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Sliding Mode Controller for Parallel Rotary 
Double Inverted Pendulum: An Eigen Structure 
Assignment Approach
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Abstract : This paper proposes a special approach of sliding mode controller so called Eigen structure 
assignment approach for parallel rotary double inverted pendulum (PRDIP) system. This offers a simple 
method to control a class of under-actuated systems by reducing the higher order dynamics to simpler one. 
Here, a particular canonical form so called the regular form was used to produce an appropriate understanding 
of the reduced order sliding mode dynamics. In addition to this we adopt a robust Eigen structure assignment 
approach by using ‘place’ command in mat lab. In this the modeling of the system has been carried out 
through classical mechanics, considering the inertia tensors of all the principle axis.
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1. INTRODUCTION

Parallel Rotary Double Inverted Pendulum (PRDIP), an expanded version of inverted pendulums are one 
of the commonly studied material in control area. Variations of pendulum often represent the dynamics 
of robotic arms which make them quite popular. Here the Rotary Double Inverted Pendulum (RDIP) 
dynamics by means of rotational geometry are derived [2] which is described in section II. Instead of 
considering the inertia of the single principal axis, the dynamics with complete inertia tensor using 
Lagrangian formulation are presented. [11].

During the formation of any control problem there will be normally inconsistencies between the model 
developed for the controller design and the real plant. This disparity may due to unmodelled dynamics 
[4], difference in the system parameters or the estimation of complex plant behavior by a straight forward 
model. We must confi rm that the ensuing controller should produce the required performances regardless 
of mismatches. This has directed to a powerful interest in the development of so called robust control 
method to solve this. One specifi c methodology to robust control design is the so called sliding mode 
control methodology. 

Sliding-mode control (SMC) method is considered as one of the most commanding design procedures 
for many practical systems (e.g. robotics.) due to its simple design procedure and robustness against 
system uncertainties and external instabilities [4].

Section III describes the concept of sliding mode controller. The strategy and implementation of 
Sliding mode controller (SMC) has been carried out here. The result is a variable structure system, 
considered as the mixture of subsystem [9] whose control structure is stable and valid for specifi ed region 
of system behavior.
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2. MATHEMATICAL MODELING OF PARALLEL  ROTARY DOUBLE INVERTED 
PENDULUM

Figure 1. Indicates the structure of RDIP and the parameters of the system are taken according to the 
Quanser standards. A torque 1 is applied to the rotating arm through DC motor. The rotating arm and 
Pendulum arms are free to rotate [15]. 
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Figure 1: Representation of Rotary double inverted pendulum system

The rotations are defi ned by right hand coordinate system [2]. The inertia tensors are taken in diagonal 
form as in (1), so that the coordinate axes of arms are the principal axes.

Energies [4] of the arms are defi ned as:
For rotating arm, 
Potential energy is  p0 = 0

Kinetic energy is, k0 = T T
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Potential energy of pendulum1 is given by
 P1 = m1gl1 cos (1) (2)
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Potential energy of pendulum 2 is given by
 P2 = m2gl2 cos(2) (4)

Kinetic energy is given by  K2 = T T
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Lagrange function [14] can be written as
 L = KE – PE,
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 The inertia tensor can be approximated as follows [2],
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Total moment of inertia of rotating arm, pendulum1 and pendulum2 are given by,

 1Ĵ  = J1 + mL2 (8)

 2Ĵ  = J2 + m1l1
2 (9)

 3Ĵ  = J3 + m1l2
2 (10)

Total moment of inertia is given by
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The torque [6] can be related to the voltage by,

  = 
K V K K

R R
m m b



 (12)

Where Km, Kb, R are the motor parameters.

A. Linearized state equation

Linearized equation for the upright position is derived below.
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After neglecting the Disturbance torque, 
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3.  SLIDING MODE CONTROL FOR PARALLEL ROTARY DOUBLE INVERTED 
PENDULUM

The strategy and implementation of Sliding mode controller (SMC) has been carried out here. In spite 
of the mismatches between the real plant and derived model, the designed controller should possess the 
capacity to produce the required performance. This has headed to the growth of so called robust control 
method [4]. One specifi c method to robust control design is so called Sliding mode control methodology

A. Theory Of Sliding Mode Control 

Here the dynamics are controlled by sliding surface parameters not the system parameters. Sliding mode 
controller designing involves two steps. Designing a sliding surface and defi ning a control law. The two 
main objectives are to drive the nonlinear system trajectory to the defi ned surface and maintain it on the 
surface [7]. 

During this process the defi ned control law will constrain the states within the locality of the sliding 
surface.  The two major advantage is that the closed loop response will be unaffected to the uncertainty 
and disturbance. Moreover the dynamics of the system will be directed by sliding surface parameters 
rtather than system parameters.
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Figure 2:  Phase Portrait of The System Under VSCS

The phase portarit is attained by merging together the suitable region from the two assymptotically 
unstable phase portrait.

B. Sliding Mode Design Approach

This work has been carried out by emphasising more on numerical tractability and writing MATLAB 
mfi les for implementing the design procedures. The procedure is grounded on robust Eigen structure 
assignment as this propose a real method of minimizing the effect of unmatched parameter variation.

A linear model of the system can be conveyed in the regular form as
 1( )z t

 = A11z1(t) + A12z2(t)

 2 ( )z t
 = A21z1(t) + A22z2(t) + B2u(t) (16)

The switching function is as follows
 s(t) = S1z1(t) + S2z2(t) (17)

Where coordinate transformation is defi ned by T

T– Orthogonal matrix so that  z(t) = Tr x(t) (18)
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4. SIMULATION RESULTS AND DISCUSSION

Simulation results explores in more details the properties of sliding motion and control action required 
to maintain such motion. The control actions related with the simulations are given in the following 
fi gures. The simulation results obtained here are based upon robust pole assignment approach. However, 
the minimization of the integral cost function is not considered here. 

Figure 3: Dynamic response of the system under the control of SMC

( )a
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( )b

Figure 4: Asymptotic stabilization of Pendulum angles for (a) β1 (0) = 600 and (b) β2 (0) = 700

Sliding mode control was employed on RDIP system as a stabilizing controller for the pendulum. 
Stabilization response of RDIP system balanced with SMC for different switching are displayed in the 
above fi gure. The implementation of sliding mode control is often irritated by chattering [8], [13] which 
can be solved by the smooth control methodologies.Therefore we tried sliding mode-state feedback 
control, proposed for stabilization of RIP system which was indeed not successful.

( )a
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( )b

Figure 5: Asymptotic stabilization of Pendulum angles for (a) β1 (0) = 175° and (b) β2 (0) = 178°

This fi gure indicate dynamic response of the pendulum angle1 balanced with sliding mode control. 
Here we can notice that the settling time is less. The simulation has been done for pendulum angle1 
and pendulum angle2 for different initial values. Coming fi gures depicts the disturbance rejection of the 
system using Sliding mode controller.

Figure 6: Variation of the pendulum angle1 with respect to disturbance
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Figure 7: Variation of the pendulum angle1 with respect to disturbance

Fig (6) and Fig (7) depicts the insensitivity of sliding mode controller towards disturbance. Both 
fi gures describe the comparison of pendulum angle1 and pendulum angle2 responses with and without 
disturbances. It is clearly visible from the graph that the sliding mode controller is completely insensitive 
to the disturbances. Even though disturbances are added along with the input, sliding mode controller try 
to maintain the same response as earlier without any disturbances.

5. CONCLUSION

In this case, the problem of designing the sliding surface through regular method and reduction of higher 
order dynamics was considered. The simulation results illustrates the better performance of SMC. SMC 
exhibit excellent disturbance rejection capabilities while controlling the parallel RDIP. In the designing of 
SMC we used a canonical form [4] so called a regular form approach along with an Eigen value placement 
approach.
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