C-BOCHNER CURVATURE TENSOR ON $(L C S)_{n}-$ MANIFOLDS

Venkatesha, Somashekhara P. and R. T. Naveen Kumar

Abstract

The aim of this paper is to study C-Bochner curvature tensor of $(L C S)_{n}$-manifold. Here first we describe C-Bochner flat $(L C S)_{n}$-manifold. Next we study C-Bochner pseudosymmetric $(L C S)_{n}$-manifold. Moreover, we also consider the conditions $B(\xi, x) \cdot R=0$, $B(\xi, x) . B=0$ and $B(\xi, X) \cdot S=0$ on $\mathrm{a}(L C S)_{n}$-manifold.

AMS Subject Classification: 53C15, 53C25.
Key Words: Lorentzian metric, $(L C S)_{n}$-manifold C-Bochner curvature tensor, scalar curvature and η-Einstein manifold.

1. INTRODUCTION

In 1949, Bochner developed a Kahler analogue of the Weyl conformal curvature tensor called Bochner curvature tensor [2] and the geometric interpretation of the Bochner curvature tensor is given by Blair [1]. By considering the Boothby-Wang's fibration [3]. Matsumoto and chuman defined C-Bochner curvature tensor[11] from the Bochner curvature tensor. The C-Bochner curvature tensor is given by

$$
\begin{aligned}
(1,1) B(X, Y) Z= & R(X, Y) Z+\frac{1}{n+3}[S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y \\
& -g(Y, Z) Q X+S(\varphi X, Z) \Phi Y-S(\phi Y, Z) \varphi X+g(\phi X, Z) Q \phi Y \\
& -g(\phi Y, Z) Q \phi X+2 S(\phi X, Y) \phi Z+2 g(\phi X, \phi Y) Q \phi Z \\
& -S(X, Z) \eta(Y) \xi+S(Y, Z) \eta(X) \xi-\eta(X) \eta(Z) Q Y+\eta(Y) \eta(Z) Q X] \\
& -\frac{p+n-1}{n+3}[g(\phi X, Y) Z-g(\phi Y, Z) \phi X+2 g(\phi X, Y) \phi Z] \\
& -\frac{p-4}{n+3}[g(x, 2) y-g(y, 2) x]+p /(n+3)[g(X, Z) \eta(Y) \xi \\
& +\eta(X) \eta(Z) Y-g(Y, Z) \eta(X) \xi-\eta(Y) \eta(Z) X],
\end{aligned}
$$

where S is the Ricci tensor of type $(0,2), Q$ is the Ricci operator defined by $g(Q X, Y)=$ $S(X, Y), p=\frac{r+n-1}{n+1}$, and r being the scalar curvature of the manifold. The geometry of C-Bochner curvature tensor in a Riemannian manifold with different structures have been studied extensively by many geometers such as $[5,6,8,9,21]$ and many others.

The present paper is organized as follows: In Section 2, we give brief information about $(L C S)_{n}$-manifold and C-Bochner curvature tensor needed throughout the paper. In Section 3, we consider C - Bocher flat $(L C S)_{n}$-manifold. We show that scalar curvature r is always constant. The next section is devoted to the study of C-Bochner pseudo-symmetric $(L C S)_{n}-$ manifold. Thus, we obtained that either $\left(\alpha^{2}-\rho\right)=L B$ or the manifold reduces to η-Einstein. In Section 5, we describe $(L C S)_{n}$-manifold satisfying the condition $B(\xi, U) \cdot R=0$. In this case we find an expression for Riemannian Curvature tensor. Next in Section 6, weconsider $(L C S)_{n}$-manifold satisfying the condition $B(\xi, U) . B=0$ and proved that manifold becomes η-Einstein. Finally, our discussion ends with the condition $B(\xi, U) . S=0$ on a $(L C S)_{n}$-manifold and we find that the manifold reduces to Einstein manifold.

2. PRELIMINARIES

A Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor $g: T_{p} M \times T_{p} M \rightarrow R$ is a non-degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} M$ denotes the tangent vector space of M at p and R is the real number space.

A unit time like concircular vector field ξ on a LorentzianManifold M is called characteristic vector field of the manifold. Then we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{2.1}
\end{equation*}
$$

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that

$$
\begin{equation*}
g(X, \xi)=\eta(X) . \tag{2.2}
\end{equation*}
$$

The equation of the following form holds

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)],(\alpha \neq 0) \tag{2.3}
\end{equation*}
$$

For all vector fields X, Y, where ∇ denotes the covariant differentiation operator with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

$$
\begin{equation*}
\nabla x \alpha=(X \alpha)=d \alpha(X)=\rho \eta(X) \tag{2.4}
\end{equation*}
$$

Where ρ being a certain scalar function given by $\rho=-(\xi \alpha)$. If we put

$$
\begin{equation*}
\phi X=\frac{1}{\alpha} \nabla x \xi, \tag{2.5}
\end{equation*}
$$

Then from (2.3) and (2.4), we have

$$
\begin{equation*}
\phi X=X+\eta(X) \xi, \tag{2.6}
\end{equation*}
$$

From which it follows that ϕ is a symmetric $(1,1)$ tensor. Thus the Lorentzian manifold M together with the unit time like concircular vector field ξ, its associated 1 -form η and $(1,1)$ tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(L C S)_{n}-$ manifold) [13]. In a $(L C S)_{n}$-manifold, the following relations hold:

$$
\begin{gather*}
\eta(\xi)=-1, \phi \xi=0, \eta(\phi X)=0, \tag{2.7}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{2.8}\\
R(X, Y) Z=\left(\alpha^{2}-\rho\right)[g(Y, Z) X-g(X, Z) Y], \tag{2.9}\\
(\nabla x \phi)(Y)=\alpha[g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X], \tag{2.10}\\
S(X, \xi)=(n-1)\left(\alpha^{2}-\rho\right) \eta(X), \tag{2.11}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \eta(Y), \tag{2.12}
\end{gather*}
$$

For any vector fields X, Y, Z, where R and S denotes respectively the curvature tensor and the Ricci tensor of the manifold.

In a $(L C S)_{n}$-manifold M, the C-Bochner curvature tensor satisfies the following relations:

$$
\begin{gather*}
B(X, Y) \xi=\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}[\eta(Y) X-\eta(X) Y], \tag{2.13}\\
B(\xi, X) Y=\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}[g(X, Y) \xi-\eta(Y) X], \tag{2.14}\\
=-B(X, \xi) Y, \\
B(\xi, X) \xi=\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}[\eta(X) \xi+X], \tag{2.15}\\
\\
=-B(X, \xi) \xi, \tag{2.16}\\
B^{e}(\xi, \xi) X=0 .
\end{gather*}
$$

On contracting (3.1), we get

$$
\begin{equation*}
\sum_{i=1}^{n} g(B(e i, X) W, e i)=l S(X, W)+m g(X, W)+n \eta(X) \eta(W) \tag{2.17}
\end{equation*}
$$

Where

$$
l=\left(\frac{11-n}{n+3}\right), m=\frac{n\left[n^{2}-7(n+1)\right]+r(n-5)+13}{(n+3)}
$$

and
$n=\frac{n\left(n^{2}+5 n-3\right)+r(n-1)+7-(n-5)(n-1)(n+1)\left(\alpha^{2}-\rho\right)}{n+3}$
Definition 2.1: An n-dimensional $(L C S)_{n}$-manifold M, is said to be η-Einstein if its Ricci tensor S if of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y),
$$

for any vector fields X and Y, wherea and b are constants. If $b=0$ then the manifold is Einstein and if $a=0$, the manifold is a special type of η-Einstein.

3. C-BOCHNER FLAT $(L C S)_{\boldsymbol{n}}$ - MANIFOLD

Let us consider a C-Bochner flat $(L C S)_{n}$-manifold. Then C-Bochner curvature tensor vanishes i.e.,

$$
B(X, Y) Z=0
$$

By using above condition in (3.1), we get
(3.1) $0=R(X, Y) Z+\frac{1}{n+3}[S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y$

$$
\begin{aligned}
& -g(Y, Z) Q X+S(\phi X, Z) \phi Y-S(\phi Y, Z) \phi X+g(\phi X, Z) Q \phi Y \\
& -g(\phi Y, Z) Q \phi X+2 S(\phi X, Y) \phi Z+2 g(\phi X, \phi Y) Q \phi Z \\
& -S(X, Z) \eta(Y) \xi+S(Y, Z) \eta(X) \xi-\eta(X) \eta(Z) Q Y+\eta(Y) \eta(Z) Q X] \\
& \left.-\frac{p+n-1}{n+3}[g(\phi X, Y) Z-g(\phi Y, Z) \phi X]+2 g(\phi X, Y) \phi Z\right] \\
& -\frac{p-4}{n+3}[g(X, Z) Y-g(Y, Z) X]+p /(n+3)[g(X, Z) \eta(Y) \xi \\
& +\eta(X) \eta(Z) Y-g(Y, Z) \eta(X) \xi-\eta(Y) \eta(Z) X],
\end{aligned}
$$

Putting $Z=\xi$ in (3.1) and by virtue of (2.7), (2.9) and (2.11), we obtain

$$
\begin{equation*}
\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[\eta(Y) X-\eta(X) Y]=0 . \tag{3.2}
\end{equation*}
$$

Again putting $Y=\xi$ in (3.2), yields

$$
\begin{equation*}
\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[X+\eta(X) \xi]=0 \tag{3.3}
\end{equation*}
$$

Which implies either $\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}=0$ or $X+\eta(X) \xi=0$, also for a $(L C S)_{n}$-manifold $X+\eta(X) \xi \neq 0$, we get

$$
\begin{equation*}
r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right) \tag{3.4}
\end{equation*}
$$

This leads us to the following theorem:
Theorem 3.1. In a C-Bochner flat ($L C S$) n-manifold, the scalar curvature is constant and is given by (3.4).

4. \boldsymbol{C}-BOCHNER PSEUDO-SYMMETRIC $(L C S)_{n}$-MANIFOLD

An n-dimensional $\left((L C S)_{n}\right.$-manifold M is said to be C-Bochner pseudo-symmetric if

$$
\begin{equation*}
(R(X, Y) \cdot B)(U, V) W=L_{B}[((X \wedge Y) \cdot B(U, V) W], \tag{4.1}
\end{equation*}
$$

holds on the set $U_{B}=\{x \in M: B \neq 0\}$ at x, where L_{B} is some function on U_{B} and B is the C - Bochner curvature tensor.

Let M be an n- dimensional C-Bochner pseudo-symmetric $(L C S)_{n}$-manifold, then it follows from (4.1) that

$$
\begin{align*}
&(R(X, \xi) \cdot B)(U, V) W=L_{B}[((X \wedge \xi) \cdot B(U, V) W]-B((X \wedge \xi) U, V) W \tag{4.2}\\
&-B(U,(X \wedge \xi)) W-B(U, V)(X \wedge \xi) W] .
\end{align*}
$$

Now the left hand side of (4.2) gives

$$
\begin{array}{r}
R(X, \xi) B(U, V) W-B(R(X, \xi) U, V) W-B(U, R(X, \xi) V) W \tag{4.3}\\
-B(U, V) R(X, \xi) W
\end{array}
$$

In view of (2.9) the above equation reduces to

$$
\begin{align*}
& \left(\alpha^{2}-\rho\right)[\eta(B(U, V) W) X-g(X, B(U, V) W) \xi-\eta(U) B(X, V) W \tag{4.4}\\
& +g(X, U) B(\xi, V) W-\eta(W) B(U, V) X+g(X, W) B(U, V) \xi \\
& -\eta(V) B(U, X) W+g(X, V) B(U, \xi) W]
\end{align*}
$$

Similarly, right hand side of (4.2) gives

$$
\begin{align*}
& L_{B}[\eta(B(U, V) W) X-g(X, B(U, V) W) \xi-\eta(U) B(X, V) W \tag{4.5}\\
& +g(X, U) B(\xi, V) W-\eta(W) B(U, V) X+g(X, W) B(U, V) \xi \\
& -\eta(V) B(U, X) W+g(X, V) B(U, \xi) W]
\end{align*}
$$

Substituting (4.4)and (4.5) in (4.2), we get

$$
\begin{gather*}
\left(\left(\alpha^{2}-\rho\right)-L B\right)[\eta(B(U, V) W) X-g(X, B(U, V) W) \xi-\eta(U) B(X, V) W \tag{4.6}\\
+g(X, U) B(\xi, V) W-\eta(W) B(U, V) X+g(X, W) B(U, V) \xi \\
-\eta(V) B(U, X) W+g(X, V) B(U, \xi) W]=0
\end{gather*}
$$

On plugging $V=\xi$ in (4.6) and using (2.13) - (2.16), we obtain
$0=\left(\left(\alpha^{2}-\rho\right)-L_{B}\right)\left\{B(U, X) W+\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(X, W) U-g(U, W) X]\right\}$

Which implies either $\left(\alpha^{2}-\rho\right)=L_{B}$ or

$$
\begin{equation*}
\left.B(U, X) W=\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(X, W) U-g(U, W) X]\right\} \tag{4.8}
\end{equation*}
$$

On contracting above equation with respect to U and by virtueof (2.17), we have

$$
\begin{equation*}
S(X, W)=A^{\prime} g(X, W)+B^{\prime} \eta(X) \eta(W) \tag{4.9}
\end{equation*}
$$

Where $A^{\prime}=\frac{2\left(n^{2}-1\right)(n-3)\left((\alpha 2-\rho)+n\left(n^{3}-6 n^{2}-10 n+10\right)+r\left(n^{2}-6 n-3\right)+7\right.}{(n-11)(n+1)}$

And $\quad B^{\prime}=\frac{n\left(n^{2}+5 n-3\right)+r(n-1)+7-\left(n^{2}-1\right)(n-5)\left(\alpha^{2}-\rho\right)}{(n-11)}$
Hence we can state the following:
Theorem 4.2. Let M be a n-dimensional C-Bochner pseudo-symmetric $(L C S)_{n}$-manifold then either $\left(\alpha^{2}-\rho\right)=L_{B}$ or the manifold becomes η-Einstein.

5. $(\boldsymbol{L C S})_{\boldsymbol{n}}$ - MANIFOLD SATISFYING $\boldsymbol{B}(\boldsymbol{\xi}, \boldsymbol{U}) . \boldsymbol{R}=\mathbf{0}$

Let us consider $(L C S)_{n}$-manifold satisfying the condition $B(\xi, U) \cdot R=0$, then

$$
\begin{align*}
& 0=B(\xi, U) R(X, Y) Z-R(B(\xi, U) X, Y) Z \tag{5.1}\\
& -R(X, B(\xi, U)) Y) Z-R(X, Y) B(\xi, U) Z,
\end{align*}
$$

Which in view of (2.14) gives

$$
\begin{equation*}
0=\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(U, R(X, Y) Z) \xi \tag{5.2}
\end{equation*}
$$

$$
\begin{gathered}
-\eta(R(X, Y) Z) U-g(U, X) R(\xi, Y) Z+\eta(X) R(U, Y) Z-g(U, Y) R(X, \xi) Z \\
+\eta(Y) R(X, U) Z-g(U, Z) R(X, Y) \xi+\eta(Z) R(X, Y) U] .
\end{gathered}
$$

Which implies that either $\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)=0$ i.e. scalar curvature $r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right)$ or

$$
\begin{align*}
0= & g(U, R(X, Y) Z) \xi-\eta(R(X, Y) Z) U-g(U, X) R(\xi, Y) Z+\eta(X) R(U, Y) Z \tag{5.3}\\
& -g(U, Y) R(X, \xi) Z+\eta(Y) R(X, U) Z-g(U, Z) R(X, Y) \xi+\eta(Z) R(X, Y) U .
\end{align*}
$$

On plugging $Z=\xi$ in (5.3) and then using (2.5) and (2.7), we get

$$
\begin{equation*}
R(X, Y) U=\left(\alpha^{2}-\rho\right)[g(Y, U) X-g(X, U) Y] . \tag{5.4}
\end{equation*}
$$

Hence we can state the following result:
Theorem 5.3. Let M be n-dimensional $(L C S)_{n}$-manifold satisfying the condition $B(\xi, U) . R=0$. Then either scalar curvature $r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right)$ or the curvature tensor R is given by (5.4).

6. $(\boldsymbol{L C S})_{\boldsymbol{n}}$ - MANIFOLD SATISFYING B $(\xi, \boldsymbol{U}) . \boldsymbol{B}=\mathbf{0}$

Theorem 6.4. If M is a n-dimensional $(L C S)_{n}$-manifold satisfying $B(\xi, U) . B=0$, then either scalar curvature $r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right)$ or the manifold is η-Einstein.

Proof. Let M be a n-dimensional $(L C S)_{n}$-manifold satisfying $B(\xi, U) . B=0$
Then above condition turns into

$$
\begin{align*}
& 0=B(\xi, U) \cdot B(X, Y) Z-B(B(\xi, U) X, Y) Z \tag{6.1}\\
& -B\left(X, B^{e}(\xi, U) Y\right) Z-B(X, Y) B(\xi, U) Z .
\end{align*}
$$

Using (2.14) in (6.1), we have

$$
\begin{gather*}
0=\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(U, B(X, Y) Z) \xi \tag{6.2}\\
-\eta(B(X, Y) Z) U-g(U, X) B(\xi, Y) Z+\eta(X) B(U, Y) Z-g(U, Y) B(X, \xi) Z \\
+\eta(Y) B(X, U) Z-g(U, Z) B(X, Y) \xi+\eta(Z) B(X, Y) U .
\end{gather*}
$$

Which implies that either $\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)=0$ i.e., scalar curvature $r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right)$ or

$$
\begin{aligned}
0= & g(U, B(X, Y) Z) \xi-\eta(B(X, Y) Z) U-g(U, X) B(\xi, Y) Z+\eta(X) B(U, Y) Z \\
& -g(U, Y) B(X, \xi) Z+\eta(Y) B(X, U) Z-g(U, Z) B(X, Y) \xi+\eta(Z) B(X, Y) U .
\end{aligned}
$$

Putting $Z=\xi$ in the (6.3) and by virtue of (2.13) - (2.16), we obtain

$$
\begin{equation*}
B(X, Y) U=\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(U, Y) X-g(X, U) Y] \tag{6.4}
\end{equation*}
$$

On contracting above equation with respect to X and then using (2.17), we get

$$
\begin{equation*}
S(Y, U)=A^{\prime \prime} g(Y, U)+B^{\prime \prime} \eta(Y) \eta(U), \tag{6.5}
\end{equation*}
$$

Where $A^{\prime \prime}=\frac{2\left(n^{2}-1\right)(n-3)\left((\alpha 2-\rho)+n\left(n^{3}-6 n^{2}-10 n+10\right)+r\left(n^{2}-6 n-3\right)+7\right.}{(n-11)(n+1)}$
And $B^{\prime \prime}=\frac{n\left(n^{2}+5 n-3\right)+r(n-1)+7-\left(n^{2}-1\right)(n-5)\left(\alpha^{2}-\rho\right)}{(n-11)}$
Hence M is an η-Einstein manifold:

7. $(L C S)_{n}$-MANIFOLD SATISFYING $B(\xi, X) . S=0$

Theorem 7.5. Let M be a n-dimensional $(L C S)_{n}$-manifold satisfying $B(\xi, X) . S=0$. Then either scalar curvature r is constant and is given by $r=(n+3)+(n+1)(n-3)\left(\alpha^{2}-\rho\right)$ or the manifold reduces to Einstein.

Proof. Let us consider $(L C S)_{n}$-manifold satisfying the condition $B(\xi, X) \cdot S=0$. Then it can be easily seen that

$$
\begin{equation*}
S(B(\xi, X) U, V)+S(U, B(\xi, X) V)=0 . \tag{7.1}
\end{equation*}
$$

By virtue of (2.14) in (7.1), we get

$$
\begin{align*}
= & \left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)[g(X, U) S(\xi, V) \tag{7.2}\\
& -\eta(U) S(X, V)+g(X, V) S(U, \xi)-\eta(V) S(X, U)]
\end{align*}
$$

Which implies that either $\left(\frac{2(r-n-3)-2(n+1)(n-3)\left(\alpha^{2}-\rho\right)}{(n+1)(n+3)}\right)=0$ i.e., scalar curvature $r=(n+3)+(n-3)(n+1)\left(\alpha^{2}-\rho\right)$ or

$$
\begin{equation*}
0=g(X, U) S(\xi, V)-\eta(U) S(X, V)+g(X, V) S(U, \xi)-\eta(V) S(X, U) . \tag{7.3}
\end{equation*}
$$

Putting $U=\xi$ in (7.3) and by virtue of (2.11), we get

$$
\begin{equation*}
S(X, V)=(n-1)(\alpha 2-\rho) g(X, V) . \tag{7.4}
\end{equation*}
$$

REFERENCES

[1] D. E. Blair, on the geometric meaning of the Bochner tensor, Geom, Dedicata, 4(1975), 33-38.
[2] S. Bochner, Curvature and Bettinumbers, Ann.of Math., 50(1949), 77-93.
[3] W. M. Boothby and H.C.Wang, On contact manifolds, Ann. of Math., 68(1958)721-734.
[4] E. Cartan, Sur une classe remarquable despaces de Riemannian, Bull. Soc.Math., France 54(1926), 214-264.
[5] A. De, C-Bochner curvature tensor on $\mathrm{N}(\mathrm{k})$-contact metric manifolds, Lobachevskii Journal of Mathematics,31(2010), No.3, 209-214.
[6] U. C. De and A. A. Shaikh, Sasakian manifold with C-Bochner curvature tensor, Indian J. of Math., 41, 131 (1999).
[7] R. Dexzcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Ser., A 44, 1 (1992).
[8] Gurupadavva Ingalahalli and C. S. Bagewadi, A Study on Conservative C-Bochner Curvature Tensor in K-Contact and Kenmotsu Manifolds Admitting Semisymmetric Metric Connection, ISRN Geometry, Vol. 2012, (2012), 14 pages.
[9] J. S. Kim, M. M. Tripathi and J. Choi, On C-Bochner curvature tensor on a contact metric manifold, Bull. Korean Math. Soc., 42(2005), 713-724.
[10] M. Matsumoto, On Lorentzian almost para contact manifolds, Bull. Yamagata Uni.Nat.Sci.,12(1989). 151-156.
[11] M. Matsumoto and G. Chuman, On the C-Bochner curvature tensor, TRU Math., 5(1969), 2130.
[12] G. Pathak, U. C. De and Y. H. Kim, Contact manifold with C-Bochner curvature tensor, Bull. Calcutta Math. Soc., 96, 45 (2004).
[13] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyung-pook Math. J., 43(2003), 305-314.
[14] A. A. Shaikh, Some results on (LCS)n-manifolds, J. Korean Math. Soc., 03,46 (2009), 449461.
[15] A. A. Shaikh and H. Ahmad, Some transformations on (LCS)n-manifolds, Tsukuba J. Math., 38 (2014) 1-24.
[16] G. T. Sreeni vasa, Venkatesha and C. S. Bagewadi, Some results on (LCS)2n+1 - manifolds, Bull, Math. Anal. Appl., 1,3(2009) 64-70.
[17] Z. I. Szabo, Structure theorems on Riemannian space satisfying R(X, Y).R = O, I, The local version, J.Differential Geom. 17, 531(1982).
[18] S. Tanno, Ricci curvatures of contact Riemanian manifolds, Tohoku Mathematical journal,40,(1988).
[19] S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad., 43, 581 (1967).
[20] Venkatesha and R. T. Naveen Kumar, Some symmetric Properties on (LCS)n-manifolds, Kyungpook Math. J., 55(2015), 149-156.
[21] Venkatesha and R. T. Naveen Kumar, On a (k, μ)-contact metric manifold admitting C-Bochner curvature tensor, Differential Geometry - Dynamical Systems, 17 (2015), 126-133.
[22] K. Yano and M. Kon, Structures on Manifolds, Vol. 3 of Series in Pure Mathematics, World Scientific Singapore, 1984.

Venkatesha

Department of Mathematics, Kuvempu University
Shankaraghatta-577451, Shimoga, Karnataka, INDIA.
E-mail: vensmath@gmail.com

Somashekhara P

Department of Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, INDIA.
E-mail: somuathrishi@gmail.com

R. T. Naveen Kumar

Department of Mathematics, Siddaganga Institute of Technology, B.H.Road, Tumakuru-572103, Karnataka,INDIA

E-mail: rtnaveenkumar@gmail.com

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

