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FPGA Implementation of Synchronized
Non Identical Hyperchaotic Systems

R. Rameshbabu*, R. Karthikeyan** and R. Balamurali***

ABSTRACT

In thispaper, the FPGA Implementation of compl ete synchronization methodol ogy for non-identical hyperchactic
systems using active control theory is proposed. In proposed methodology, FPGA technology is used for the
synchronization of Simplified Lorentz hyperchaotic system and Pang hyperchaotic system, Xilinx system generator
technology was used for the conception of synchronization of hyperchaotic systems and generating the VHDL
code. Thiscodeis used to configuring aFPGA. First, Lorentz hyperchaotic system and Pang Hyperchaotic systems
areimplemented in FPGA. Then new resultsfor active controllersare derived to synchronizethe ssmplified Lorentz
and Pang hyperchaotic systemscompletely. Finally, the active controllers and the synchronized hyperchaatic system
areimplemented in FPGA. Thesimulation outputs and experimental resultsare given to show the effectiveness of
our proposed methodol ogy.
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1. INTRODUCTION

In 1990, the synchronization of identical chaotic systems with different initial conditions through a smple
coupling was performed [1]. The synchronization of chaotic systems have many applications in various
fields such as chemical system [2], ecological system [3], physical system [4], lasers [5], secure
communication [6], cryptosystems[7], robotics [8] and neural networks[9] etc.

In the last two decades, various synchronization schemes are introduced such as, OGY method [10],
active control method [11], adaptive control method [12], back stepping design method [13], diding mode
control method [14], and sampled-datafeedback synchronization method [ 15] etc. Thereare variousdifferent
types of synchronization such as complete synchronization [16], Anti synchronization [17], Projective
synchronization [18].

Complete synchronization is characterized by the equality of state variables evolving in time, while
anti-synchronization is characterized by the disappearance of the sum of relevant state variables evolving
in time. In hybrid synchronization, one part of the systems is completely synchronized and the other part is
anti-synchronized so that the complete synchronization and anti-synchronization co-exist in thetwo chaotic
systems. Projective synchronization is characterized by the fact that the master and dave systems could be
synchronized up to a scaling factor.

This paper deals with the FPGA implementation of complete synchronization between non-identical
hyperchaotic systems with different initial conditions using active control techniques. The new results
for active controller functions are derived for the Simplified Lorentz hyperchaotic system and Pang
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hyperchaotic system. The main results derived in this paper are established using Lyapunov stability
theory [19].

2. FPGA IMPLEMENTATION OF SIMPLIFIED LORENTZ HYPERCHAOQOTIC SYSTEM
The smplified Lorentz Hyperchaotic system [20] is given by,
X=Yy-X
y=-XZ+W
z=xy-a D
W= -by

Here x, y, zand w are the state variables of hyperchaotic system (1). The system (1) exhibits chaotic
behavior when a = 2.6, b = 0.44. The simplified Lorentz hyperchaotic system (1) is constructed using
Xilinx System Generator (XSG) block setsin MATLAB Simulink as shown in Figure 1. Then the VHDL
code is generated from the system generator design and the code is used to configure the FPGA.

This implementation is adopted with a fixed point and with a representation of the real data on 32 bits,
16 for the entire and 16 for the fraction The phase portraits and time evolution of simplified Lorentz
hyperchaotic system (1) for the initial conditions {x(0), y(0), z(0), WM(0)} ={2, 4, 1, 3} are obtained using
XSG technology is shown in Figure 2.

The implemented structure of the smplified Lorentz hyperchaotic system (1) in Xilinx I SE into Virtex6
Xc6vsx315t-3ff1156 is shown in the Figure 3. The result of VHDL code simulation using Xilinx Isim
simulator is shown in the Figure 4 which represents a portion of the waveform of state variables x, y, zand
w. The signal has the numerical value. { x(0), y(0), z0), m(0)} ={2, 4, 1, 3}.
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Figure 1: Implementation of Simplified L orentz Hyperchaotic system in XSG Technology
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Figure 2: Phase Portraits and Time evolution of Simplified L orentz Hyperchaotic system obtained using XSG Technology
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Figure 3: RTL Schematic of Simplified L orentz Hyperchaotic system
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Figure 4: 1Sim simulation results of VHDL code for Simplified L orentz Hyperchaotic system
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3. FPGAIMPLEMENTATION OF HYPERCHAOTIC PANG SYSTEM
The hyperchaotic Pang system [21] is given by,

p=oa(q-p)

d=vg—pr+s

F=—PBr+ pq (2
$=-0(p+0)

Herep, g, r and sarethe state variables of hyperchaotic Pang system (2). The hyperchaotic Pang system
exhibits chaotic behavior when o = 36, B = 3, y = 20 and ¢ = 2. The Pang system (2) is constructed using
XSG block sets as shown in Figure 5.

The phase portraits and time evolution of state variables of system (2) for the initial conditions { p(0),
g(0), r(0), S(0)} ={5, 6, 2, 8} are shown in Figure 6.

The implemented structure of the Pang hyperchaotic system (2) in Xilinx | SE into Virtex6 xc6vsx315t-
3ff1156 is shown in the Figure 7. The result of VHDL code smulation using Xilinx 1sm smulator is
shown in the Figure 8 which represents a portion of the waveform of state variables and s. The signal has
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Figure 5: Implementation of Pang Hyperchaotic system in XSG Technology
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Figure 7: RTL Schematic of Pang Hyperchaotic system
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Figure 8: ISim simulation results of VHDL code for Pang Hyperchaotic system
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4. DESIGN OFACTIVE CONTROLLER FOR THE SYNCHRONIZATION OF NON
IDENTICAL HY PERCHAOTIC SYSTEM

In this section, based on the active control theory, the complete synchronization between the smplified
Lorentz and Pang hyperchaotic system is achieved. In this synchronization methodology, the simplified
Lorentz system (1) is consdered as a Master system and the Pang system (2) is considered as a Slave
system.

The controlled dave Pang system is given by,

p=a(q-p)+u,
g=vq— pr+s+u,
r=—Br+ pg+u, 3

$=-o(p+Q)+u,

Here u,, u,, u,, u,, are the nonlinear active controllers to be designed. The complete synchronization
error dynamics are defined as, ¢ = p-X, & =q-y, ¢ =r-zand ¢ =$—\.
The nonlinear active controllers can be derived as,

U =-a(q-p)+(y-x -ke

U, = =g+ pr —s—(xz-w) -k,

Uy = Br — pa+ (Xy —a) — ks, 4
u, =c(p+0q)—by-k,e,

Herek,, k,, k, and k,, are the real positive constatnts. Consider the Lyapunov function as,

1 . : : .
V(e)=;ce=aa+esres e,
V(e) = _(klelz + kzez2 + ksej + k4e42,)

Thus, by Lyapunov stability theory, it isimmediate that the synchronization errors e, e, €, and e, decay
to zero exponentialy with time.

5. FPGAIMPLEMENTATION OF SYNCHRONIZED NON IDENTICAL
HYPERCHAOTIC SYSTEMS

In this section, nonlinear active controllers (4) and the synchronized hyperchaotic systems are implemented
in FPGA. The positive constants are takenask = 2, wherei =1, 2, 3, 4.

The implementation of active controller signals (4) is shown in Figure 9. The implementation of
synchronized Hyperchaotic system is shown in the Figure 10. The master subsystem contains the
block diagram of simplified Lorentz Hyperchaotic system (1), the slave subsystem contains the block
diagram of slave Pang hyperchaotic system (3) and the control commands subsystem contains the
Figure 9.

The initial conditions for the state variables of master system can be chosen { x(0), y(0), z0), w(0)} =
{2, 4, 1, 3}and the initial conditions for the state variables of dave system can be chosen as {p(0), q(0),
r(0), s(0)} ={5, 6, 2, 8}. Hence theinitial valuesfor error signasare{ e (0), e,(0), e,0), g,(0)} ={3, 10, 1,
11}. The state variables of synchronized master and slave hyperchaotic system and the error signals for
complete synchronization are shown in Figure 11.
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Figure 9: Implementation of error signals (e, e, e,, ) and active controllers (u,, u,, u,, u,)
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Figure 10: Implementation of complete synchronization of simplified L orentz and Pang hyperchactic system in XSG technology
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Figure 11: State variables and error signals for complete synchronization of simplified Lorentzand Pang hyperchaotic system

1

-

+

(N y
synchronized hyperchaotic_systems_cw

Figure 12: RTL Schematic of synchronized Simplified Lorentz and Pang hyperchaotic system

The implemented structure of the synchronized simplified Lorentz hyperchaotic system and Pang
hyperchaotic system in Xilinx I1SE into Virtex6 xc6vsx315t-3ff1156 is shown in the Figure 12. The result
of VHDL code simulation using Xilinx Isim simulator is shown in the Figure 13 which presents a portion
of the waveform of synchronized signals. The signal has the numerica value 2, and has the numerical value
5, therefore has the value 3. The signal has the numerical value 4, and has the numerica value 6, therefore
has the value 2. The signal has the numerical value 1, and has the numerical value 2, therefore has the value
1. The signal has the numerical value 3, and has the numerical value 8, therefore has the value 5.

The VHDL code is generated from the system generator design (Figure 10) and is used to configure the
FPGA Virtex6 xc6vsx315t-3ff1156. Figure 14 shows the oscilloscope output for the synchronized non
identical hyperchaotic systems.
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Figure 14: Oscilloscope outputs for the synchronized non identical hyperchaotic systems

5. CONCLUSION

Inthispaper, FPGA implementation of complete synchronization methodology for nonidentical hyperchaotic
system is proposed. The proposed method has been derived according to Lyapunov stability theory. Since
the Lyapunov exponents are not required for these calculations, the active control method is efficient for
the complete synchronization of non identical hyperchaotic systems. The simplified Lorentz hyperchaotic
systems, Pang hyperchaotic system, active controller, and the synchronized non identical hyperchaotic
systems are implemented in FPGA Vertex 6. The smulations results and experimental results are indicating
that the proposed methodology isvery effectiveand convenient to synchronize the nonidentical hyperchaotic
systems.
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