
Optimal Component Selection for Elicit Model using
Complexity Metrics

Kavita1, Gaurav Aggarwal2 and Neha Sharma3

1-3Manipal University Jaipur.
Email: 1Kavita.jhajharia@jaipur.manipal.edu, 2Gaurav.aggarwal@jaipur.manipal.edu, 3nehav.sharma@jaipur.manipal.edu

Abstract: In Component Based Development (CBD) systems are built from existing components, primarily by assembling
and replacing components. Software component has been developed vigorously. Thus they are reliable and the reason is
that these components are tested under several of situations before use. The software development techniques changed over
time from traditional to Component-Based Software Engineering (CBSE) many issues should be resolved and complexity
of component is also an issue to be resolved. The main intend of this paper is to calculate the complexity of the component
and opt the best component for system development through proposed algorithm.

Keywords: Component based software engineering, Software metrics, Complexity, Component.

ISSN: 0973-5704International Journal of Computing and Applications
Volume 13, Number 2, (July-December 2018), pp 221-225

© Serials Publications, New Delhi (India)

	 ∑	 Comprehensibility/understandability

	 ∑	 Maintainability

	 ∑	 Flexibility

The Reusability is the pillar of CBSE and the
reusability provides software developers with a number
of assessable benefits [10].

Components: Component is an independently
deliverable package of operations i.e. independently
deployable and subject to composition by third parties
[4].

There are three types of components:

	 1.	 Off-the-shelf components: The cost for attainment
and assembling of off-the-shelf components will
nearly always be less than the cost to develop
corresponding software and risk is quite low.

	 2.	 Full-experience components: The risk associated
with adaptation and integration is usually
tolerable.

	 3.	 Partial-experience components: The cost to adapt
partial-experience components can be more
than the cost to develop a component from
scratch and the risk will also be high [2].

Introduction1.	

As today’s software development growing rapidly in
size, the prophecy of software reliability plays vital
role in process of software development. CBSE give
emphasis to reusability, that is, the construction and
reuse of software building blocks. These blocks are
often known as components.

CBSE approach is based on the principle
of developing a software by opting appropriate
components and assemble them by a well-defined
software architecture. CBSE is used to develop/
assemble software from existing components. It is
concerned with composing, selecting and designing
components [11].

Figure 1:	 Component Based Software Engineering

The use of CBD requires good modular design.
This modularity provides quality properties like:

222 Kavita, Gaurav Aggarwal and Neha Sharma

and varying properties of application within
the domain.

	 2.	 Design: Domain design takes the domain
model produced throughout the domain
analysis phase and aims to produce a basic
architecture to which all application within the
domain can conform.

	 3.	 Implementation: Domain Implementation
is the formation of a process and tools for
competently producing a customized program
in the domain [5].

Component Based Software Engineering
CBSE approach built the software by using pre-existing
components and assembling them into a software. This
approach doesn’t only reduces the cost and time but
also accelerate the speed of development with better
quality.

Cyclomatic Complexity
As described by the McCabe, a main purpose of this
metric is to identify software modules that will be
difficult to test or maintain. The complexity of a code
can be measured by control the number of paths in
program. McCabe introduced that the complexity is
measured through the paths that can lead the program
to execution [9].

Using graph theory as a mathematical explanation,
pick a directed graph, G, has pair (V, E). Where V is
vertex set of graph and its elements are called vertices.
E is called the edge set of graph and its elements are
called edges. Hence, the definition in graph theory of
the cyclomatic number, V, comes in the form

	 V(G) = e - n + 2
where,

	V(G) =	the cyclomatic complexity,
	 e =	the number of edges,
	 n =	the number of nodes.
This formulation defines the cyclomatic complexity

[1]. Several properties of cyclomatic complexity are
stated below:
	 (I)	 V(G) always be greater than equal to 1.
	 (II)	 V(G) is the maximum number of linearly

independent paths in G; it is the size of a basis set.

Figure 2:	 Component Selection Process

Incongruously, reusable software components
are often unkempt during planning but becomes a
supreme concern during the development phase of
the software.
Component Interfaces: The functionality of a
component is defined by its interfaces. The services
provided by any component are made available through
an interface.

The component interface is of two types:
	 1.	 Required Interface: specify the functionalities

and services that a component requires to carry
out its tasks.

	 2.	 Provided Interface: specify the functionalities
and services that a component can offer.

CBSE have two activities of software process
development:
Domain Engineering: Domain Engineering (DE)
performs the work required to establish a set of
software components to be reused by the software
developer. DE is intended to ameliorate the quality
of developed software through reuse of software
components. This approach emphases on developing
component-based software systems by selecting from
off-the-shelf components and assembling that set of
selected components within an appropriate software
architecture [3].

Figure 3:	D omain Engineering

DE includes three major activities:

	 1.	 Analysis: Domain analysis mainly produces
a domain model that represents the common

223Optimal Component Selection for Elicit Model using Complexity Metrics

	 (III)	 Insertion and deletion of functional statements
to G does not affect V(G).

	 (IV)	 G has only one path if and only if V(G) = 1.

	 (V)	 Insertion of a new edge in G increases V(G)
by unity.

	 (VI)	 V(G) is dependent only on decision structure
of G[6].

PROPOSED ALGORITHM2.	

Step 1: Begin

Step 2: Select (SR, CR, C, R, CC) SR = System
Requirements

	CR =	Component Requirements

	 C =	Component

	 R =	Repository

	CC =	Cyclomatic Complexity

Step 3: R = {1 to X}

//X is the number of components Repository (R)

Step 4: Select C from R If SR = CR

	 1.	 Check CC of C

	 2.	 Compare CC of every corresponding
component

	 3.	 Select C with less CC

//In Repository (R) if more than one Component
Requirement (CR) fulfils System Requirements (SR),
then check the component complexity of every
Component (C) and opt the component with less
Cyclomatic Complexity (CC).

Step 5: Else if SR π CR

//The System Requirement (SR) doesn’t match
with Component Requirement (CR), then

	 1.	 Alter SR.

		 Repeat step 1 to 4.

Step 6: End.

The proposed algorithm selects the components
through elicit model to get component with less
complexity. The result shows the cyclomatic complexity
calculation of component. The less complex component

leads in high performance and a reduced amount of
runtime.

Figure 4:	T he Elicit model

RESULT3.	
The following results are of the cyclomatic complexity
calculation of component to select better component.

Figure 5:	 Component Testing Software

Figure 6:	 Component Selection Process

224 Kavita, Gaurav Aggarwal and Neha Sharma

Figure 10:	 Cyclomatic Complexity of Component

CONCLUSION4.	

CBSE is known for improved productivity and quality;
this can be achieved by using prefabricated components.
Currently, the trend is towards an exponential increase
of COTS on the market place. Cyclomatic complexity
is a software metric used to measure the complexity
of software component. Complexity of a source code
can be calculated to check whether the component
would be appropriate or not for the specific software.
The selection of component is tough task in CBSE.
Less complexity component would be better to use.
So in this paper the selection of optimal component
is done through proposed algorithm, after section
of component the complexity of the component is
checked and the less complexed component is opted
for better results.

Future Work: The calculation of this complexity is
only useful on white box testing doesn’t work on black
box testing as internal working in black box testing is
not accessible. This can be resolved in future research.

References
McCabe T.J., “A Complexity Measure”, [1]	 IEEE
transactions of Software Engineering, Vol. SE2, No. 4, 1976.

Pressman R.S., “Software Engineering, A practitioner’s [2]	
approach”, McGraw-Hill Higher Education, 5th Ed.,
ISBN 0-07-365578-3, 2001.

Figure 7:	L eap Year Calculation Program Inserted

Figure 8:	 Control Flow Graph of Component

Figure 9:	N odes of Component

225Optimal Component Selection for Elicit Model using Complexity Metrics

Pour G., “Component-Based Software Development [3]	
Approach: Is It the Next Silver Bullet?”, IEEE, pp.
491-492, 1998.

Koziolek H., “Performance evaluation of component-[4]	
based software systems: A survey”, Performance
Evaluation, Elsevier, pp. 634-658, 2010.

Basha N.M.J., Moiz S. A., “Component Based [5]	
Software Development: A state of Art”, IEEE-
International Conference On Advances In Engineering,
Science And Management (ICAESM -2012), pp. 599-
604, 2012.

Smith K.R., “Linux, Openbsd, Talisker: A Comparative [6]	
Complexity Analysis”, 1994.

Tomar P.,Gill N.S., “New Algorithm for component [7]	
selection to Develop Component-Based Software
with X Model”, Lecture Notes on Software Engineering,
Vol. 1, No. 3, pp. 298-302, 2013.

Madi A., Zein O.K., Kadry S., “On the Improvement [8]	
of Cyclomatic Complexity Metric”, International Journal
of Software Engineering and Its Applications, Vol. 7, No. 2,
2013.

Gill, Geoffrey K., Kemerer, Chris F., “Cyclomatic [9]	
Complexity Metrics Revisited: An Empirical study of
Software Development and maintenance”, Cambridge,
Mass. : Center for Information Systems Research, Sloan School
of Management, Massachusetts Institute of Technology, CSIR
WP No. 218, 1990.

Vescan, A., Pop, H. F., “Constraint Optimization-[10]	
based Component Selection Problem”, Studia
Universitatis Babes-Bolyai, series Informatica, Vol. 3, 2008,
pp. 3-14, 2008.

Crnkovic I., Larsson S., Chaudron M., “Component [11]	
Based development process and component life
cycle”, journal of computing anf information technology, pp.
321-327, 2005.

