which match only with 

rule antecedent and FN is the number of instances which match only with rule 

consequent. 

Table 1: Confusion Matrix 

So we can view 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝 as the rate of true positive example, 𝑓𝑚𝑎𝑥𝑜𝑝𝑝 

as the rate of true negative example, 𝑓𝑚𝑖𝑛𝑜𝑝𝑝 as the rate of false positive 

example, 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝 as the rate of false negative example. Thus 𝑓𝑚𝑖𝑛𝑜𝑝𝑝 is 

termed as positive error rate and 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝 is termed as negative error rate. 

𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝 and 𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝 represent the rate of presence and absence of items 

respectively. Also using different fuzzy confidence measures which are defined 

using fuzzy support measures, we can effectively explains the precision, 

specifity, sensitivity of each association rules. 

6. PROPERTIES 

6.1. Properties of Fuzzy Support and Confidence Measures 

Remark 6.1: The measures 𝑓𝑐𝑜𝑛𝑓∗ and 𝑓𝑐𝑜𝑛𝑓∗ defined above represent a 

general and integrated frame for the quality measures as most of them can be 

obtained particularizing 𝑇, 𝑆, 𝑁, 𝛼 , 𝛽 , 𝑀1, 𝑀2. Thus we get the following 

Actual class 
Predicted class 

YES NO 

YES TP: True Positive FP: False Negative 

NO FP: False Positive TN: True Negative 
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(a) For 𝑀1 = 𝑀2 = 𝑓𝑠𝑢𝑝𝑝#, 𝛼 = 𝛽 =
1

2
, 𝑇(𝑎, 𝑏) = 𝑎𝑏 𝑎𝑛𝑑 𝑁(𝑎) = 1 − 𝑎 , we 

have: 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓 

(b) For 𝑀1 = 𝑀2 = 𝑓𝑠𝑢𝑝𝑝#, 𝛼 = 𝛽 = 1 we have: 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓𝑛 

(c) For 𝑀1 = 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝#, 𝑀2 = 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝# 𝑎𝑛𝑑 𝛼 = 𝛽 = 1 we have: 

  𝑓𝑐𝑜𝑛𝑓∗  = 𝑓𝑐𝑜𝑛𝑓𝑝 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓𝑜 

(d) For 𝑀1 = 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝#, 𝑀2 = 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝# 𝑎𝑛𝑑 𝛼 = 𝛽 =
1

2
 we have: 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑚𝑎𝑥𝑠𝑢𝑝𝑝 

(e) For  𝑀1 = 𝑓𝑚𝑖𝑛𝑜𝑝𝑝#, 𝑀2 = 𝑓𝑚𝑎𝑥𝑜𝑝𝑝#, 𝛼 = 𝛽 =
1

2
 𝑎𝑛𝑑 𝑁(𝑎) = 1 − 𝑎 

we have: 

  𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑚𝑖𝑛𝑜𝑝𝑝 

 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑚𝑎𝑥𝑜𝑝𝑝 

6.2. Properties of Fuzzy Average Support and Fuzzy Average Opposition 

Measures 

Using the new measures, fuzzy average support and fuzzy average opposition we 

arrive at the following: 

(a) For    𝑀1 = 𝑀2 = 𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝#, 𝛼 = 𝛽 =
1

2
, 𝑇 (𝑎, 𝑏) = 𝑎𝑏, 𝑆(𝑎, 𝑏) = 𝑎 +

𝑏 − 𝑎𝑏 𝑎𝑛𝑑 𝑁(𝑎) = 1 − 𝑎 , we have: 

(i) For 𝜆 = 0, 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓 

(ii) For 𝜆 = 1, 

1

𝑓𝑐𝑜𝑛𝑓∗
=  

1 − 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝

1 − 𝑓𝑚𝑖𝑛𝑜𝑝𝑝
+ 1 =

1

𝑓𝑐𝑜𝑛𝑓∗
 

(b) For 𝑀1 = 𝑀2 = 𝑓𝑎𝑣𝑟𝑔𝑠𝑢𝑝𝑝# 𝑎𝑛𝑑 𝛼 = 𝛽 = 1, we have 

(i) For 𝜆 = 0, 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓𝑛 = 𝑓𝑐𝑜𝑛𝑓𝑚𝑛 

(ii) For 𝜆 = 1, 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓𝑚 = 𝑓𝑐𝑜𝑛𝑓𝑚𝑛 
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(c) For 𝑀1 = 𝑀2 = 𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝#, 𝛼 = 𝛽 =
1

2
, 𝑇(𝑎, 𝑏) = 𝑎𝑏, 𝑆(𝑎, 𝑏) = 𝑎 + 𝑏 −

𝑎𝑏 𝑎𝑛𝑑 𝑁(𝑎) = 1 − 𝑎 , we have: 

(i) For 𝜆 = 0, 𝑓𝑐𝑜𝑛𝑓∗  = 𝑓𝑐𝑜𝑛𝑓∗  = 1 + 𝑓𝑐𝑜𝑛𝑓 

(ii) For 𝜆 = 1, 

1

𝑓𝑐𝑜𝑛𝑓∗
=

1 − 𝑓𝑚𝑖𝑛𝑜𝑝𝑝

1 − 𝑓𝑚𝑖𝑛𝑠𝑢𝑝𝑝
+ 1 =

1

𝑓𝑐𝑜𝑛𝑓∗
 

(d) For 𝑀1 = 𝑀2 = 𝑓𝑎𝑣𝑟𝑔𝑜𝑝𝑝# 𝑎𝑛𝑑 𝛼 = 𝛽 = 1, we have 

(i) For 𝜆 = 0, 

𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ =
1

𝑓𝑐𝑜𝑛𝑓𝑛
=

1

𝑓𝑐𝑜𝑛𝑓𝑚𝑛
 

(ii) For  𝜆 = 1, 

𝑓𝑐𝑜𝑛𝑓∗ = 𝑓𝑐𝑜𝑛𝑓∗ =
1

𝑓𝑐𝑜𝑛𝑓𝑚
=

1

𝑓𝑐𝑜𝑛𝑓𝑚𝑛
 

7. CONCLUSION 

In this paper we extend some quality measures defined for crisp association rule 

to fuzzy association rule. Here we study about the transaction types and redefined 

their terminologies as true positive, true negative, false positive, false negative 

examples to understand the true semantics of the transactions. Based on this, we 

defined various support and confidence measures and extended to fuzzy average 

support and opposition measures. We also analyzed the semantics of these 

measures and studied some of the properties of the newly defined measures 

comparing the existing ones. 
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