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Abstract. In this paper, we study the solutions of a stochastic differential
equation with various anticipating initial conditions. We show that the con-

ditional expectation of the solution of such a stochastic differential equation
is not simply the solution of the corresponding stochastic differential equation
with initial condition taken as the conditional expectation of the anticipat-

ing initial condition. We derive the conditional expectation of the solution
in general, and apply it to the special case of anticipating initial condition
given by Hermite polynomials. We also extend the class of initial conditions
to functions of Wiener integrals.

1. Introduction

In 1942 [7], Kiyosi Itô published his pioneering paper on stochastic integra-
tion, which enabled integration of stochastic processes with respect to a Brownian
motion. In 1944 [8], his efforts to model Markov processes led him to construct
stochastic differential equations of the form dXt = α(Xt) dB(t)+β(Xt) dt,X0 = x,
which subsequently led him to publish what is now known as the Itô formula. In
1973, Black and Scholes [4], and Merton [12] used Itô’s calculus to give a frame-
work for option pricing, which rapidly expanded the interest of stochastic calculus
to practitioners in other fields.

Even though it is extremely useful, the Itô calculus cannot handle anticipat-
ing conditions. For example, consider the following simple stochastic differential
equation with anticipating initial condition{

dXt = Xt dB(t), t ∈ [0, 1],

X0 = B(1).
(1.1)

To solve the equation analytically, we have to assign a meaning to the integral∫ t

0

B(1) dB(s), t ∈ [0, 1], (1.2)

which is outside the theory of Itô calculus since the integral is not adapted with
respect to the filtration generated by the Brownian motion B(t). This is the
primary motivation for extending the Itô integral to anticipating integrands.

Received 2018-11-11; Communicated by the editors.

2010 Mathematics Subject Classification. Primary 60H05; Secondary 60H10, 60H20.
Key words and phrases. Stochastic integral, near-martingale, Itô formula, stochastic differ-
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Anticipating stochastic integrals are useful for modeling phenomena where one
has prior knowledge of the future. A primary example is in mathematical finance,
where one uses anticipation to model insider trading.

The outline of the paper is as follows: In Section 2, we mention some of the
preexisting theories, and recall the ideas behind the general stochastic integra-
tion. In Section 3, we give a brief introduction to the general theory of stochastic
integration and the solution of a linear stochastic differential equation with an
anticipating initial condition. Sections 4 and 5 contain the main results of this
paper. In Section 4, we discuss the conditional expectation of the solution of an
anticipating stochastic differential equatio, and also elucidate the essential con-
nection between the result and the Hermite polynomials. In Section 5, we give
the solution of a linear stochastic differential equation with initial condition in a
larger class of anticipating processes than those previously discussed.

2. Brief Review of the Background

Several generalizations of the Itô integral have been introduced to deal with
anticipating integrands. A few approaches are those by Nualart [13], Pardoux and
Protter [14], Biagini and Øksendal [3], and white noise distribution theory [10],
among others. In particular, in the white noise distribution theory, the stochastic
integral given in equation (1.2) is defined as∫ t

0

B(1) dB(s) =

∫ t

0

∂∗sB(1) ds,

where ∂∗t is the adjoint of the white noise differentiation operator ∂t. This ex-
tension of the Itô integral assigns a meaning to the integral in equation (1.2) and
consequently gives a solution to equation (1.1). Nevertheless, its definition us-
ing the white noise distribution theory has several difficulties, e.g., the lack of
probabilistic interpretation and conditional expectation.

In 2008 [1], W. Ayed and H.-H. Kuo introduced a general stochastic integral
(see also [2]). The authors use adapted and instantly independent decomposition
of an anticipating process to define its stochastic integral. In [5], it was proved that
the definition of the generalized stochastic integral is well-defined. This enables us
to define the stochastic integral like equation (1.2) and solve stochastic differential
equation with anticipating initial condition like equation (1.1).

At this point, it is worth noting that these results obtained from the generalized
stochastic integral coincide with the corresponding results obtained using white
noise distribution theory. Essentially, the general stochastic integral addresses the
shortcomings of both the Itô integration theory and the white noise distribution
theory by allowing anticipating integrands and giving suggestive interpretation of
the integral, respectively. Thus, the general stochastic integral serves as an ideal
link between Itô calculus and white noise distribution theory.

An analytic expression of the solution of the stochastic differential equation
with anticipating initial condition{

dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b]

Xa = ψ(B(b)−B(a)),
(2.1)
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is given in [5] and [9]. The precise expression allows us to study its analytic
properties, understand its probabilistic meaning, and apply it to solve problems
pertaining to the real world.

It is natural for one to expect that the conditional expectation of the solution of
equation (2.1) is the solution of the adapted version of the same equation. However,
we show that this is not the case and its conditional expectation satisfies another
adapted stochastic differential equation. This equation has a correction term that
comes from the accumulative impact of the anticipating initial condition.

3. General Stochastic Integral

The bedrock of the definition of the general stochastic integral depends on
instantly independent processes, which we define here.

Definition 3.1. A stochastic process f(t) is called instantly independent of a
filtration {Ft} if f(t) and Ft are independent for each t ∈ [a, b].

Definition 3.2 ([1]). Let f be adapted and φ be instantly independent, each
being continuous stochastic processes. Then the stochastic integral of f(t)φ(t) is
defined by∫ b

a

f(t)φ(t) dB(t) = lim
∥∆n∥→0

n∑
j=1

f(tj−1)φ(tj)
(
B(tj)−B(tj−1)

)
, (3.1)

provided that the limit exists in probability.

In [5], the definition was extended to a more general case.

Definition 3.3 ([5]). Suppose Φ(t), t ∈ [a, b], is a stochastic process of the form

Φ(t) =
m∑
i=1

fi(t)φi(t), (3.2)

where fi(t)’s are {Ft}-adapted continuous stochastic processes and φi(t)’s are con-
tinuous stochastic processes being instantly independent of {Ft}. The stochastic
integral of Φ(t) is defined by∫ b

a

Φ(t) dB(t) =
m∑
i=1

∫ b

a

fi(t)φi(t) dB(t),

where the integrals
∫ b

a
fi(t)φi(t) dB(t) are defined using equation (3.1) for each i,

provided that the limit exists in probability.

Intuitively, for the general stochastic integral, the adapted part of the integrand
is evaluated at the left endpoints and the instantly independent part is evaluated
at the right endpoints of each interval, respectively. Note that the restriction of
the general stochastic integral to adapted processes gives the Itô integral, so the
stochastic integral defined by equation (3.1) is an extension of the Itô integral.

The following lemma shows that the integral is indeed well-defined.
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Lemma 3.4 ([5]). Let fi(t), 1 ≤ i ≤ m, gj(t), 1 ≤ j ≤ n, be {Ft}-adapted contin-
uous stochastic processes and let φi(t), 1 ≤ i ≤ m, ξj(t), 1 ≤ j ≤ n, be continuous
stochastic processes being instantly independent of {Ft}. Suppose the stochastic

integrals
∫ b

a
fi(t)φi(t) dB(t) and

∫ b

a
gj(t)ξj(t) dB(t) exist for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Assume that
m∑
i=1

fi(t)φi(t) =

n∑
j=1

gj(t)ξj(t), t ∈ [a, b].

Then the following equality holds:
m∑
i=1

∫ b

a

fi(t)φi(t) dB(t) =

n∑
j=1

∫ b

a

gj(t)ξj(t) dB(t). (3.3)

In general, if a stochastic process Φ(t) can be written as a series of the form
f(t)φ(t) in L2(Ω), we define the stochastic integral of Φ(t) to be the sum of the
series in probability.

Definition 3.5 ([5]). Suppose Φ(t), t ∈ [a, b], is a stochastic process and there
exists a sequence {Φn(t)}∞n=1 of stochastic processes of the form in equation (3.2)
satisfying the conditions:

(1)
∫ b

a
|Φ(t)− Φn(t)|2 dt→ 0 almost surely.

(2)
∫ b

a
Φn(t) dB(t) converges in probability.

Then the stochastic integral of Φ(t) is defined by∫ b

a

Φ(t) dB(t) = lim
n→∞

∫ b

a

Φn(t) dB(t), in probability. (3.4)

In order to study the solution of the stochastic differential equation, we need
the Itô formula for the general stochastic integral, whose proof can be found in
[5]. Consider the following stochastic processes

Xt = Xa +

∫ t

a

g(s) dB(s) +

∫ t

a

h(s) ds, (3.5)

Y (t) = Y (b) +

∫ b

t

ξ(s) dB(s) +

∫ b

t

η(s) ds, (3.6)

where g(t) and h(t) are {Ft}-adapted so that Xt is an Itô process, and ξ(t) and
η(t) are instantly independent of {Ft} such that Y (t) is also instantly independent
of {Ft}.

Theorem 3.6 (Itô formula for general stochastic integral [5]). Let Xt, t ∈ [a, b], be
an Itô process given by equation (3.5) and Y (t), t ∈ [a, b], an instantly independent
process given by equation (3.6). Suppose θ(x, y) is a real-valued C2-function on
R2. Then the following equality holds for t ∈ [a, b]:

θ(Xt, Y
(t)) =θ(Xa, Y

(a)) +

∫ t

a

θx(Xs, Y
(s)) dXs +

1

2

∫ t

a

θxx(Xs, Y
(s))(dXs)

2

+

∫ t

a

θy(Xs, Y
(s)) dY (s) − 1

2

∫ t

a

θyy(Xs, Y
(s))(dY (s))2,
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which can be expressed symbolically in terms of stochastic differentials as

dθ(Xt, Y
(t)) = θx dXt +

1

2
θxx(dXt)

2 + θy dY
(t) − 1

2
θyy(dY

(t))2. (3.7)

The general Itô formula above can be used to solve a linear stochastic differential
equations with certain anticipating initial condition, which is the result of the
following theorem. Before we proceed, we define exponential processes.

Definition 3.7. The exponential process associated with the adapted stochastic
processes α and β is defined as

Eα,β(t) = exp

(∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

)
.

Remark 3.8. The exponential process Eα,β(t) is an Itô process satisfying the sto-
chastic differential equation{

dEα,β(t) = α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt, t ∈ [a, b]

Eα,β(a) = 1.
(3.8)

Theorem 3.9 ([5]). Let α(t) be a deterministic function in L2[a, b], β(t) an

adapted stochastic process such that E
∫ b

a
|β(t)|2 dt <∞, and ψ a continuous func-

tion on R. Then the stochastic differential equation{
dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b]

Xa = ψ
(
B(b)−B(a)

)
.

(3.9)

has a unique solution given by

Xt = ψ
(
B(b)−B(a)−

∫ t

a

α(s) ds
)
Eα,β(t), (3.10)

where Eα,β(t) is the exponential process associated with α and β.

4. Conditional Expectation of the Solution of
a Stochastic Differential Equation

Consider the process Yt = E[Xt|Ft] defined by the conditional expectation of
the solution process Xt in equation (3.10). Then Yt is adapted to the filtration
{Ft}. It is natural to hypothesize that Yt is the solution to the adapted version of
the stochastic differential equation (3.9), namely,{

dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b]

Xa = E
(
ψ(B(b)−B(a))

)
,

However, this is not the case and we have the following result:

Theorem 4.1. Let α(t) be a deterministic function in L2[a, b], β(t) an adapted

stochastic process such that E
∫ b

a
|β(t)|2 dt <∞, and assume that ψ(t) is a function

on R having power series expansion at t = 0 with infinite radius of convergence.
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Suppose that X1(t) and X2(t) are the solutions of the same linear stochastic dif-
ferential equation

dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b],

with different initial conditions

X1(a) = ψ(B(b)−B(a)) and X2(a) = ψ′(B(b)−B(a)),

where ψ′ is the derivative of ψ. Let Y1(t) = E[X1(t)|Ft] and Y2(t) = E[X2(t)|Ft].
Then Y1(t) satisfies the following stochastic differential equation{

dY1(t) = α(t)Y1(t) dB(t) + β(t)Y1(t) dt+ Y2(t) dB(t), t ∈ [a, b],
Y1(a) = E

(
ψ(B(b)−B(a))

)
.

(4.1)

Proof. By the assumption and Theorem 3.9, the solution processes X1(t) and
X2(t) can be written as

X1(t) = ψ
(
B(b)−B(a)−

∫ t

a

α(s) ds
)
Eα,β(t)

= Eα,β(t)
∞∑
k=0

1

k!
ψ(k)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(B(b)−B(t))k.

and

X2(t) = ψ′
(
B(b)−B(a)−

∫ t

a

α(s) ds
)
Eα,β(t)

= Eα,β(t)
∞∑
k=0

1

k!
ψ(k+1)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(B(b)−B(t))k.

Take the conditional expectation to get

Y1(t) = E[X1(t)|Ft]

= Eα,β(t)
∞∑
k=0

1

k!
ψ(k)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
E
[
(B(b)−B(t))k|Ft

]
= Eα,β(t)

∞∑
k=0

1

(2k)!
ψ(2k)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k(2k − 1)!!

= Eα,β(t)
∞∑
k=0

1

(2k)!!
ψ(2k)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k,

and

Y2(t) = Eα,β(t)
∞∑
k=0

1

(2k)!!
ψ(2k+1)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k,

where (2k−1)!! = (2k−1)(2k−3) · · · ·3 ·1 for k ≥ 1 and (−1)!! = 1 by convention,
and (2k)!! = (2k)(2k − 2) · · · · 4 · 2 for k ≥ 1 and 0!! = 1 by convention.

For convenience, denote the processes

V k
t = ψ(2k)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k.
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Then we have

Y1(t) = Eα,β(t)
∞∑
k=0

1

(2k)!!
V k
t .

Now, both V k
t and Eα,β(t) are adapted. Using a slightly general case of Itô’s

formula given in equation (3.7) and equation (3.8), we have

dV k
t =ψ(2k+1)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k(dB(t)− α(t) dt)

+
1

2
ψ(2k+2)

(
B(t)−B(a)−

∫ t

a

α(s) ds
)
(b− t)k dt

− ψ(2k)
(
B(t)−B(a)−

∫ t

a

α(s) ds
)
k(b− t)k−1 dt.

For simplicity, denote ψ(n)
(
B(t)−B(a)−

∫ t

a
α(s) ds

)
by ψn. Now,

d
(
Y1(t)

k
)

=
∞∑
k=0

1

(2k)!!

[
V k
t dEα,β(t) + Eα,β(t) dV k

t + (dV k
t )(dEα,β(t))

]
=

∞∑
k=0

1

(2k)!!
ψ2k(b− t)k

(
α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt

)
+

∞∑
k=0

1

(2k)!!
Eα,β(t)ψ2k+1(b−t)k(dB(t)−α(t) dt)

+
1

2

∞∑
k=0

1

(2k)!!
Eα,β(t)ψ2k+2(b− t)k dt

−
∞∑
k=0

1

(2k)!!
Eα,β(t)ψ2kk(b− t)k−1 dt+

∞∑
k=0

1

(2k)!!
α(t)Eα,β(t)ψ2k+1(b− t)k dt.

Continuing, we get d
(
Y1(t)

k
)
equals

∞∑
k=0

1

(2k)!!
ψ2k(b− t)kα(t)Eα,β(t) dB(t)

+
∞∑
k=0

1

(2k)!!
ψ2k(b− t)kβ(t)Eα,β(t) dt+

∞∑
k=0

1

(2k)!!
Eα,β(t)ψ2k+1(b− t)k dB(t)

−
∞∑
k=0((((((((((((((1

(2k)!!
Eα,β(t)ψ2k+1(b− t)kα(t) dt+

1

2

∞∑
k=0

hhhhhhhhhhhh
1

(2k)!!
Eα,β(t)ψ2k+2(b− t)k dt

−1

2

∞∑
k=0

hhhhhhhhhhhhhhh

1

(2(k − 1))!!
Eα,β(t)ψ2k(b− t)k−1dt+

∞∑
k=0((((((((((((((1

(2k)!!
α(t)Eα,β(t)ψ2k+1(b− t)kdt.

Finally, using the expressions for Y1(t) and Y2(t), we get

d
(
Y1(t)

k
)
= α(t)Y1(t) dB(t) + β(t)Y1(t) dt+ Y2(t) dB(t). �
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The appearance of the extra term Y2(t) dB(t) in the stochastic differential equa-
tion (4.1) is quite natural. Because of the existence of the anticipating part, it
has accumulative impact on its conditional expectation through the dynamics of
the stochastic differential equation. The extra term Y2(t) dB(t) can be seen as a
correction of the current information by accumulatively adding the initial knowl-
edge about the future. Moreover, the derivative ψ′ in the initial condition satisfied
by X2(t) essentially comes from the Itô formula (3.7) for the general stochastic
integral.

An important example of Theorem 4.1 is when we choose ψ to be the Hermite
polynomial. Recall that the Hermite polynomial of degree n with parameter η is
defined by (see, for example, [11])

Hn(x; η) = (−η)nex
2/2ηDn

xe
−x2/2η, (4.2)

where Dx is the differential operator with respect to the variable x. The Hermite
polynomials have the following properties:

DxHn(x; η) = nHn−1(x; η), (4.3)

DηHn(x; η) = −1

2
D2

xHn(x; η), (4.4)

Hn(x+ y; η) =
n∑

k=0

(
n

k

)
Hn−k(x; η)y

k. (4.5)

Lemma 4.2 ([11]). The stochastic process Xt = Hn(B(t)−B(a); t− a), t ∈ [a, b]
is a martingale and

dXt = nHn−1(B(t)−B(a); t− a) dB(t). (4.6)

Theorem 4.3 ([6]). Let α(t) be a deterministic function in L2[a, b], β(t) an

adapted stochastic process such that E
∫ b

a
|β(t)|2 dt < ∞, and n a fixed natural

number. Let Xt be the solution of the stochastic differential equation{
dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b],
Xa = Hn

(
B(b)−B(a); b− a

)
,

(4.7)

and Yt = E[Xt|Ft]. Then we have

Yt = Hn

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
Eα,β(t), t ∈ [a, b]. (4.8)

Moreover, Yt satisfies the stochastic differential equation

dYt =
[
α(t)Yt + nHn−1

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
Eα,β(t)

]
dB(t)

+ β(t)Yt dt,

(4.9)

for t ∈ [a, b], with initial condition Ya = 0.

Proof. First, we prove equation (4.8). By Theorem 3.9, we have for t ∈ [a, b],

Xt = Hn

(
B(b)−B(a)−

∫ t

a

α(s) ds; b− a
)
Eα,β(t).
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Note that Eα,β(t) is adapted to {Ft}. So

Yt = E[Xt|Ft] = E
[
Hn

(
B(b)−B(a)−

∫ t

a

α(s) ds; b− a
)∣∣Ft

]
Eα,β(t). (4.10)

By equation (4.5) with x = B(b)−B(a), y = −
∫ t

a
α(s) ds, and η = b− a, we get

Hn

(
B(b)−B(a)−

∫ t

a

α(s) ds; b−a
)
=

n∑
k=0

(
n

k

)
Hn−k(B(b)−B(a); b−a)

(
−
∫ t

a

α(s) ds
)k

.

Taking conditional expectation with respect to Ft, we obtain

E
[
Hn

(
B(b)−B(a)−

∫ t

a

α(s) ds; b− a
)∣∣Ft

]
=

n∑
k=0

(
n

k

)
E
[
Hn−k(B(b)−B(a); b− a)

(
−
∫ t

a

α(s) ds
)k∣∣Ft

]
=

n∑
k=0

(
n

k

)
E
[
Hn−k(B(b)−B(a); b− a)

∣∣Ft

](
−
∫ t

a

α(s) ds
)k

=

n∑
k=0

(
n

k

)
Hn−k(B(t)−B(a); t− a)

(
−
∫ t

a

α(s) ds
)k

= Hn

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
, (4.11)

since
∫ t

a
α(s) ds is adapted to {Ft} and we have used Lemma 4.2. Combining

equations (4.10) and (4.11), we get equation (4.8).
By Itô’s formula and equation (4.6), we have

dHn

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)

= DxHn dB(t)−DxHnα(t) dt+
1

2
D2

xHn dt+DηHn dt

= nHn−1 dB(t)− nHn−1α(t) dt+
1

2
D2

xHn dt−
1

2
D2

xHn dt

= nHn−1

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
dB(t)

− nHn−1

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
α(t) dt.

Now, using equation (3.8), we get

dYt =Hn dEα,β(t) + Eα,β(t) dHn + (dHn)(dEα,β(t))
=Hnα(t)Eα,β(t) dB(t) +Hnβ(t)Eα,β(t) dt+ nHn−1α(t)Eα,β(t) dB(t)

=
[
α(t)Yt + nHn−1

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
Eα,β(t)

]
dB(t)

+ β(t)Yt dt,

which proves equation (4.9). �
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It is well-known that the Hermite polynomials form an orthonormal basis for
the Hilbert space L2(R, γ), where γ is the Gaussian measure with mean 0 and
variance equal to the parameter η as defined in equation (4.2). So we can naturally
extend the result of Theorem 4.3 from Hermite polynomials to certain functions
in L2(R, γ).

Theorem 4.4. Suppose α(t) and β(t) are as in Theorem 3.9, and ψ is a differ-
entiable function in L2(R, γ) which can be written as a Hermite series

ψ(x) =
∞∑

n=0

cnHn(x; b− a).

Assume that X1(t) and X2(t) are the solutions of the same linear stochastic dif-
ferential equation

dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [a, b],

with different initial conditions

X1(a) = ψ(B(b)−B(a)) and X2(a) = ψ′(B(b)−B(a)).

Let Y1(t) = E[X1(t)|Ft] and Y2(t) = E[X2(t)|Ft]. Then

Y1(t) =

∞∑
n=0

cnHn

(
B(t)−B(a)−

∫ t

a

α(s) ds; t− a
)
Eα,β(t), t ∈ [a, b].

Moreover, it satisfies the following stochastic differential equation{
dXt = α(t)Y1(t) dB(t) + β(t)Y1(t) dt+ Y2(t) dB(t), t ∈ [a, b]

Y1(a) = E
(
ψ(B(b)−B(a))

)
,

(4.12)

5. A Larger Class of Initial Conditions

The solution of a linear stochastic differential equation with anticipating initial
condition of the form ψ(B(b)−B(a)) is given in [5]. In this section, we extend the
result to the case when the initial condition is a function of a Wiener integral.

Theorem 5.1. Let α(t) ∈ L2[0, 1], β(t) ∈ L1[0, 1], h(t) ∈ L2[0, 1] and ψ(t) is a C2

function. Then the (unique) solution of the stochastic differential equation
dXt = α(t)Xt dB(t) + β(t)Xt dt, t ∈ [0, 1]

X0 = ψ
(∫ 1

0

h(s) dB(s)
)
,

(5.1)

is given by

Xt = ψ
(∫ 1

0

h(s) dB(s)−
∫ t

0

α(s)h(s) ds
)
Eα,β(t).

Proof. Suppose Xt = ψ
( ∫ 1

0
h(s) dB(s)− p(t)

)
Eα,β(t), where p(t) has to be deter-

mined. In order to apply the generalized Itô formula, we write

Xt = ψ
(∫ t

0

h(s) dB(s) +

∫ 1

t

h(s) dB(s)− p(t)
)
Eα,β(t). (5.2)
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Motivated by this, we define

X
(1)
t =

∫ t

0

h(s) dB(s),

X
(2)
t = Eα,β(t),

Y (t) =

∫ 1

t

h(s) dB(s), and

(5.3)

θ(t, x1, x2, y) = ψ(x1 + y − p(t))x2,

so that Xt = θ(t,X
(1)
t , X

(2)
t , Y (t)). From the definition of θ, we get the partial

derivatives

θt = −ψ′p′(t)x2, θx1 = ψ′x2, θx2 = ψ,

θx1x1 = ψ′′x2, θx2x2 = 0, θx1x2 = ψ′,

θy = ψ′x2, θyy = ψ′′x2.

From the definitions in equation (5.3), we have

dX
(1)
t = h(t) dB(t), dX

(2)
t = α(t)Eα,β(t) dB(t) + β(t)Eα,β(t)dt,

(dX
(1)
t )2 = h(t)2dt, (dX

(2)
t )2 = α(t)2Eα,β(t)2dt,

dX
(1)
t dX

(2)
t = h(t)α(t)Eα,β(t)dt,

dY (t) = −h(t) dB(t), (dY (t))2 = h(t)2dt.

Applying the differential formula and putting everything together, we have

dXt = dθ(t,X
(1)
t , X

(2)
t , Y (t))

= θtdt+ θx1h(t) dB(t) + θx2dX
(2)
t

+
1

2
θx1x1(dX

(1)
t )2 +

1

2
θx2x2(dX

(2)
t )2 + θx1x2(dX

(1)
t )(dX

(1)
t )

+ θydY
(t) − 1

2
θyydY

t

= −ψ′p′(t)X
(2)
t dt+�����

ψ′X
(2)
t h(t) dB(t) + ψ ·

[
α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt

]
+
XXXXXXX
1

2
ψ′′X

(2)
t h(t)2 dt+

1

2
· 0 ·

{
α(t)2 Eα,β(t)2 dt

}
+ ψ′ h(t)α(t) Eα,β(t) dt

−������
ψ′X

(2)
t h(t) dB(t)−

XXXXXXX
1

2
ψ′′X

(2)
t h(t)2 dt

= −ψ′ p′(t)X
(2)
t dt+ α(t)Xt dB(t) + β(t)Xt dt+ ψ′ h(t)α(t) Eα,β(t) dt

= α(t)Xt dB(t) + β(t)Xt dt+
(
α(t)h(t)− p′(t)

)
ψ′Eα,β(t) dt,

where in the fourth equality we used Xt = ψ · Eα,β(t).
Therefore, in order for Xt to be the solution of equation (5.1), we need the

condition p′(t) = α(t)h(t). On the other hand, if we put t = 0 in equation (5.2),

we get X0 = ψ
(∫ 1

0
h(s) dB(s) − p(0)

)
. Since Xt is the solution of equation (5.1),

comparing this with the initial condition gives us p(0) = 0. Thus we have the
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following ordinary differential equation{
p′(t) = α(t)h(t), t ∈ [0, 1]

p(0) = 0,

whose solution is p(t) =
∫ t

0
α(s)h(s)ds. Therefore

Xt = ψ
(∫ 1

0

h(s) dB(s)−
∫ t

0

α(s)h(s) ds
)
Eα,β(t).

Uniqueness is now obvious. �

Example 5.2. Consider the stochastic differential equation
dXt = Xt dB(t) t ∈ [0, 1]

X0 =

∫ 1

0

B(s) ds.

To solve this, we reformulate the initial condition as∫ 1

0

B(s) ds = −B(s)(1− s)
∣∣∣1
0
+

∫ 1

0

(1− s) dB(s) =

∫ 1

0

(1− s) dB(s).

Thus we have a special case of Theorem 5.1 with α(t) ≡ 1, β ≡ 0, h(t) = 1 − t,
and ψ(x) = x. Therefore, the solution is given by

Xt =

(∫ 1

0

B(s)ds−
(
t− 1

2
t2
))

eB(t)− 1
2 t.

6. Concluding Remarks

From the aspect of the dynamics of stochastic processes, the connection between
the solution of the stochastic differential equation and the Hermite polynomials
bridges the diverse ideas of the classic Itô calculus, the white noise distribution the-
ory, the Hermite polynomials and renormalization. This reconfirms the statement
that that the general stochastic integral stands as a bridge between the general
Itô calculus and the white noise integration theory.

It is also worth noting that the white noise distribution theory starts with using
Hermite polynomials as renormalizations. This observation reminds us to consider
the white noise version of equation (3.9). If we can express our results in the white
noise distribution theory, this would provide us a deeper understanding of the link
between the general stochastic integral and white noise integral and give the latter
a clear probability explanation. We plan to continue this study in further research
papers.
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6. Hwang, C.-R., Kuo, H.-H., Saitô, K., and Zhai, J.: Near-martingale property of anticipating
stochastic integration, Communications on Stochastic Analysis 11 (2017), no. 4, 491–504.
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8. Itô, K.: Stochastic integral, Proceedings of the Imperial Academy 20 (1944), no. 8, 519–524.
9. Khalifa, N., Kuo, H.-H., Ouerdiane, H., and Szozda, B.: Linear stochastic differential equa-

tions with anticipating initial conditions, Communications on Stochastic Analysis 7 (2013),
no. 2, 245–253.

10. Kuo, H.-H.: White Noise Distribution Theory, CRC Press, 1996.
11. Kuo, H.-H.: Introduction to Stochastic Integration, Universitext, Springer, 2006.
12. Merton, R.: Theory of rational option pricing, Bell Journal of Economics and Management

Science 4 (1973), no. 2, 141–183.
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