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Abstract :  Brain-computer interfacing (BCI)is one of the most attractive fi elds of research in neural and 
rehabilitation engineering. Although, it still needs lots of improvement for developing a practically reliable 
BCI system. The major step to improve the BCI performance is by developing a robust signal processing 
algorithm. Common spatial pattern (CSP) fi ltering is one of the most effective algorithms for feature extraction 
in motor imagery based BCI (MI-based BCI). However, it still has a lot of disadvantages and different 
approaches had been proposed to overcome these disadvantages. In order to develop a robust algorithm, it 
is necessary to understand the causes of the problem and fi nd a solution. In this paper, we present a mini 
review of the different CSP based algorithms, fi ndings, its disadvantages and the solutions. The limitations 
are discussed in details. This can help new researchers to have a full overview of the existing CSP based 
approaches for classifi cation of MI movements.
Keywords : Motor imagery, Brain-computer interface, Common spatial pattern fi lter, electroencephalogram.

* Department of Sensors and Biomedical Technology School of Electronics Engineering  VIT University, Vellore-632014 Tamil-
nadu, India.

1. INTRODUCTION

Brain-computer interface (BCI)(2) translates the brain signals into control commands. It has been 
commonly used in both medical and non-medical applications. In medical applications, it is mainly used a 
communication channel for paralyzed people with the external world. A person suffering from amyotrophic 
lateral sclerosis (ALS), multiple sclerosis, cerebral palsy and complete locked-in are unable to move body 
limbs due to damage in the peripheral nervous system. Here comes the role of BCI that allows this group 
of people to interact with the external world. It uses the brain signals a control commands for operating 
assistive devices like a wheelchair, robotic arm and speller without the peripheral nervous system. 

There are different ways for acquiring brain signal for BCI application, such as electroencephalography 
(EEG), positron emission tomography (PET), functional near-infrared spectroscopy (fNIRS) and magnetic 
resonance imaging (MRI) etc. Among this, EEG is the most appropriate techniques for BCI application 
because of its non-invasive and easy to use nature.  The EEG system acquires the electrical brain signals 
from the scalp using the surface electrodes(3). Moreover, the control signals of BCI can be categorized into 
different types. They are: visual evoked potentials (VEPs), slow cortical potentials, P300 evoked potentials 
and sensorimotor rhythms. VEPs mainly occurred in the visual cortex regions after visual stimulus which 
is indicated by the sudden raised in the amplitude after the stimulus. Slow cortical potentials represent 
the change in voltage during the cortical activity. It gives negative value with the increased in neural 
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activity and positive value with decreased in neural activity. P300 evoked potentials are represented by a 
positive peak in the amplitude after receiving external stimulus. The peak is observed after 300ms after the 
stimulus. Sensorimotor rhythms are denoted by the changes in the brain rhythm during the motor imagery 
(MI) movements. It can be observed in the μ and β rhythm.  The change in the rhythmic activity of the 
brain is called as event-related synchronization and event-related desynchronization (ERS/ERD). BCI can 
be classifi ed into different types, among them EEG MI-based BCI is commonly used. 

2. EEG MI-BASED BCI SYSTEM

The input signals used for this type of BCI system is a motor imagery signal. The EEG signals are acquired 
during the motor imagery movement. The different types of MI movements are decoded as a control 
commands for the system. The block diagram of EEG MI-based BCI system is shown in Fig 1.

Figure 1: Basic block diagram of BCI system

The block diagram consists of the signal acquisition system like EEG system.  The acquired signals 
are then given to the signal processing unit that consists of the pre-processing, feature extraction and 
classifi cation. The input signals are band-pass fi ltered between a particular frequency bands. For MI-
based EEG the signals are bandpass fi ltered between the μ and β rhythms. In this particular band, we can 
observe the ERS and ERD during the motor imagery process over the corresponding motor cortex area. 
After band pass fi ltering the next step consists of the feature extracting. There are various techniques 
used in BCI for feature extraction such as common spatial pattern fi ltering (CSP), principal component 
analysis (PCA), independent component analysis (ICA), common average referencing (CAR), frequency 
normalization etc. The extracted features are given to the classifi er for discriminating into various classes. 
The commonly used classifi ers for BCI are linear discriminant analysis (LDA) and support vector machine 
(SVM). Finally, the extracted features are used as control commands for directing the assistive devices.  

3. METHODS REVIEW

Many reviews have been presented related to EEG signal processing for BCI applications. In this paper, 
we will focus only on the CSP based feature extraction algorithms. Among the other feature extraction 
techniques, CSP is the most effective algorithm for classifi cation of two classes. Despite the fact that CSP 
is not robust to outliers present, a number of approaches had been proposed as an extension CSP.  We 
reviewedall the existing algorithms for MI classifi cation that are based on CSP algorithm.  In this paper, 
we consider only the following parameters: motor imagery EEG signals, CSP based approaches. We have 
neglected the other approaches which are not based on CSP as well as we did not consider the other control 
signals like ECOG, P300, evoked potentials etc. This review includes all the conferences and journals 
paper till September 2016.The summary of different approaches and the parameters used are provided in 
Table 1.
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3.1. Common Spatial pattern fi ltering

The common spatial pattern (CSP) algorithm was fi rst presented in (4) as a feature classifi cation 
algorithm. It was initially used for detection of abnormalities component in the clinical EEG (5).  It 
was also used for the classifi cation between normal and abnormal EEG (6). Later, it was used for the 
discrimination of two class movement from the single trial EEG (7). A similar study had been performed 
for classifi cation of motor imagery movements from multichannel EEG data (8) e.g., associated with 
imaginary movement. One-sided hand movement imagination results in EEG changes located at contra-
and ipsilateral central areas. We demonstrate that spatial fi lters for multichannel EEG effectively extract 
discriminatory information from two popula-tions of single-trial EEG, recorded during left-and right-
hand movement imagery. The best classifi cation results for three subjects are 90.8%, 92.7%, and 99.7%. 
The spatial fi lters are estimated from a set of data by the method of common spatial patterns and refl ect 
the specifi c activation of cortical areas. The method performs a weighting of the electrodes according to 
their importance for the classifi cation task. The high recognition rates and computational simplicity make 
it a promising method for an EEG-based brain\u2013computer interface. Index Terms\u2014Assistive 
communication, electroencephalograph (EEG.

The motor imagery process involves the oscillation of brain rhythm in the motor cortex area. To 
visualize the effect of event-related synchronization and desynchronization, the CSP fi lters are projected 
as a source signals to observe the discrimination between the two classes (9).

The main objective of CSP fi lter is to fi nd the most discriminative spatial fi lter that can distinguish 
between the two classes. Let us consider Cov1 and  Cov2 as the two average covariance matrices of class 1 
and class 2. The CSP fi lter can be solved by the Rayleigh quotient given by
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Here, N denotes the total no. of trials for each class. The set of spatial fi lters, W = [w1, ... ... .. wp], no. 
of features to be extracted can be obtained by solving eqn. (1) with a generalized eigenvalue problem

 Cov1w = Cov2w (3)
where  represents the eigenvalues which are arranged in descending order. The fi rst three and the last 
three eigenvalues were selected and the corresponding eigenvectors represent the spatial fi lters for the two 
classes. The estimated source signals can be represented as:
 Y = WTX

The features are determined by taking the log variance of the fi ltered signals. Inspite of being the most 
effective method for classifi cation of MI movement, CSP is easily affected by nonstationarities and outliers. 
Another disadvantage of CSP is that it is not effective for multiclass discrimination. Several methods were 
proposed based on standard CSP for improving the performance as well as for discriminating multiclass 
movements. We have classifi ed the different regularization approaches as follows:

3.2. Regularization in estimating covariance matrices

The presence of outliers or nonstationarities leads to the improper estimation of the covariance matrices. 
Since the solution of CSP directly depend on the covariance matrices. It hinders the classifi cation 
performance. In order to improve the performance, it is necessary to reduce the nonstationarities from the 
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covariance matrices and can be obtained by proper estimation of covariance matrices. There are several 
approaches for estimating the robust covariance matrices.

An adaptive spatial fi lter based approach had been proposed that replace the training data of CSP 
by the known information. It maximizes the ratio between the variance of the region of interest and the 
variance of acquired EEG(10). A robust method had been proposed to reduce the effect of outliers in the 
classifi cation process. This method used the Fast-MCD (Minimum Covariance Determinant) estimator 
for estimating the class covariance matrices. The scales of the weight matrix of the projected signal are 
calculated using Median Absolute Deviations (MAD) estimate(10).

Another robust approach is by using a convex set of class covariance matrices instead of using only 
one covariance matrices for each class. This involves fi nding the worst covariance matrix from the set and 
optimizing the objective function based on it. Later, the spatial fi lter is obtained by applying the eigenvalue 
decomposition similarly with the standard CSP algorithm(12). The similar approach was presented in(13) 
using maxmin approach .

The author of (14)uses the average covariance matrices by minimizing the mean squared errors to 
reduce the outliers present in the trials. Another author applied the regularization process based on generic 
learning. This is done by introducing two regularization parameter for estimating the covariance matrices 
by shrinking the covariance matrix towards the identity and generic matrix (15)(16). Another similar 
approach of CSP regularization is by shrinking to identity matrix using Diagonal loading and the selection 
of regularization parameter is done automatically using Ledoit and Wolf’s method(17).

Sannellli et al. proposed a method to re-weight the outliers trials using Relevant dimensionality 
reduction (RDE). RDE is mainly performed based on the kernel principal component analysis which 
separates the trials with the useful information. After re-weighting the components the standard CSP 
is performed(18). Another approach is by utilizing signal subspace analysis method before performing 
CSP algorithm. The SSA method can separate between the stationary and nonstationaritiessignals and 
projected the data to stationary subspace. CSP algorithm is performed after that. This helps to improve the 
classifi cation accuracy(19).

The composite CSP (CCSP) uses the other subject information in obtaining the spatial fi lters for 
different movements. It employed two methods: the fi rst one is by adding the covariance matrices with a 
fewer sample from the other subject and the second one includes selecting the covariance matrices of the 
subject which have similar prediction with the subject of concern by using kl divergence(20).A similar 
approach had been proposed that uses the other subject data to robustify the covariance matrix. Here, an 
algorithm has been proposed to select the best subject and the selection of the regularization parameter is 
done by using the crossvalidation method (21)(16).

The SSA and CSP method have the disadvantage of misclassifi cation for the multiclass data. To 
overcome this problem a principled way of obtaining the stationary subspace was obtained. In this approach, 
the stationary subspace is obtained by fi nding the KL divergence between the average distribution of the 
group of subjects and the individual epoch(22)(23).Most of the methods described above uses heuristic 
approach but the author of (24) proposed an automatic feature fusion method. This method is based on 
multiple kernel learning that selects the important feature from a group of a feature from different subject 
or sessions.

3.3.  Regularization in the objective function

In this approaches, a penalty term is incorporated in the CSP objective function to increase the robustness 
of the algorithm. The penalty term can be other additional EOG signals, other subject data, previous 
session data and other normalization parameters etc. The approaches that use regularization in the objective 
function are discussed below:

The author of (25) proposed an invariant CSP (iCSP) by adding a penalty term in the denominator of 
the CSP objective function. This penalty is obtained from the additional EOG signal to reduce the effect 
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of eye movement. A different approach for extract the stationary subspace, a stationary CSP (sCSP) was 
proposed in (26) . The stationary subspace is obtained by including a penalty term in the CSP objective 
function. The penalty term represents the non-stationarities present and was calculated by comparing each 
trial covariance matrices with the average covariance matrix of each class.

Other approach proposed for regularization of CSP includes incorporating the Tikhonov and weighted 
Tikhonov regularization as the penalty term in the CSP objective function(16). Another similar approach 
uses the global spatial fi lter from all subjects and the subject specifi c fi lter as a regularization parameter 
in the CSP objective function. The disadvantages of this method are that it takes time in computation and 
needs more training data(27). 

Another regularization algorithm called CSP-L1 was proposed that uses L1 norm instead of L2 
in the standard CSP objective function. The diffi culty in optimization is solved by using an iterative 
algorithm(28). A similar approach (L1-SVD-CSP) was presented that uses L1-norm for the estimation 
of spatial fi lters by performing singular value decomposition(29)one of the popular feature extraction 
strategies is Common Spatial Patterns (CSP. The extension of CSP-L1 was proposed recently in (30) that 
included the noise model as a penalty term in the objective function of the CSP-L1 method to increase 
the robustness . The CSP-L1 and L1-SVD-CSP both are still dense. Therefore, to overcome this problem 
a sparse CSP-L1 (sp-CSPL1) was proposed that used L1 norm regularization two times. Initially, it was 
to generate sparsity and later is to induce robustness(31). The author of (32) proposed a more generalized 
CSP using LP norm.The comprehensive CSP (CCSP) was proposed in (33) that used the correlation of the 
temporal information of the unlabelled trial as a regularizer for reducing the nonstationarities in the CSP 
objective function.

3.4.  Regularization in the estimation of covariance matrices and objective function

The authors of  (34)and  (35)combine both the estimation of covariance matrices and incorporation of 
penalty term in one step. The other methods describe in (20),(21) , (17) and (27) failed if the variation of 
pattern between the subject is large. To deal with this problem a different approach had been proposed 
in (34). In this approach, instead of extracting the similar subject information the authors consider the 
nonstationarities information from other subjects. Later this information is incorporated in the objective 
function as a penalty term.

The stationary CSP combine the extraction of stationary subspace and CSP in one objective function, 
unlike the other stationary method that used two steps for obtaining the spatial fi lter. This method does not 
employ other subjects data(35).

3.5. Spatio-spectral fi ltering

This approach of improving the performance of CSP is by fi nding both the spatial and spectral fi lter 
because the performance of the standard CSP fi lter also depends on the selection of the operational 
frequency. The operational frequency changes from subject to subject. The improper selection of 
operational frequencies may lead to reduce in the classifi cation accuracy. In order to overcome this 
problem, many approaches have been proposed which enables the system to select manually the 
subject-specifi c frequency band. 

One of the approaches known as Common Spatio-Spectral Patterns (CSSP) is presented in (36)non-
stationary, and contaminated with artifacts that can deteriorate discrimination/classifi cation methods. In 
this paper, we extend the common spatial pattern (CSP. It can be considered as the extension of the 
standard CSP algorithm. In this approach, the frequency fi lter for each channel is also included along 
with the spatial fi lter. This is mainly done by including the one delay tap as a new channel. The limitation 
of this approach is that it has limited fl exibility for frequency fi lter.  To overcome this problem Common 
Sparse Spectral-Spatial Patterns (CSSSPs) has been proposed (37). In this method, the FIR fi lter has been 
obtained which increased the fl exibility but this system needs tuning parameter and involves complex 
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optimization process. To overcome this problem a spectrally weighted CSP (SPEC-CSP) was proposed 
that ease the optimization of the spectral and spatial fi lter. The optimization is done separately (38)
(39).  The iterative spatio-spectral pattern learning (ISSPL) improves the SPEC-CSP by optimizing the 
entire temporal and spatial fi lter in a common objective function (40)machine learning is carried out in 
two consecutive stages: feature extraction and feature classifi cation. Feature extraction has focused on 
automatic learning of spatial fi lters, with little or no attention being paid to optimization of parameters for 
temporal fi lters that still require time-consuming, ad hoc manual tuning. In this paper, we present a new 
algorithm termed iterative spatio-spectral patterns learning (ISSPL.

Instead of optimizing a single arbitrary FIR fi lter within the CSP algorithm, SBCSP uses a Gabor fi lter 
bank that decomposes the EEG measurements into multiple sub-bands. Spatial fi lters that use the CSP 
algorithm are then employed on each of these sub-bands. After obtaining subband scores, recursive band 
elimination or a classifi cation algorithm is employed to fuse the sub-band score. Another classifi cation 
algorithm is then employed to classify the fused sub-band score. Although SBCSP can use different sub-
band score fusion techniques and classifi cation algorithms, only the results from the use of the Support 
Vector Machine (SVM) to fuse the sub-band score as well as to perform classifi cation are presented in 
(41)motor imagery is considered as one of the most effective ways. Different imagery activities can be 
classifi ed based on the changes in mu and/or beta rhythms and their spatial distributions. However, the 
change in these rhythmic patterns varies from one subject to another. This causes an unavoidable time-
consuming fi ne-tuning process in building a BCI for every subject. To address this issue, we propose a 
new method called sub-band common spatial pattern (SBCSP.

In CSSP and CSSSP, only the temporal fi lter optimizes for each subject without considering the effect 
of different frequency information. This leads to the idea of obtaining the frequency information using the 
wavelet transformation. This approach uses a Daubechies mother wavelet for decomposition of the EEG 
signals into low frequency and high frequency. Theextracted signal is the time varying series of EEG from 
each band. The spatial fi lter was obtained from the extracted signal using CSP algorithm (42). The author 
of (43) proposed frequency weighted method based CSP where optimization of the spectral and spatial 
was done separately. The weighting of the spectrum is done in the frequency domain as well as it directly 
uses the straight forward method.

Another approach called local temporal CSP (LTCSP) is proposed by considering the temporal 
information together with the spatial information in obtaining the variance (44). But, similar like CSP this 
method does not consider the within-class variance. Additionally, this method involves selection of the 
weights parameter manually which is not easy. To overcome this problem, two approaches: discriminative 
LTCSP (dLTCSP) and adaptive LTCSP (aLTCSP) were proposed (45).

In FBCSP, the fi rst step is to fi lter the EEG signals using multiple bands of frequencies and obtaining 
the spatial fi lters for each band using the CSP algorithm. The fi lterbank used for this approach is zero-
phase Chebyshev Type II Infi nite Impulse Response (IIR) fi lters. It is followed by feature extraction and 
the classifi cation algorithm. The main advantages of FBCSP are that it can use any feature selection and 
classifi cation algorithm as well as it will select only the effective features. Selection of only the effective 
fi lters makes the algorithm reduce the computational complexity (46). But FBCSP was proposed only for 
classifi cation of two classes and it involves manual selection of time segment. An extension of FBCSP is 
the discriminative fi lter bank common spatial pattern (DFBCSP) in which the frequency band is selected 
by obtaining fi shers ratio according to the subject instead of using fi xed frequency band (47). Another 
approach called as Sliding Window Discriminative CSP (SWDCSP) for selection of frequency band was 
proposed in (48). In this approach, it extracts the feature of the entire overlapping frequency band and 
extracts the features using affi nity propagation methods. Optimal Spatio-Spectral Filter Network (OSSFN) 
approach allow selecting the frequency band with maximal mutual information (49). Another extension 
of FBCSP includes fi nding the spatial fi lter for different time segment and different frequency band and 
selecting the appropriate feature by using mutual information(50)(51)(52). The author of (53) proposed a 
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Bayesian Spatio-Spectral Filter Optimization (BSSFO) for obtaining a different weight for the different 
frequency band . In spite of the improvement BSSFO still did not give the optimal solution. An extension 
of BSSFO was proposed recently that include Laplacian fi ltering and update the important features (54).

Most of the above approaches determined the subject-specifi c frequency band manually. In order to 
select the subject-specifi c frequency band automatically, a new approach called sparse fi lter band common 
spatial pattern (SFBCSP) was proposed in (55). It was done by using a set of a frequency band that 
overlapped and obtaining the spatial fi lters for each band using CSP. The feature selection is done using 
sparse regression method. The FBCSP do not have the ability to discriminate the feature power obtained 
from different frequency band. Recently, a separable common spatio-spectral patterns (SCSSP) algorithm 
was proposed that can discriminate the feature power from different frequency band. The extractions of 
features were done by analyzing both the spatial and spectral characteristics of the observed signals (56).  

Another generalized CSP methods: FCSP and FCSSP based on Fisher discriminant criterion  was 
presented in (57). In this approach, the CSP function is replaced by more random function that was 
obtained using the spatially fi lter signal. The discrete Fourier transform was applied to take the frequency 
information into account. The overall objective function was presented similarly as a Fishers discriminant 
function.

Spatio-temporally regularized common spatial patterns(STR-CSP) that have only a single objective 
function to optimize both the spatial and temporal fi lter simultaneously. Moreover, the L2 norm was also 
included as a penalty term in the objective function. Thus, this makes the method to reduce the problem of 
overfi tting(58)CAA. Common Spatial Patterns (CSP.

Another different approach of extracting both spatial and spectral fi lter for classifi cation of motor 
imagery EEG signals was proposed in (59)common spatial pattern (CSP. It combined fi sher wavelet packet 
decomposition (WPD) together with CSP. 

3.6.  Adaptation of features

The EEG signal varies from subject to subject as well as from session to session. In order to get the higher 
performance, BCI needs to be calibrated beforehand. The calibration process consumes a lot of time. The 
effective BCI system should have less calibration time with effective performance ability. To address 
this problem the offl ine study by using previous session data for the same patient has been used for the 
calibration process. It is done by fi nding the distance and clustering them into different classes. This helps 
to reduce the time for calibration for the next sessions (60). This method is further extended to the online 
study by learning the adaptive classifi er using only the meaningful features (61).

3.7. Sparse fi ltering

Most of the BCI system involves using a large number of electrodes which may be unwanted for practical 
BCI. The standard CSP algorithm considers all the electrodes in obtaining the spatial fi lters. A group 
of researchers proposed different approaches for reducing the number of channels or to select only the 
channels that contribute discriminative information. However, most of the discriminative information 
is collected by the electrodes near the sensory motor cortex; it is also true that some of the surrounding 
electrodes also contribute the useful information. 

Gugeret. al proposed a method for real-time application that weights the electrodes. Additionally, 
reduce the noise present in each electrode by using the correlation between the two adjacent electrodes 
(62). The author of (63) proposed a method for reducing the channel but obtaining the weight from the 
CSP algorithm. However, eliminating the channels also leads to neglecting some of the useful information 
which hinders the classifi cation performance. To improve this method another author proposed a method 
for fi nding the minimal set of electrodes to be kept not to hinder the classifi cation performance. This is 
done by incorporating an L1-norm as a regularization parameter in the CSP objective function (64)(65). 
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Arvanehet. al. proposed a sparsity common spatial pattern (SCSP) fi lter for fi nding the minimum 
number of channels to obtained the similar performance obtained while using all the channels. This is 
done by including the Lp norm as a regularization parameter. This method assists in choosing the least 
number of the channel without compromising the accuracy (66)(67).  Another approach for implementation 
of sparsity is proposed by using zero-norm optimization and by using Recursive Feature Elimination 
(RFE) but the zero norm approach cannot decrease the number of channels less than 25 which affects the 
performance. The author further suggested for combination of this approach with RFE method (68).

Table 1
Summary of all the CSP based regularization approaches

Approaches Parameters

CSP

Regularization in estimating cova-
riance matrices

Variance between region of interest and acquired EEG signals(9), using Fast 
MCD method (10), using convex set of covariance matrices (11), maxmin 
(12), minimum mean squared error (13), Identity and generic matrix (14)
(15), diagonal loading (16), pruning (17), stationary subspace (18),other 
subjects data (19)(20), kl divergence(21)(22), multiple kernel(23)

Regularization in the objective 
function

Additional EOG signal (24), Difference of the trial covariance and average 
covariance matrix (25), Tikhonov and weighted Tikhonov (15),other sub-
jects (26)  L1 norm (27-30), Lp norm (31), correlation of temporal infor-
mation (32)

Regularization in the estimation of 
covariance matrices and objective 
function

Other subjects data (33)(34)

Spectral fi ltering Both spectral and spatial fi lter (35-38)(42), temporal and spatial fi lter(39), 
multiple freq sub bands (40), Wavelet(41), local temporal information (43) 
(44), frequency bands (45-47), Frequency bands and mutual information 
(48-51), Bayesian approach (52)(53), Frequency band overlapping (54), 
Fisher discriminant criterion for spatio-spectral fi ltering (55)(56), L2 norm 
regularization (57), Wavelet packet decomposition (WPD)(58)

Adaptation of features Previous session data (59)(60)

Sparse fi ltering Correlation between two electrodes(61), weights(62), L1 norm(63)(64), Lp 
norm(65)(66), zero norm and Recursive Feature Elimination (RFE) (67)

Divergence-based CSP Kl divergence(68)(69), β divergence (70)(71), β-div with regularization 
(70)(72), Bhattacharya and γ divergence (73)

Multiclass CSP mCSP (74), information theory (75), source separation (76) beamform-
ing(77)(78), multiclass FBCSP(79), JAD(80), Bayesian method(81), har-
monic mean(82), JAD and mutual information(83), probabilities(84), 
Bayesian errors(85), time-frequency domain reconstruction(86). 

3.8. Divergence-based CSP

Divergence is the most effective method in the fi eld of information theory for fi nding the dissimilarities 
between the two distributions. The standard CSP only separates the variance between two class and it 
does not consider the within class information. This makes the CSP not robust in the presence of non-
stationarities. A group of researchers proposed divergence based CSP approach. The authors of  (69) 
proposed a new objective function that maximizes the variance between two class at the same time 
minimizes the variance within the class based on divergence. The within class variance is obtained by 
fi nding the KL divergence between the individual trial and the average of all the trial of that particular 
class (69)(70). 



61Common Spatial Pattern Algorithm Based Signal Processing Techniques for Classifi cation of  Motor...

Beta divergence method had been used for estimating the robust covariance matrices in (71).The 
same group proposed a novel robust method to obtained the CSP solution by maximizing the beta-
divergence between the two average class covariance matrices (72). They also proposed a regularized 
divergence based CSP method. The penalty terms used for this approach were the divergence between 
the between session, across subject and multisubject(71). The extended work is to consider both the 
robustness and nonstationarities problem together presented in (73). The new objective function 
had been proposed by considering the sum of beta-divergence between individual trials of both the 
classes. The penalty term is obtained by summation of beta-divergence between the trial covariance 
and the average covariance for each class. The penalty term reduces the nonstationarities present in the 
signals. Recently, a group of researcher proposed a divergence based CSP method using Bhattacharya 
distance and Gamma divergence (74).

3.9. CSP Multiclass

The standard CSP is mainly for the discrimination of two classes. The extension of CSP for 
classifi cation of multiclass was proposed in (75). This approach considered the multiclass problem 
as a binary problem for obtaining the spatial fi lter for each class. The multiclass CSP is a heuristics 
process whereas the approach has been proposed that has a theoretical proof. This approach uses the 
information theory for selection of relevant features. In this approach, a feature has been extracted 
based on the mutual information between the extracted features and the class labels (76)the question 
of optimality of CSP in terms of the minimal achievable classifi cation error remains unsolved. Second, 
CSP has been initially proposed for two-class paradigms. Extensions to multiclass paradigms have 
been suggested, but are based on heuristics. We address these shortcomings in the framework of 
information theoretic feature extraction (ITFE.

The authors of (77)CSSP, CSSSP used the idea of source separation and CSP together for discriminating 
multiclass MI movements. The problem of overfi tting is very common in CSP. To overcome this problem, 
a method was proposed that uses beamforming method. This helps to extract the sources that generate 
only under the region of interest that had been defi ned priory(10)the method of Common Spatial Patterns 
(CSP(78)such as common spatial patterns (CSPs(79).  Based on the FBCSP method which was presented 
in (46)discriminative patterns can be extracted from the electroencephalogram (EEG, an extended method 
for classifi cation of multiclass MI movement was proposed in (80). A group of researcher formulated 
the CSP method in terms of joint approximate diagonalization (JAD) for separation of non-stationarities 
for multiclass MI discrimination (81). Other author uses Bayesian method for extracting multiclass 
information (82). The author of (83)however, are only suitable for the two-class paradigm. In this paper, 
we address this limitation under the framework of Kullback-Leibler (KL formulated CSP based on KL 
divergence. The spatial fi lter was obtained by maximizing the harmonic mean between the distributions 
using symmetric KL divergence.

Another approach is the extension of stationary CSP (sCSP) proposed in (26) for the multiclass 
problem. The effective sCSP is only for two classes to solve the multiclass problem, sCSP was used together 
with joint approximate diagonalization of the transformation matrix (84). The authors of (85)  proposed a 
multiclass discriminating algorithm that is based on probabilities to solve the issue of overfi tting. It clearly 
presents the overfi tting issues and the steps for solving it. It can also be reduced to standard CSP and RCSP 
in the absence of noise signals. The Bayesian learning method was proposed in (86)to show the correlation 
between Bayes error and Rayleigh quotient which has the similar representation with CSP.

A different CSP based approach for classifi cation of multiclass from the single channel was proposed 
in (87)a portable few- or single-channel BCI system has become necessary. Most recent BCI studies 
have demonstrated that the common spatial pattern (CSP. In this approach, a multichannel input was 
constructed using a single channel signal. This is done by converting the single channel data into time-
frequency domain and reconstructing the multichannel input for performing CSP algorithm. 
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4. CONCLUSIONS

This paper presents the mini review of CSP-based signal processing techniques used for classifi cation 
of motor imagery signal. We have considered only CSP based approaches and MI EEG signals. In this 
paper, the brief overview of the CSP based methods and its extension for classifi cation of motor imagery 
signals presented. Moreover, we have discussed the limitation of the available approaches in details and 
the solution to overcome these problems. This will provide a strong literature by providing the current 
state-of-art for CSP-based approaches.  
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