
A REPRESENTATION FOR POSITIVE FUNCTIONALS OF

A BROWNIAN MOTION AND AN APPLICATION

P. SUNDAR AND MING TAO

Abstract. The aim of this work is to provide a simpler proof of the Boué-
Dupuis variational representation for positive functionals of a Brownian mo-
tion. Earlier proofs have relied on results concerning measurable selections
whereas our approach uses functional stochastic differential equations. An
application of this variational formula to a Wentzell-Freidlin type large devi-
ations result in the context of non-Newtonian fluid flow is briefly discussed.

1. Introduction

The Boué-Dupuis variational representation formula [1] states that if W is a
d-dimensional Brownian motion, then for any bounded, Borel-measurable function
f : C([0, 1] : Rd) → R,

− logE
{

e−f(W )
}

= inf
v
E

[

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)]

, (1.1)

where infimum is taken over all processes v that are progressively measurable with
respect to the augmented filtration Ft, defined in the next section. Here, the | · |
refers to the d-dimensional Euclidean norm. Budhiraja and Dupuis [2] proved an
infinite-dimensional extension of the representation whenW is a Brownian motion
that takes values in a separable Hilbert spaceH , and has a nuclear covariance form
Q.

The impetus to study this representation arises from the large deviations theory.
It is well-known that the large deviation principle (LDP) is equivalent to the
Laplace principle (LP) when the underlying random variables take values in a
Polish space. Indeed, the origins of the Laplace principle can be traced to a result
of Laplace which states that given an h ∈ C([0, 1]),

lim
n→∞

1

n
log

∫ 1

0

e−nh(x) dx = − min
x∈[0,1]

h(x). (1.2)

Motivated by Equation (1.2), Varadhan’s Lemma and Bryc’s converse [14] show
that for a family {Xǫ : ǫ > 0} of random variables defined on a probability space
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(Ω,F , P ), and taking values in a Polish space (i.e. a separable, complete metric
space) E, the following two statements are equivalent:
(i) The family {Xǫ : ǫ > 0} satisfies LDP with rate function I.

(ii) ∀ real-valued h ∈ Cb(E), lim
ǫ→0

ǫ logE
{

e−
1
ǫ
h(Xǫ)

}

= − inf
x∈E

{h(x) + I(x)} .
(1.3)

If Xǫ is a Borel measurable function of a Wiener processW , then the usefulness
of the variational representation (1.1) in proving the Laplace principle (1.3) is quite
clear. It is worthwhile to note that Borel measurable functions of W arise often
as a representation for pathwise unique strong solutions of stochastic differential
equations (driven by a Brownian motion W ).

In the paper by Boué and Dupuis [1], the upper bound

− logE
[

e−f(W )
]

≤ inf
v
E

[

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)]

.

is proved using the Girsanov transformation and relative entropy in a relatively
easy manner. However, the corresponding lower bound surprisingly requires results
on measurable selections and more work. We bring about a slight simplification of
the proof of the lower bound by using functional differential equations and stan-
dard techniques of stochastic analysis. Our proof holds in the infinite-dimensional
context as well. The variational representation has led to fruitful studies on the
LDP for equations of fluid dynamics (see [10, 13] ). A new application of the
variational formula to Wentzell-Freidlin type LDP for the two-dimensional non-
Newtonian fluid flow in bounded domains is also briefly outlined in this paper.

In section 2, we recall the basic definitions and preliminary results. The proof
of the upper bound for the representation formula is due to Boué and Dupuis,
and is presented in section 3 to make the paper reasonably self-contained. The
new proof of the lower bound is given in section 4. The large deviation principle
is introduced in section 5. It also presents a set of sufficient conditions due to
Budhiraja and Dupuis that yield the Laplace principle. In section 6, we establish
the Wentzell-Freidlin type LDP for non-Newtonian fluid flow in the presence of a
small multiplicative noise term.

2. Definitions and Basic Results

We will work on the Wiener space (Ω,F , µ) where Ω = C([0, 1] : Rd), F is
the Borel σ-field for Ω under the topology of uniform convergence, and µ is the
d-dimensional Wiener measure. Let W be the canonical d-dimensional Wiener
process given by Wt(ω) = ω(t) for all t ∈ [0, 1]. Define (Ft) as the smallest
filtration that contains the σ-field σ(Ws : 0 ≤ s ≤ t) and subsets of µ-null sets of
F . Then W is a Wiener martingale with respect to Ft.

Next, we build the necessary notation:

1. Let A denote the class of all d-dimensional Ft-progressively measurable
processes v such that

∫ 1

0

E(|vs|2)ds <∞.
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REPRESENTATION FOR FUNCTIONALS

2. Let Ab denote the subset of bounded elements of A so that v ∈ Ab means
that there exists a K < ∞ such that |vt| ≤ K for all t ∈ [0, 1] almost
surely.

3. A stochastic process {Xt} on (Ω,F) is called a bounded simple process if
it can be written in the form

Xt = H01{0}(t) +
n
∑

i=0

Hi1(ti,ti+1](t) ∀ t ∈ [0, 1]

where Hi ∈ Fti for all i, and {ti} satisfies 0 = t0 < t1 · · · , tn = 1 for some
n ∈ N. Besides, there exists a finite constant C such that |Hi| ≤ C for all
i. We denote the class of bounded simple processes by As.

From the construction of stochastic integrals, we know that if X := {Xt} belongs
to Ab, then there exists a sequence Xn := {Xn

t } of processes from As that are
bounded uniformly in n by the bound for X , and

lim
n→∞

E

∫ 1

0

|Xn
s −Xs|2ds = 0. (2.1)

Let E be a Polish space and E , the Borel σ-field on E. It is also useful to recall the
basic fact that a real-valued, Borel-measurable function f defined on a probability
space (E, E , η) can be approximated by a sequence of continuous functions {fn}
in the almost sure sense. If |f | ≤ K, then, for all n, we can take |fn| ≤ K.

Next, we turn our attention to the concept known as relative entropy, and state
a few useful results based on it.

Definition 2.1. Let (E, E) be as above with P (E) as the class of probability
measures defined on it. For η ∈ P (E), the relative entropy function R(· || η) is the
mapping from P (E) into the extended real numbers given by

R(λ || η) =
∫

E

log
dλ

dη
(x)λ(dx) (2.2)

if λ is absolutely continuous with respect to η and log dλ
dη (x) is λ-integrable. Oth-

erwise, define R(λ || η) to be infinity.

The following simple and elegant result gives an abstract variational represen-
tation using the relative entropy function. A proof of it can be found in [3].

Proposition 2.2. Let (E, E) be a measurable space, and f , a bounded, Borel-
measurable function from E to R. Suppose that η is a probability measure on E.
Then

(i) − log
∫

E
e−f(x)η(dx) = infλ∈P (E)

{

R(λ || η) +
∫

E
f(x)λ(dx)

}

.
(ii) The infimum in the above equation is reached at a probability measure λ∗

where
dλ∗

dη
(x) = Ce−f(x)

with C as the normalizing constant.

The next result is quite useful in the sequel, and its proof can be found in [1].

159



P. SUNDAR AND MING TAO

Proposition 2.3. Consider the probability space (E, E , η), where E is a Polish
space and E its Borel σ-field. Let f be a real-valued, bounded Borel-measurable
function on E. Suppose that {λn} is a sequence in P (E) such that there exists a
constant C satisfying

sup
n
R(λn || η) ≤ C <∞

and λn → λ weakly as n→ ∞. Then the following hold:
(i) limn→∞

∫

E fdλn =
∫

E fdλ, and
(ii) if {fn} is sequence of uniformly bounded, Borel-measurable functions that

converges to f η-a.s., then

lim
n→∞

∫

E

fndλn =

∫

E

fdλ.

Next, we recall the definition of a weak solution to a functional stochastic
differential equation.

Definition 2.4. Let bi(t, x) and σij(t, x) for 1 ≤ i ≤ d and 1 ≤ j ≤ r be progres-
sively measurable functionals from [0,∞) × C([0,∞) : Rd) into R. A solution to
the functional stochastic differential equation

dXt = b(t,X)dt+ σ(t,X)dWt ∀ t ≥ 0

with initial condition X0, is a triple (X,W ), (Ω,F , P ), {Ft} satisfying the follow-
ing:

(i) (Ω,F , P ) is a probability space and {Ft} is a filtration satisfying the usual
conditions,

(ii) Xt is an adapted R
d-valued process with continuous paths, and W is an

r-dimensional Wiener martingale,

(iii)
∫ t

0

{

|bi(s,X)|+ σ2
ij(s,X)

}

ds <∞ ∀ 1 ≤ i ≤ d and 1 ≤ j ≤ r t ≥ 0,

(iv) Xt = X0 +
∫ t

0 b(s,X)ds+
∫ t

0 σ(s,X)dWs for all t ≥ 0 a.s.

In the particular case where bi is bounded for all i, and σij(t, x) = δij , the
Kronecker delta function, for all t ≥ 0 and x ∈ R

d, then by the Girsanov theorem
one obtains the existence of a weak solution which is unique in law. Under more
conditions on b and σ, one obtains stronger conclusions and moment estimates
(see Karatzas and Shreve [4], pages 303-306). A strong solution of a functional
stochastic differential equation is defined analogous to that of a stochastic differ-
ential equation. A pathwise unique strong solution, Xt, of a functional stochastic
differential equation can be written as a Borel-measurable function of the initial
variable and the path of the driving Wiener process upto time t, by a result of
Kallenberg.

Next, we recall the definition of Wiener processes that take values in a separable
Hilbert space H . Let (·, ·) denote the inner product for H . Let Q be a strictly
positive, symmetric, nuclear operator on H .

Definition 2.5. Let (Ω,F , µ) be the Wiener space and {Ft}, the augmented
filtration. A stochastic process {W (t)}0≤t≤T on (Ω,F , µ) is said to be an H-
valued Ft adapted Wiener process with covariance operator Q if
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REPRESENTATION FOR FUNCTIONALS

(1) for each non-zero h ∈ H , |Q1/2h|−1
H (W (t), h) is a standard one-dimensional

Wiener process, and
(2) for any h ∈ H , (W (t), h) is a {Ft}-adapted martingale.

The following notation is standard, and quite useful for us. Define the space
H0 = Q1/2H and equip it with the inner product (f, g)0 = (Q−1/2f,Q−1/2g).
Then H0 is a Hilbert space with its norm denoted by | · |0. Then H0 is compactly
embedded in H . Next, we state the Girsanov theorem in infinite dimensions.

Theorem 2.6. Let h be an H0-valued Ft-predictable process satisfying the condi-

tion
∫ T

0
|h(s)|20ds <∞ a.s. for some fixed T , and

E

(

exp

{

∫ T

0

h(s)dW (s)− 1

2

∫ T

0

|h(s)|20ds
})

= 1.

Then the process W̃ (t) := W (t)−
∫ t

0
h(s)ds for t ∈ [0, T ] is a Wiener process with

covariance operator Q on (Ω,F , η) where η is the probability measure given by

dη

dµ
= exp

{

∫ T

0

h(s)dW (s) − 1

2

∫ T

0

|h(s)|20ds
}

3. Proof of the Upper Bound

The main theorem on representation of positive functionals of a Brownian mo-
tion is stated below:

Theorem 3.1. Let f be a bounded Borel-measurable function mapping C([0, 1] :
R

d) into R. Then

− logE
[

e−f(W )
]

= inf
v∈A

E

{

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)}

(3.1)

Remark 3.2. The upper bound refers to replacing the equality sign in (3.1) by ≤
sign. The result is due to Boué and Dupuis [1] We will give the main ideas of the
proof since it contains a useful bound that we need later.

Proof. Take any v in Ab. Define Rt by

Rt = exp

[

d
∑

i=1

∫ t

0

v(i)s dW (i)
s − 1

2

∫ t

0

|vs|2ds
]

, (3.2)

then Rt is a martingale. Define a probability measure ηv on F1 by

ηv(A) =

∫

A

R1dµ for A ∈ F1. (3.3)

By the Girsanov theorem, the process W̃ =
{

W̃t = (W̃
(1)
t , · · · , W̃ (d)

t ); 0 ≤ t ≤ 1
}

given by W̃t =Wt −
∫ t

0 vsds is a d-dimensional Brownian motion under ηv. Let Tv
be the operator defined on C([0, 1];Rd) by

Tv(φ)t = φt −
∫ t

0

vs(φ)ds. (3.4)
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For any Borel set A ⊂ C([0, 1] : Rd), it follows that

µ(A) = ηv(T
−1
v (A)).

Using the definition of R(ηv||µ) and substituting (3.2) and (3.3), we obtain

R(ηv||µ) =

∫
(

log
dηv
dµ

)

dηv

=

∫

{

d
∑

i=1

∫ 1

0

v(i)s (φ)dW (i)
s − 1

2

∫ 1

0

|vs(φ)|2ds
}

ηv(dφ). (3.5)

Since Wt = W̃t +
∫ t

0
vsds, we have

R(ηv||µ) = E
v

{

d
∑

i=1

∫ 1

0

v(i)s dW̃ (i)
s +

d
∑

i=1

∫ 1

0

(v(i)s )2ds− 1

2

∫ 1

0

|vs|2ds
}

= E
v

{

1

2

∫ 1

0

|vs|2ds
}

, (3.6)

where E
v denotes the expectation with respect to the probability measure ηv.

Thus,

R(ηv||µ) +
∫

f(φ)ηv(dφ) = E
v

{

1

2

∫ 1

0

|vs|2ds+ f

(

W̃ +

∫ ·

0

vsds

)}

(3.7)

and we obtain

− logE
[

e−f(W )
]

≤ inf
v∈Ab

E
v

{

1

2

∫ 1

0

|vs|2ds+ f

(

W̃ +

∫ ·

0

vsds

)}

. (3.8)

From (3.8), it follows that, for any v ∈ A,

− logE
[

e−f(W )
]

≤ E

{

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)}

(3.9)

where expectation is with respect to Wiener measure µ.

Step 1: Suppose that v is in As. Then ṽ can be recursively constructed such that
ṽ ∈ As and for φ ∈ C([0, 1] : Rd), ṽ(φ) = v(Tṽ(φ)) with probability 1.

This implies that, for W̃ (φ) = W (φ) −
∫ ·
0
ṽs(φ)ds and A ∈ B(C([0, 1];Rd)),

B ∈ B(L2([0, 1];Rd))

ηṽ(W̃ ∈ A, ṽ ∈ B) = ηṽ

({

φ : φ−
∫ ·

0

ṽs(φ)ds ∈ A, ṽ(φ) ∈ B

})

= ηṽ({φ : Tṽ(φ) ∈ A, v(Tṽ(φ)) ∈ B})
= µ({ψ : ψ ∈ A, v(ψ) ∈ B})
= µ(W ∈ A, v ∈ B) (3.10)
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REPRESENTATION FOR FUNCTIONALS

which shows that the distribution of (W̃ , ṽ) under the measure ηṽ is the same as
the the distribution of (W, v) under µ. Using this equivalence and (3.8), we obtain

− logE
[

e−f(W )
]

≤ E
ṽ

{

1

2

∫ 1

0

|ṽs|2ds+ f

(

W̃ +

∫ ·

0

ṽsds

)}

= E

{

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)}

(3.11)

which implies (3.9) for all v ∈ As.
Let Lµ(W +

∫ ·
0 vsds) denote the measure on C([0, 1] : Rd) that is induced by

W +
∫ ·
0 vsds under µ. For A ∈ B(C([0, 1];Rd)), we have

µ(W (φ) +

∫ ·

0

vs(φ)ds ∈ A) = ηṽ(W̃ (φ) +

∫ ·

0

ṽs(φ)ds ∈ A)

= ηṽ(W (φ) ∈ A) (3.12)

which implies that Lµ(W +
∫ ·
0 vsds) = ηṽ. Using (3.6) and taking f = 0 in the

equality of (3.11), we have

R

(

Lµ(W +

∫ ·

0

vsds)||µ
)

= R (ηṽ||µ)

= E
ṽ

{

1

2

∫ 1

0

|ṽs|2ds
}

= E

{

1

2

∫ 1

0

|vs|2ds
}

(3.13)

for all v ∈ As.

Step 2: Bounded v. Let v ∈ Ab, so that |vs(ω)| ≤ M < ∞ for 0 ≤ s ≤ 1,
ω ∈ Ω. According to [4] Lemma 3.2.4, there exists a sequence of simple processes
{vn, n ∈ N} such that |vns (ω)| ≤M <∞ for all 0 ≤ s ≤ 1, ω ∈ Ω, and

lim
n→∞

E

∫ 1

0

|vns − vs|2ds = 0. (3.14)

Thus (W,
∫ ·
0
vns ds) converges in distribution to (W,

∫ ·
0
vsds) in (C([0, 1];Rd))2.

By Step 1, for each n ∈ N,

− logE
[

e−f(W )
]

≤ E

{

1

2

∫ 1

0

|vns |2ds+ f

(

W +

∫ ·

0

vns ds

)}

. (3.15)

The inequality above continues to hold in the limit as n → ∞ by an application
of Proposition 2.3 (a). By the lower semicontinuity of R(·||µ), we obtain

R

(

Lµ(W +

∫ ·

0

vsds)||µ
)

≤ 1

2
E

[
∫ 1

0

|vs|2ds
]

. (3.16)

Step 3: General v ∈ A. We define

vns (φ) = vs(φ)1{|vs(φ)|≤n}, 0 ≤ s ≤ 1, φ ∈ C([0, 1];Rd). (3.17)
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Let µn = Lµ(W +
∫ ·
0
vns ds), then (3.13) implies that

sup
n∈N

R(µn||µ) = sup
n∈N

E

{

1

2

∫ 1

0

|vns |2ds
}

≤ E

{

1

2

∫ 1

0

|vs|2ds
}

<∞. (3.18)

As in Step 2, Proposition 2.3 and dominated convergence theorem yield (3.9) for
any v ∈ A, which finishes the proof. As before, we obtain the useful bound (3.16)
when v ∈ A. �

4. Proof of the Lower Bound

In this section we will give a proof of the lower bound in the variational repre-
sentation formula. That is,

− logE
[

e−f(W )
]

≥ inf
v∈A

E

{

1

2

∫ 1

0

|vs|2ds+ f

(

W +

∫ ·

0

vsds

)}

.

Proof. Step 1: Let (Ω,F) be the Wiener space and f be a bounded measurable
function mapping Ω into R. Let µ be the Wiener measure on Ω and Π(Ω) be the
set of probabilities on Ω. Consider the measure η0 where infimum is attained in
the variational formula

− log

∫

Ω

e−f(x)dµ = inf
η∈Π(Ω)

{

R(η||µ) +
∫

Ω

f(x)dη

}

. (4.1)

Then η0 is not only absolutely continuous with respect to µ, but it is in fact
equivalent to µ on F . It follows that, for each t ∈ [0, 1], the restriction of η0 to Ft

is a probability measure which is equivalent to the restriction of µ to Ft. Let Rt

be the corresponding Radon-Nikodym derivative

Rt = E

[

dη0
dµ

|Ft

]

= E

[

e−f(x)

∫

Ω
e−f(x)µ(dx)

|Ft

]

. (4.2)

Then {Rt; 0 ≤ t ≤ 1} forms a µ-martingale that is bounded from below and above
µ-a.s. respectively by constants exp(−2||f ||∞) and exp(2||f ||∞). Moreover, since
Rt is a martingale with respect to the augmentation under µ of the filtration
generated by a Brownian motion, it can be represented as a stochastic integral

Rt = 1 +
∫ t

0 usdWs, where us is progressively measurable.
Since Rt is bounded from below, we can define vt = ut/Rt and write

Rt = 1 +

∫ t

0

vsRsdWs. (4.3)

The random variable R1 is bounded by a constant, and hence E(R2
1) < ∞. This

observation and Equation (4.3) yield E
∫ 1

0 |vs|2R2
sds < ∞. Since Rt is bounded

below by a constant, we have E
∫ 1

0
|vs|2ds < ∞. Also, dη0/dµ is bounded so that

one obtains
∫

C([0,1]:Rd)

∫ 1

0

|vs|2dsdη0 <∞. (4.4)
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These bounds and Equation (4.3) allow us to write

Rt = exp

[
∫ t

0

vsdWs −
1

2

∫ t

0

|vs|2ds
]

. (4.5)

Since Rt is a martingale, the Girsanov theorem identifies η0 as the measure un-
der which the process W̃ := W −

∫ ·
0 vsds is a Brownian motion. Analogous to

the derivation of Equation (3.7) as in the proof of the upper bound to evaluate
R(η0||µ), we obtain

− logE
[

e−f(W )
]

= E
η0

{

1

2

∫ 1

0

|vs|2ds+ f

(

W̃ +

∫ ·

0

vs

)}

. (4.6)

Step 2: Let us first assume that f is continuous. Since progressively measurable
processes can be approximated by bounded, simple processes in the L2-sense, given
ε > 0, there exists a process v∗ be a bounded, simple process such that

E
η0

{
∫ 1

0

|v∗s − vs|2ds
}

<
ε

2
. (4.7)

Let us write the process v∗ in the form

v∗t (ω) = ξ0(ω)1{0}(t) +
l−1
∑

i=0

ξi(ω)1(ti,ti+1](t), 0 ≤ t ≤ 1, ω ∈ Ω, (4.8)

where 0 = t0 < t1 < · · · < tl = 1 and ξi is Fti-measurable for each i = 0, · · · , l− 1.
Each ξi can be approximated in L2(µ) (and hence equivalently in L2(η0) as well) by
a smooth cylindrical functional with compact support, namely, gi(ωs1 , · · · , ωsn),
where s1 < s2 < · · · sn ≤ ti (see Nualart [12], Page 24). Replacing each ξi by
gi, and then using polygonalization in the time variable s, we can find a smooth
progressively measurable functional z with continuous sample paths which approx-
imates v∗ in the sense that

E
η0

{
∫ 1

0

|zs − v∗s |2ds
}

<
ε

2
.

It follows that given ǫ > 0, we can choose a progressively measurable process z as
constructed above such that

E
η0

{

1

2

∫ 1

0

|vs|2ds+ f

(

W̃ +

∫ ·

0

vsds

)}

≥ E
η0

{

1

2

∫ 1

0

|zs|2ds+ f

(

W̃ +

∫ ·

0

zsds

)}

− ε. (4.9)

Consider the probability space (Ω,F , (Ft), η0). Under the measure η0, we have

W̃ (ω) = ω −
∫ ·
0
vs(ω)ds is a Brownian motion. Define

X(ω) := W̃ (ω) +

∫ ·

0

vs(ω)ds,

and note that X(ω) = ω. The process Xt solves

Xt = W̃t +

∫ t

0

vs(X)ds. (4.10)
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In general, we can only assert that Equation (4.10) has a weak solution which is
unique in law.

Define a probability measure η1 on (Ω,F) by

dη1
dη0

= exp

{
∫ 1

0

(zs − vs)dW̃s −
1

2

∫ 1

0

|zs − vs|2ds
}

.

Then η1 ≡ η0, and η1 a.s., we can write, for all 0 ≤ t ≤ 1,

W̃t = Ŵt +

∫ t

0

(zs − vs)ds,

where Ŵ is a Brownian motion on (Ω,F , (Ft), η1). Thus η1 a.s., we have

Wt = Ŵt +

∫ t

0

zsds. (4.11)

We can rewrite Equation (4.11) as

Yt = Ŵt +

∫ t

0

zs(Y )ds. (4.12)

Equation (4.12) has a strong pathwise unique solution by the choice of z. Therefore

Y = h(Ŵ ) for some Borel measurable function h.
Note that η1 depends on ǫ. Taking ǫ = 1/n, let us denote the corresponding

sequence of probability measures by η(n). Then η(n) is the law of the solution of
the equation

Y
(n)
t = Ŵ

(n)
t +

∫ t

0

z(n)s (Y (n))ds,

where Ŵ (n) is a Wiener process with respect to η(n). Also,

η(n) → η0

weakly as n→ ∞. Thus, for any fixed constant K > 0 and any given ǫ > 0, there
exists an n such that

E
η0

{

1

2
[K ∧

∫ 1

0

|vs(X)|2ds] + f(X)

}

≥ E
η(n)

{

1

2
[K ∧

∫ 1

0

|z(n)s (Yn)|2ds] + f(Y )

}

− ε. (4.13)

Recalling that that Yn = hn(Ŵ
(n)), let us introduce the following notation:

Ln(·) :=
1

2
[K ∧

∫ 1

0

|z(n)s (hn(·))|2ds] + f(hn(·)).

166



REPRESENTATION FOR FUNCTIONALS

Since Ŵ (n) is a η(n)-Brownian motion and W is a µ-Brownian motion, we have

E
η(n)

(Ln(Ŵ
(n))) = E(Ln(W )). Then

E
η0

{

1

2

∫ 1

0

|vs(X)|2ds+ f(X)

}

≥ E
η(n)

(L(Ŵ (n)))− ε

= E(Ln(W )) − ε

= E

{

1

2
[K ∧

∫ 1

0

|z(n)s (hn(W ))|2ds] + f(hn(W ))

}

− ε

= E

{

1

2
[K ∧

∫ 1

0

|z∗s (W )|2ds] + f(hn(W ))

}

− ε

= E

{

1

2
[K ∧

∫ 1

0

|z∗s |2ds] + f

(

W +

∫ ·

0

z∗sds

)}

− ε,

(4.14)

where z∗s := z
(n)
s ◦ hn is progressively measurable. Now allow K → ∞ using

monotone convergence. Recalling equation (4.6), the inequality (4.14) yields the
lower bound for continuous f .

Step 3: If f is not continuous, let {fj} be a sequence of bounded continu-
ous functions such that ||fj ||∞ ≤ ||f ||∞ < ∞ and limj→∞ fj = f , µ-a.s. The
proceeding argument applied to each of the functions fj implies that there exists
a sequence of progressively measurable processes

{

zj∗, j ∈ N
}

satisfies (4.14) for
each j but with f replaced by fj, that is

− logEe−fj(W ) ≥ E

{

1

2

∫ 1

0

|zj∗s (W ))|2ds+ fj(W +

∫ ·

0

zj∗s ds)

}

− ε. (4.15)

Thanks to (3.16), we have

sup
j
R

(

Lµ(W +

∫ ·

0

zj∗s ds)||µ
)

≤ sup
j

E

{

1

2

∫ 1

0

|zj∗s |2ds
}

≤ ||f ||∞. (4.16)

It follows from this bound that the pair (
∫ ·
0
zj∗s ,W ) is tight,and hence there exists

a subsequence such that (
∫ ·
0
zj∗s ,W ) converges in distribution to (

∫ ·
0
z∗s ,W ). It

follows from (4.15), the dominated convergence theorem and Proposition 2.3 that,
for all sufficiently large j,

− logE
[

e−f(W )
]

≥ E

{

1

2

∫ 1

0

|zj∗s (W ))|2ds+ f

(

W +

∫ ·

0

zj∗s ds

)}

− 2ε. (4.17)

This completes the proof of the lower bound. �

In infinite-dimensions, the above proofs carry over with the necessary modifi-
cations, which allows us to state the following representation formula as in [2].
Let P denote the class of H0-valued {Ft}-predictable processes φ which satisfy
∫ T

0
|φ(s)|20 ds <∞ a.s.
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Theorem 4.1. Let f be a bounded, Borel measurable function mapping C([0, T ] :
H) into R. Then

− logE
[

e−f(W )
]

= inf
v∈P

E

(

1

2

∫ T

0

|vs|20ds+ g

(

W +

∫ ·

0

vsds

)

)

. (4.18)

5. Large Deviation Principle

Let (Ω,F , P ) be a probability space equipped with a filtration {Ft}0≤t≤T of sub-
σ-fields of F satisfying the usual conditions of right continuity and P -completeness.

In what follows, the notation and terminology are built in order to state the
large deviations result of Budhiraja and Dupuis [1] for Polish-space valued random
elements:

Let SN =
{

v ∈ L2([0, T ] : H0) :
∫ T

0 |v(s)|20 ds ≤ N
}

. The set SN endowed with

the weak topology is a Polish space. Define PN = {φ ∈ P : φ(ω) ∈ SN , P − a.s.}
Let E denote a Polish space, and let gǫ : C([0, T ];H) → E be a measurable

map. Define Xǫ = gǫ(W (·)). We are interested in the large deviation principle for
Xǫ as ǫ → 0. Since {Xǫ} are Polish space valued random elements, the Laplace
principle and the large deviation principle are equivalent.

Definition 5.1. A function I mapping E to [0,∞] is called a rate function if I is
lower semicontinuous. A rate function I is called a good rate function if for each
M <∞, the level set {x ∈ E : I(x) ≤M} is compact.

Definition 5.2. Let I be a rate function on E. A family {Xǫ : ǫ > 0} of E-valued
random elements is said to satisfy the Laplace principle on E with rate function I
if for each real-valued, bounded and continuous function h defined on E,

lim
ǫ→0

ǫ logE

{

exp [−1

ǫ
h(Xǫ)]

}

= − inf
x∈E

{h(x) + I(x)} . (5.1)

Hypotheses H: There exists a measurable map g0 : C([0, T ] : H) → E such that
the following hold:

1. Let {vǫ : ǫ > 0} ⊂ PM for someM <∞. Let vǫ converge in distribution as
SM -valued random elements to v. Then gǫ(W (·)+ 1√

ǫ

∫ .

0 v
ǫ(s) ds) converges

in distribution to g0(
∫ .

0 v(s) ds).

2. For every M < ∞, the set KM =
{

g0(
∫ .

0
v(s) ds) : v ∈ SM

}

is a compact
subset of E.

For each f ∈ E, define

I(f) = inf
{v∈L2([0,T ]:H0):f=g0(

∫
.

0
v(s)ds)}

1

2

{

∫ T

0

|v(s)|20 ds
}

, (5.2)

where infimum over an empty set is taken as ∞.
The following theorem was proven by Budhiraja and Dupuis [1]. The variational

representation theorem allows one to prove the sufficiency of Hypotheses H to
establish the Laplace principle.
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Theorem 5.3. Let Xǫ = gǫ(W (·)). If {gǫ} satisfies the Hypotheses H, then the
family {Xǫ : ǫ > 0} satisfies the Laplace principle in E with rate function I given
by (5.2).

6. Non-Newtonian Stochastic Navier-Stokes Equations

Let G ⊂ R
2, be an arbitrary bounded open domain with a smooth boundary ∂G,

and (Ω,F , P )be a probability space equipped with an increasing family {Ft}0≤t≤T

of sub-σ-fields of F satisfying the usual conditions of right continuity and P -
completeness. For t ∈ [0, T ], we consider the stochastic Navier-Stokes equation for
a viscous impressible flow with a non-slip condition at the boundary

∂u

∂t
+ (u · ∇)u−∇ · η(u) = f(t) + σ(t,u)

dW

dt
∇ · u = 0, ∀(x, t, ω) ∈ G× (0, T )× Ω

u(x, t, ω) = 0, ∀(x, t, ω) ∈ ∂G× (0, T )× Ω

u(x, 0, ω) = u0(x, ω), ∀(x, ω) ∈ G× Ω. (6.1)

In the above, u = (u1, u2) is the two dimensional velocity and η(u) denotes the
(possibly nonlinear) stress tensor. Convective acceleration is represented by the
nonlinear quantity: (u · ∇)u. The vector field f(t) represents the external body
force, and typically these consist of only gravity forces, but may include other
types(such as electromagnetic forces). The process {Wt} is an infinite-dimensional
Hilbert space-valued Wiener process (see Definition 2.5).

We now consider the following nonlinear and hyperviscosities cases for the stress
tensor η(u).
Case 1: Nonlinear Constitutive Relationship [5, 6, 8, 9]

η1(u) := −pI+ ν0∇u+ ν1|∇u|q−2∇u, (6.2)

where p denotes the pressure and is a scalar-valued function, ν0, ν1 > 0 and q ≥ 3.
In this case,

∇ · η1(u) = −∇p+ ν0∆u+ ν1∇ · (|∇u|q−2∇u).

Case 2: Nonlinear Nonlocal Viscosity [6]

η2(u) = −pI+ (ν0 + ν1‖∇u‖2L2(G))∇u. (6.3)

In this case, the nonlinear viscosity is given by

ν(‖∇u‖L2(G)) := ν0 + ν1‖∇u‖2L2(G),

where ν0, ν1 > 0 and ‖∇u‖2L2(G) :=
∫

G|∇u|2dx, so that

∇ · η2(u) = −∇p+ (ν0 + ν1‖∇u‖2L2(G))∆u.

Case 3: Hyperviscosity [9]

η3(u) = −pI+ ν0∇u− ν1(−1)m∇(∆m−1u) (6.4)

with m ≥ 2 and ν0, ν1 > 0. In this case, we prescribe additional boundary condi-
tions (∂u/∂n) |∂G= · · · = (∂m−1u/∂nm−1) |∂G= 0 and we have

∇ · η3(u) = −∇p+ ν0∆u− ν1(−1)m∆mu.
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This type of regularization has been used in atomspheric dynamics models and
also in the study of vortex reconnections [11, 7].

The stochastic Navier-Stokes equations can be written in the abstract evolution
form for bounded domains by introducing the following functional spaces. Let

H :=
{

u ∈ L2(G);∇ · u = 0,u · n |∂G= 0
}

Vr,q := {u ∈ W r,q
0 (G);∇ · u = 0}

where n is the outward normal. In Case 1 : r = 1, q ≥ 3, in Case 2 : r = 1, q = 2
and in Case 3 : r = m, q = 2.

We define the operators Ai(i = 1, 2, 3) as follows:

〈A1(u),v〉 :=

∫

G

|∇u|q−2∇u · ∇vdx, ∀u,v ∈ V1,q

〈A2(u),v〉 := ‖∇u‖2L2(G)

∫

G

∇u · ∇vdx, ∀u,v ∈ V1,2

〈A3(u),v〉 :=
∑

α∈N,|α|=m

∫

G

Dαu ·Dαvdx, ∀u,v ∈ Vm,2.

Let us denote V , for ease of notation, as the space Vr,q in Case 1, 2 and 3, and
V ′ be the dual of V , we have the dense, continuous embedding V ⊂ H , then for
its dual space V ′ it follows that H ′ ⊂ V ′ continuously and densely. Identifying H
and its dual H ′ via the Riesz isomorphism we have that

V ⊂⇀ H = H ′ ⊂⇀ V ′

continuously and densely and if 〈, 〉 denotes the dualization between V ′ and V ( i.e.
〈z, v〉 := z(v) for z ∈ V ′, v ∈ V ), it follows that

〈z, v〉 = (z, v)H , ∀z ∈ H, v ∈ V

and (V,H, V ′) is called a Gelfand triple.
Let us define the operator A : V1,2 → V ′

1,2 by

Au = −ΠH∆u

for u ∈ D(A) = W 2,2(G) ∩ V1,2, where ΠH : L2(G) → H is the Leray projector.
The operator A is known as the Stokes operator and is positive, self-adjoint.

Define b(·, ·, ·) : V1,2 × V1,2 × V1,2 → R by

b(u,v,w) =

2
∑

i,j=1

∫

G

ui
∂vj
∂xi

wjdx (6.5)

and then we can define the continuous bilinear operator B : V1,2 ×V1,2 → V ′ such
that

〈B(u,v),w〉 = b(u,v,w) (6.6)

for all u,v,w ∈ V1,2. We will use B(u) to denote B(u,u). Since u ∈ V1,2, it
follows that b(u,v,w) = −b(u,w,v) and hence b(u,v,v) = 0.

Let Q be a strictly positive definite, symmetric trace class operator on H and
H0 = Q1/2H , then H0 is a Hilbert space with the inner product

(u,v)0 = (Q−1/2u, Q−1/2v) ∀ u,v ∈ H0, (6.7)
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whereQ−1/2 is the pseudo inverse of Q1/2. Let |·|0 denote the norm in H0. Clearly,
the imbedding of H0 in H is Hilbert-Schmidt since Q is a trace class operator.

Let LQ denote the space of linear operators S such that SQ1/2 is a Hilbert-
Schmidt operator from H to H . Define the norm on the space LQ by |S|2LQ

=

tr (SQS∗). The noise coefficient σ : [0, T ]×H → LQ(H0;H) is such that it satisfies
the following assumptions :

(A.1). The function σ ∈ C([0, T ]×H ;LQ(H0;H)).
(A.2). For all t ∈ (0, T ), there exists a positive constant K such that

|σ(t,u)|2LQ
≤ K(1 + |u|2H), ∀u ∈ H.

(A.3). For all t ∈ (0, T ), there exists a positive constant L such that

|σ(t,u)− σ(t,v)|2LQ
≤ L|u− v|2H , ∀u,v ∈ H.

By applying the Leray projection ΠH to each term of the stochastic Navier-Stokes
system, and employing the result of Helmholtz that L2(G) admits an orthogonal
decomposition into divergence free and irrotational components,

L2(G) = H +H⊥, (6.8)

where the irrotational component can be characterized by

H⊥ =
{

g ∈ L2(G) : g = ∇h, h ∈ W 1,2(G)
}

. (6.9)

The system (6.1) can be written as the abstract evolution form

du+ [ν0Au+ ν1Ai(u) +B(u)]dt = f(t)dt+ σ(t,u)dW (6.10)

If we replace the noise coefficient σ in the (6.10) by
√
εσ for ε > 0, then the

resulting solution is denoted by uε. Our main goal is to establish the Laplace
principle for the family {uε}.

Let us consider the Navier-Stokes equations with small noise diffusions

duε + [ν0Auε + ν1Ai(u
ε) +B(uε)]dt = f(t)dt+

√
εσ(t,uε)dWt,

uε(0) = ξ ∈ H. (6.11)

Monotonicity method can be employed to show that there exists a strong solution
of Eq.(6.11) with values in the Polish space C([0, T ];H) ∩ Lq(0, T ;Vr,q), and it is
pathwise unique. It follows that there exists a Borel-measurable function

gε : C([0, T ];H) → C([0, T ];H) ∩ Lq(0, T ;Vr,q)

such that uε(·) = gε(W (·)) a.s.
Our aim is to verify that the family {gε} satisfies the Hypothesis H in order to

obtain the Laplace principle for {uε : ε > 0} in C([0, T ];H) ∩ Lq(0, T ;Vr,q).
In the following Lemma and its corollary, we show certain results which help

to prove the last two main Propositions on the compactness of the level sets and
weak convergence as stated in the Hypothesis H.

Lemma 6.1. Let {gε} be defined as above. For any v ∈ PM where 0 < M <∞,let
gε(W (·) + 1√

ε

∫ ·
0
v(s)ds) be denoted by uε

v
, then uε

v
is the unique strong solution

of the equation

duε
v
+[ν0Auε

v
+ν1Ai(u

ε
v
)+B(uε

v
)]dt = [f(t)+σ(t,uε

v
)v]dt+

√
εσ(t,uε

v
)dWt (6.12)
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with uε
v
(0) = ξ ∈ H.

Proof. Since v ∈ PM ,
∫ T

0 |v(s)|20ds < M a.s., and W̃ (·) := W (·) + 1√
ε

∫ ·
0 v(s)ds is

a Wiener process with covariance form Q under the probability measure

dP̃ ε
v
:= exp

{

− 1√
ε

∫ T

0

v(s)dW (s) − 1

2ε

∫ T

0

|v(s)|20ds
}

dP. (6.13)

Applying the Girsanov argument: let uε
v
be the unique solution of Eq. (6.11)

on (Ω,F , P̃ ε
v) with W̃ in place of W . Then uε

v solves Eq. (6.12) P -a.s., and

uε
v
(·) = gε(W̃ (·)).
If uε

v and w are solutions of Eq. (6.12) on (Ω,F , P ), then uε
v and w would

solve Eq. (6.11) on (Ω,F , P̃ ε
v
) with W̃ in place ofW . Thus uε

v
= w P̃ ε

v
-a.s. so that

uε
v = wP -a.s., and hence uniqueness of solutions to Eq. (6.12) is obtained. �

Corollary 6.2. Let v ∈ L2(0, T ;H0) and f ∈ L4(0, T ;H) and σ satisfies (A.1)-
(A.3). Then the equation

duv + [ν0Auv + ν1Ai(uv) +B(uv)]dt = [f(t) + σ(t,uv)v]dt,

uv(0) = ξ ∈ H (6.14)

has a unique strong solution in C([0, T ];H) ∩ Lq(0, T ;Vr,q).

Proof. This result can be considered as a particular case of the previous Lemma,
where the diffusion coefficient is absent. �

Now we are ready to verify the Hypothesis H.

Proposition 6.3. (Compactness) Let M <∞ be any fixed positive number. Let

KM := {uv ∈ C([0, T ];H) ∩ Lq(0, T ;Vr,q) : v ∈ SM} , (6.15)

where uv is the unique solution of (6.14) in C([0, T ];H) ∩ Lq(0, T ;Vr,q). Then
KM is compact in C([0, T ];H) ∩ Lq(0, T ;Vr,q).

Proof. We will outline the ideas of the proof since a full proof is routine and
rather long. Let {un} be a sequence in KM , where un corresponds to the solution
of (6.14) with vn in place of v. By the weak compactness of SM , there exists a
subsequence of {vn} which converges to a limit v weakly in L2(0, T ;H0). For ease
of notation, the subsequence is still indexed by n, and the solution uv of (6.14) is
denoted as u in the context of this proof.

We need to show un → u in C([0, T ];H) ∩ Lq(0, T ;Vr,q) as n→ ∞, i.e.,

sup
0≤t≤T

|un(t)− u(t)|+
∫ T

0

||un(t)− u(t)||qVr,q
dt→ 0. (6.16)

Using the definitions of Ai, the following energy estimate, and a Gronwall argu-
ment, the proof is completed. �

The following proposition verifies the first condition in Hypothesis H.

Proposition 6.4. (Weak Convergence) Let {vǫ : ǫ > 0} ⊂ PM , for some M <∞,
converge in distribution as SM -valued random elements to v. Then the process
gǫ(W (·) + 1√

ǫ

∫ .

0
vǫ(s) ds) converges in distribution to g0(

∫ .

0
v(s) ds).
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Proof. Let vε converge to v in distribution as random elements taking values in
SM where SM is equipped with the weak topology. Let uε solve

duε + [ν0Auε + ν1A(uε) +B(uε)]dt

= [f(t) + σ(t,uε(t))vε(t)]dt+
√
εσ(t,uε)dWt (6.17)

with uε(0) = ξ ∈ H .
Let uv be the solution of

duv + [ν0Auv + ν1A(uv) +B(uv)]dt = [f(t) + σ(t,uv(t))v(t)]dt

(6.18)

with uv(0) = ξ ∈ H . Since pathwise unique strong solutions exist for the above
equations, the Borel measurable function gε mentioned earlier satisfies the equality

gε(W (·) + 1√
ε

∫ ·

0

vε(s)ds) = uε.

For all v ∈ L2([0, T ];H0), note that
∫ ·
0
v(s)ds ∈ C([0, T ];H0). Define g0 :

C([0, T ];H0) → C([0, T ];H) ∩ L2(0, T ;V ) by

g0(h) = uv, if h =

∫ ·

0

v(s)ds for some v ∈ L2([0, T ];H0).

If h cannot be represented as above, then define g0(h) = 0.
Since SM endowed with the weak topology is Polish, the Skorokhod representa-

tion theorem can be invoked to construct processes (ṽε, ṽ, W̃ε) such that the joint

distribution of (ṽε, W̃ε) is the same as that of (vε,W ), and the distribution of ṽ
coincides with that of v, and ṽε → ṽ a.s. in the topology.

Definew(t) := uε(t)−uv(t). The notation |·|HS will denote the Hilbert-Schmidt
norm in what follows. Define the stopping time

τN,ε := T ∧ inf{t :
∫ t

0

{

||uv(s)||2 + |uε(s)|2
}

ds > N

or sup
0≤s≤t

|uv(s)|2 > Nor sup
0≤s≤t

|uε(s)|2 > N}. (6.19)

Using a Gronwall argument, we obtain

1

2
( sup
0≤t≤T∧τN,ε

|w(t)|2) + ν1

∫ t

0

||w(s)||qVr,q
ds

≤ { 1

ν0

∫ T∧τN,ε

0

|σ(s,uv(s))(vε(s)− v(s))|2ds

+
ε

2
K

∫ T∧τN,ε

0

(1 + |uε(s)|2)ds

+
√
ε( sup

0≤t≤T∧τN,ε

|
∫ t

0

(w(s), σ(s,uε(s))dW (s))|)}e
N
ν0

+LM .

(6.20)
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Let N be fixed, then for suitable constant C,

lim inf
ε→0

P {τN,ε = T } ≥ 1− C

N
. (6.21)

One can easily show that

√
ε sup
0≤t≤T∧τN,ε

∣

∣

∣

∣

∫ t

0

(w(s), σ(s,uε(s)dW (s)))

∣

∣

∣

∣

→ 0 in probability

as ε tends to zero. These two observations along with the weak convergence of
vε → v in SM , we obtain that

1

2
( sup
0≤t≤T0∧τN,ε

|w(t)|2) + ν1

∫ t

0

||w(s)||qVr,q
ds→ 0 in probability (6.22)

as ε→ 0, which completes the proof. �

The above two propositions 6.3 and 6.4 show that the family {gε} satisfies
the Hypothesis H, so that the Laplace principle is obtained for {uε : ε > 0} in
C([0, T ];H) ∩ Lq(0, T ;Vr,q).

Theorem 6.5. Let {uε(·)} be the solution of the equation

duε + [ν0Auε + ν1Ai(u
ε) +B(uε)]dt = f(t)dt +

√
εσ(t,uε)dWt

uε(0) = ξ ∈ H. (6.23)

Then {uε} satisfies the Laplace principle in C([0, T ];H)∩Lq(0, T ;Vr,q) with good
rate function

I(f) = inf
{v∈L2([0,T ];H0):f=g0(

∫
·

0
v(s)ds)}

{

1

2

∫ T

0

|v(s)|20ds
}

(6.24)

with the convention that the infimum of an empty set is infinity.
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