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Abstract: This paper proposes an approach of Internal Model Control (IMC) for the linear discrete-timeover-actuated
systems with outputs more than inputs. The proposed IMC, which is based on a specific inversion principle, is the
extension of to the case of square systems, in the controller design, a new method is presented to add a virtual outputs
of the process to obtain a square transfer matrix and to eliminate the latter in the programming part . To guarantee the
robust stability of the system and disturbance rejection , the controller design procedure is proposed to obtain the
wish control.

A linear matrix inequality (LMI) approach is using to analyse stability and stabilization condition which is necessary
and sufficient of linear discrete-time over-actuated systems. Then we introduce a new matrix variable (P) and we
establish the necessary conditions of LMI for stabilizing controller design. Simulation illustrate the effectiveness of
the proposed method for non-square multivariable processes.

Keywords: Internal Model Control; Discrete-time over-actuated systems; Stability; Linear Matrix Inequality (LMI);
Disturbance rejection.

1. INTRODUCTION

The economic growth inherent to our nowadays society pushes the industries toward better performances. Thus,
the multiple objectives to track become hard to achieve without compromises. In the context, Several important
multivariable system control approaches have been developed such as the internal model control, which has the
potential to ensure obtaining the desired performance in the presence of disturbance in the system and is
characterized by its robustness and simplicity [6,10]. In the sense that, the considered system has more actuated
degrees of freedom than control inputs.

In the last years, researches in the field of over-actuated systems control have led to a significant advance
and several control methodologies have been proposed. Yao [12] proposed a decoupling internal model control
for non-square systems by using the pseudo-inverse and approximation time delays by Taylor expansion diagrams,
this method had good performance about dynamic decoupling but the control systems was sensitive to the
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change of time delays. Chen [15] modified the internal model control of over-actuated systems by inserting
compensated terms to remove the unrealizable factors from the obtained controller, but the controller parameters
is the compromise between tracking performance and robustness.

In order to contribute to this researches, we propose in this paper to apply an interesting control approach
called internal model control (IMC), to a class of linear discrete over-actuated systems.

The IMC structure was proposed by Garcia and Morari (1982) for Single-Input Single-Output systems
(SISO) and then it was extended to Multi-Input Multi-Output (MIMO) systems (1985) [1,3,7,12]. The study was
applied to the case of multivariable sampled systems having a number of inputs equal to number of output [4].
The obtained results are very encouraging in linear continuous and discrete cases [3,4], which lead us to extend
the study to multivariable sampled systems having processes with more outputs than inputs or more inputs than
outputs ,these systems are known as the non-square systems [14].The problem of controlling a process with an
unequal number of manipulated and controlled variables arises fairly often. The dominant control strategy for
non-square systems is to transform them to corresponding square systems [5,9,13].

In this paper, in the hand, a new IMC controller approach is presented for non-square multivariable processes
with outputs more than inputs, these systems are called: over-actuated systems. In the IMC controller design
procedure a simple method designed to uses virtual outputs method [8].In the other hand, the tracking, inversion
and stabilization problems of discrete multivariable over-actuated systems are considered.

The analysis of the stability of elements of the IMC has been conducted in the literature by numerous
fundamental researches that depend on the type of systems considered and the scope. There are many methods
studying the stability of linear discrete multivariable systems. These stability criteria can be classified into two
main categories namely the frequency criterion using the notion of the characteristic equations and the time
criterion based on Lyapunov theory [19]. For linear discrete-time over-actuated systems, we consider stability
and stabilization conditions using matrix inequality approach (LMI) [20].

This paper is organized as follows. In Section II we provide first an overview of the IMC basic structure.
Secondly, we present the main problem and then we proposeour solution by describing the modification we have
introduced to this IMC structure so that it becomes applicable to discrete over-actuated systems. In section III, an
example is employed to illustrate the effectiveness of the proposed method control. Some conclusions are drawed
in section VI.

Case studies demonstrate the effectiveness of the proposed method for non-square multivariable
processes.Before presenting the main results of this work, we first introduce some concepts that are important to
their later development.

2. PRELIMINARIES

In this section, we present the main contribution of this work by showing the basic internal model control
scheme of discrete fully-actuated systems. Secondly, we present the main problems and then we explain the
design steps of the proposed IMC modified by describing the changes we have introduced to this IMC basic
structure so that it becomes applicable to linear discrete over-actuated systems.

2.1. Basic Internal Model Control Structure

Given a (m × n) multivariable process with the matrix transfer function G(z), where Y(z) is a (m × 1) output
vector, U(z) a (n×1) input vector, v(z) a (n × 1) disturbance vector and r(z) is a (n×1) reference input vector,
consider the standard structure of internal model control (IMC) as shown in Figure 1, where M(z) is process
model, F(z) a filter which can be inserted to achieve a desired degree of robustness and C(z) is the controller
matrix transfer function.
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This control structure defined in Figure. 1 leads us to the following equations:
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(1)

2.2. The Problem of Inversion of Over-actuated Systems

C(z) is the proposed controller in this structure; it is the inverse of the chosen model ( )M z , if is realizable in
order to ensure perfect set-point tracking. Achieving this inversion is the basic problem associated to the IMC
approach. In fact, this difficulty of direct model inversion for several physical systems is due to the denominator
order which is usually greater than the numerator order on the model expression or the presence of unstable
zeros or/and time delays [3,4,5] and too in the case of over-actuated systems.

The realization of the direct model’s inverse is difficult or not possible in the case of the over-actuated
systems, because the model must provide an accurate description of the process dynamic and characteristic. For
the over-actuated systems such that the number of control inputs is equal to n and the number of outputs is equal
to m, the transfer matrix of the process is of dimension (m×n) making it a rectangular matrix, so the model can’t
be invertible.

In order to remedy this problem of inversion of model M(z), it is necessary to use inversion techniques, we
quote for example methods, virtual outputs [8,12], non-square effective relative gain (NERGA) [16], Moore-
Penrose pseudo-inverse technique [17,18].

We design an approximate inverse of the model plant by using the virtual outputs method and we show
after the modification of the basic IMC structure.

2.3. Proposed Controller Design of Discrete Over-actuated Systems

In this internal model control structure, the controller can be obtained by the inverse method proposed in [5,11].

The IMC controller ( )C z is showing in Figure 2 :

The inversion method is based on the gain matrix A1, in order to realize an inverse for the system model.

1A is a diagonal matrix; its coefficients are selected to satisfy the conditions of stability [8, 1, 5].

The expression of the controller ( )C z is given by the following equation :

-1
1 1( ) ( ( ))nC z A I A M z� � (2)

Figure 1: IMC structure of multivariable discrete fully-actuated systems
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A1 ischosen as the following expression 1 nA I�� � , to ensure stability for the controller, where In is the
identity matrix and � is the chosen coefficients.

It is necessary to analyze the internal stability and robust stability of the proposed control system to derive the
tuningregion of parameter A1. When there exists the largest uncertainty in the control system, we need tune the
control gain matrix A1 is to be the largest values to hold the system robust stability. For the stable linear discrete

over-actuated process ( )G z ,the IMC structure as shown in Figure 1 is internally stable if and only if ( )C z  is stable.

2.4. The New Imc Structure of Over-actuated Systems

The suggested solution of controlling them consists of the utilization of a square model and then eliminating the
excess outputs which are applied to the system.

In fact, thetransfer matrix ( )G z of over-actuated system expressed by (3) is of dimension ( ) , ( )m n n m� � ,
with outputs more than inputs, where m is the system’s outputs number and n  is the system’s inputs number.

11 12 1
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�

(3)

The new IMC structure has the specificity of insertion of the two blocks as shown in Figure 3. The first
block (added virtual outputs)use a virtual outputs by adding (( - ) )n m m�  lines to the transfer matrix of the over-

actuated system, up to have a square transfer matrix of dimension ( )m m� and that can be reversed [7].The model

process ( )M z is chosen close to ( )G z , for this reason, the added (( - ) )n m m� transfer functions can be first-order
systems in order to simplify the study and to avoid the inversion problems.

The obtained matrix ( )M z  is expressed by
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Figure 2: Structure for model inversion
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The Secondblock (elimination of (n-m) outputs) is added to the basic IMC structure, is used toeliminate the
excess virtual outputsand the programming part we will remove them.

Figure 3: IMC structure for multivariable over-actuated discrete system

With the changes we have introduced to the basic IMC structure so that it becomes applicable to discrete
over-actuated systems.

2.5. Study of the Stability of the Corrector

The IMC controller ( )C z is represented by the following state space equation:

� � � �� 1 Ac k x k� � (5)

Where ( ) nx z � �  is the descriptor variable, n nA �� � is constant. The system (5) is stable (i.e., all trajectories

converge to zero) if and only if there exists a positive definite matrix 0TP P� �  such that

� �0 , - 0TP A PA P� � (6)

The requirement 0P� ,� �- 0TA PA P �  is what we now call a Lyapunov inequality on P, which is a special

form of an LMI. Lyapunov also showed that this first LMI could be explicitly solved.

Where A is given matrices of appropriate sizes, and TP P�  is the variable.

3. APPLICATION

In order to show the simulation results to validate the proposed internal model control of multivariable over-
actuated systems; let’s consider the following systems with three inputs and two outputs.

With � �1 2 3u ( )
T

z u u u� is the system input vector, � �1 2( )
T

y z y y�  is the system output system and the reference
vector r is chosen step of amplitude 1.

The system can be described by:

1 12 2
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2 2
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(7)
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The model can be described by :

2 2

11 12 131 1 1
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2 2
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(8)

We can apply the study developed in [4], therefore the bilinear method of discretization are applied for the

plant ( )G s and the model ( )M s .Using LMI approach, guaranteeing quadratic stability of the internal model

controller ( )C z each is described by equation (5). LMIs has been performed in MATLAB environment.

Solving the LMI in equation (6), we obtain a matrix P of dimension (45 45)� , This matrix ensures the
stability of our system.

Using LMI approach,Theinterval of the gain A1 which ensures the stability of the controlleris

110 70m mI A I� � � �

In our case, the chosen matrix 1A is equal to 1 350A I� � , to ensure the stability of the system G(z) and a

sampling period 0.05eT s� .

3.1. Case of Absence of Disturbance

For a unit step reference applied at 0t s�  and a sampling period 0.05eT s� , let’s consider the case characterized
by the absence of disturbance.

We obtain the following simulation results:

Figure 4: IMC control input u1
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Figure 6: IMC control input u3

Figure 5: IMC control input u2

With the simulation results we can clearly see a significant peak of the input U1 (Figure 4) which appears
at the initial instant, this peak is due to the multiplication of the input signal by the matrix gain A1, then it is
eliminated by the feedback effect.

The evolution of output signal are presented in Figure 7 and Figure 8.

The simulation results show that the system output reach perfectly the reference signal. The IMC
approach is applied maintaining the stability of the chosen sampled non-square systems. In order to show the
accuracy and the disturbance rejection of our proposed IMC method, let’s consider the case of a disturbed
system.
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3.2. Case of Disturbed System

For the same reference and the sampling period 0.05eT s� , the simulation results in the case of the presence of
an external disturbance in the form at a unit step with amplitude 1 and which appears at 1.5t s�  are as follows:

From these results, we can notice that the control structure reject the external disturbance
and the IMC approach is capable to ensure stability. Our proposed IMC structure gives a perfect reference
tracking.

Figure 8: The step response output y2

Figure 7: The step response output y1
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Figure 9: IMC control input U1 with disturbance

Figure 10: IMC control input U2 with disturbance

Figure 11: IMC control input U3 with disturbance
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5. CONCLUSIONS AND FURTHER WORK

The paper presents a new technique for control of over-actuated multivariable process with outputs more than
inputs. The proposed approach IMC ensures stability and preserves system performances despite the external
disturbance by using matrix inequality approach.

The Internal Model Control (IMC) which due to its simple design, excellent robustness, and good control
performance shows the strong vigor to solve the control problems of the multivariable systems. Satisfactory
results have been obtained with the internal multivariable inputs -outputs.

Figure 13: The step response output y2 with disturbance

Figure 12: The step response output y1 with disturbance



149 International Journal of Control Theory and Applications

Internal Model Control of MIMO Non-Square discrete Systems: Design and Stability Analysis

REFERENCES

[1] M. Naceur, “Sur la Commande par Modèle Interne des Systèmes Dynamiques Continus et Echantillonnés”, Thèse de
doctorat, Ecole Nationale d’Ingénieurs de Tunis, February 2008.

[2] A. Mezzi, D. Soudani and M. Benrejeb, “On the Internal Model Control of Multivariable linear Under actuated Systems”,
Accepted, multi-conference on Computational Engeniering in Systems Applications, CESA, Marrakech, 2015.

[3] C. Othman, B. Ikbel and D. Soudani, “Application of the Internal Model Control Method for the stability study of the
uncertain sampled systems,” IEEE, Tunis, International Conference on Electrical Sciences and Technologies(CISTEM),
Tunis, pp.1-7, November 2014.

[4] H. Marwa and D. Soudani, “Internal Model Control of Multivariable Discrete-Time Systems”, IEEE, 7th International
Conference on Modelling, Identification and Control (ICMIC 2015),pp.1-6, Sousse , December 2015.

[5] I. Bejaoui, I. Saidi and D. Soudani, “New internal model controller design for discrete over-actuated multivariable system”,
IEEE, 4th International Conference on Control Engeniering and Information Technology (CEIT),pp.1-6, Hamamet, December
2016.

[6] N. Touati, D. Soudani, M. Naceur and M. Benrejeb, “On the internal model control of multivariables linear systems”,
International Conference on Science and Technique of Automatic Control and Computer Engeniering, STA, Sousse, 2011.

[7] M. Morari and C.E Garcia., “Internal model control l. A Unifying Review and Some Results”, Ind. Eng. Chem. process
Des. Dev.,21, 403-411, 1982.

[8] A. Fossard , “Commande des systémes multidimensionnels”, Dunod, Paris 1972.

[9] P. Chen, L. Ou, D. Gu and W. Zhang, “Robust Analytical Scheme for Linear Non-square Systems”, IEEE, Shanghai, P.R.
China, vol. A247, pp.1890-1895, [Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference], December 2009.

[10] J. Chen, B. Zhang and X. Qi “A new control method for MIMO first order time delay non-square systems”, Journal of
Process Control, 21(4), pp: 538-546 , 2011.

[11] M. Benrejeb, M. Naceur and D. Soudani, “On an Internal Model Controller based on the Use of a Specific Inverse Model”,
International Conference On Machine Intelligence, ACIDCA, Tozeur, 2005.

[12] M. Morari and E. Zafiriou., Robuet Process Control, Ed. Prentice Hall, Englewood cliffs,N.J, 1989.

[13] D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “MPC for tracking of piece-wise constant references for constrained
linear systems”, in Proc. IFAC World Congress, 2005.

[14] J. Qibing, Q. Ling and Y. Qin “New Internal Model Control Method for Multivariable Coupling System with Time Delays”,
IEEE International Conference on Automation and Logistics Shenyang, pp 1307-1312 China, August 2009.

[15] H. Trebiber, “Multivariable Control of Non-square Systems. Industrial & Engineering Chemistry”, Process Design and
Development, 23 (4), 854-857, January1984.

[16] L. Yunhui, L. Hongbo, C. Wenjian, J. Zhiping, J. Lei3 and S. Ruifu “Control Configuration Selection Based on RNGA for
Non-square Multivariable Processes”, IEEE Proceedings of the 31st Chinese Control Conference, vol. 44, pp.4722-4727,
July 2012.

[17] S. Dasgupta, S. Sadhu and T.K. Ghoshal“, Internal Model Based V-Norm Decoupling Control for Four Tank System”,
IEEE International Conference on Control, Instrumentation, Energy & Communication (CIEC), pp 31-35, Calcutta ,2014.

[18] J. Qibing, Q. Ling and Y. Qin, “New internal model control method for multivariable coupling system with time delays”,
IEEE International Conference on Automation and Logistics, Shenyang, pp 1307-1312, China, August 2009.

[19] L. Yunhui, L. Hongbo, C. Wenjian, J. Zhiping, J. Lei and S. Ruifu, “Control configuration selection based on RNGA for
non-square multivariable processes”, IEEE Proceedings of the 31st Chinese Control Conference, vol. 44, pp.4722-4727,
July 2012.

[20] S. Dussy,“Robust diagonal stabilization: An LMI approach,”IEEE Transactionson Automatic Control, 45 (1), 125-128,
January 2000.

[21] A.T. Azar and S. Vaidyanathan, Chaos Modeling and Control Systems Design, Springer, Berlin, Germany, 2015.



International Journal of Control Theory and Applications 150

Islem Bejaoui, Imen Saidi and Dhaou Soudani

[22] A.T. Azar and S. Vaidyanathan, Advances in Chaos Theory and Intelligent Control, Springer, Berlin, Germany, 2016.

[23] S. Vaidyanathan and C. Volos, Advances and Applications in Nonlinear Control Systems, Springer, Berlin, Germany,
2016.

[24] S. Vaidyanathan and C. Volos, Advances and Applications in Chaotic Systems, Springer, Berlin, 2016.

[25] S. Vaidyanathan and C. Volos, Advances in Memristors, Memristive Devices and Systems, Springer, Berlin, 2017.

[26] S. Vaidyanathan and C.H. Lien, Applications of Sliding Mode Control in Science and Engineering, Springer, Berlin, 2017.

[27] S. Vaidyanathan, “A novel 3-D conservative chaotic system with sinusoidal nonlinearity and its adaptive control”,
International Journal of Control Theory and Applications, 9 (1), 115-132, 2016.

[28] S. Vaidyanathan and S. Pakiriswamy, “A five-term 3-D novel conservative chaotic system and its generalized projective
synchronization via adaptive control method”, International Journal of Control Theory and Applications, 9 (1), 61-78,
2016.

[29] V.T. Pham, S. Jafari, C. Volos, A. Giakoumis, S. Vaidyanathan and T. Kapitaniak, “A chaotic system with equilibria
located on the rounded square loop and its circuit implementation,” IEEE Transactions on Circuits and Systems-II: Express
Briefs, 63 (9), 2016.

[30] S. Vaidyanathan and S. Sampath, “Anti-synchronisation of identical chaotic systems via novel sliding control and its
application to a novel chaotic system,” International Journal of Modelling, Identification and Control, 27 (1), 3-13, 2017.

[31] S. Vaidyanathan, K. Madhavan and B.A. Idowu, “Backstepping control design for the adaptive stabilization and
synchronization of the Pandey jerk chaotic system with unknown parameters,” International Journal of Control Theory
and Applications, 9 (1), 299-319, 2016.

[32] R.K. Goyal, S. Kaushal and S. Vaidyanathan, “Fuzzy AHP for control of data transmission by network selection in
heterogeneous wireless networks,” International Journal of Control Theory and Applications, 9 (1), 133-140, 2016.

[33] C.K. Volos, D. Prousalis, I.M. Kyprianidis, I. Stouboulos, S. Vaidyanathan and V.T. Pham, “Synchronization and anti-
synchronization of coupled Hindmarsh-Rose neuron models,” International Journal of Control Theory and Applications,
9 (1), 101-114, 2016.

[34] S.M.B. Mansour and V. Sundarapandian, “Design and control with improved predictive algorithm for obstacles detection
for two wheeled mobile robot navigation,” International Journal of Control Theory and Applications, 9 (38), 37-54, 2016.

[35] A. Ouannas, A.T. Azar and S. Vaidyanathan, “A robust method for new fractional hybrid chaos synchronization,”
Mathematical Methods in the Applied Sciences, 40 (5), 1804-1812, 2017.

[36] S. Vaidyanathan and S. Sampath, “Anti-synchronisation of identical chaotic systems via novel sliding control and its
application to a novel chaotic system,” International Journal of Modelling, Identification and Control, 27 (1), 3-13, 2017.

[37] A. Ouannas, A.T. Azar and S. Vaidyanathan, “New hybrid synchronisation schemes based on coexistence of various types
of synchronisation between master-slave hyperchaotic systems,” International Journal of Computer Applications in
Technology, 55 (2), 112-120, 2017.

[38] S. Vaidyanathan, “A conservative hyperchaotic hyperjerk system based on memristive device,” Studies in Computational
Intelligence, 701, 393-423, 2017.

[39] S. Vaidyanathan, V.T. Pham and C. Volos, “Adaptive control, synchronization and circuit simulation of a memristor-based
hyperchaotic system with hidden attractors,” Studies in Computational Intelligence, 701, 101-130, 2017.

[40] B. Raj and S. Vaidyanathan, “Analysis of dynamic linear memristor device models,” Studies in Computational Intelligence,
701, 449-476, 2017.




