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Abstract. We prove a non-central limit theorem for the symmetric weighted
odd-power variations of the fractional Brownian motion with Hurst param-

eter H < 1/2. As applications, we study the asymptotic behavior of the
trapezoidal weighted odd-power variations of the fractional Brownian motion
and the fractional Brownian motion in Brownian time Zt := XYt , t ≥ 0,

where X is a fractional Brownian motion and Y is an independent Brownian
motion.

1. Introduction

Let X = (Xt)t≥0 be a fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1/2). The purpose of this paper is to prove a non-central limit theorem
for symmetric weighted odd-power variations of X and derive some applications.

For any integers n ≥ 1 and j ≥ 0 we will make use of the notation ∆j,nX :=
X(j+1)2−n − Xj2−n and βj,n := 1

2 (Xj2−n + X(j+1)2−n). The main result of the
paper is the following theorem.

Theorem 1.1. Let X be a fBm with Hurst parameter H < 1/2. Fix an integer
r ≥ 1. Assume that f ∈ C2r−1(R). Then, as n → ∞, we have2−n/2

⌊2nt⌋−1∑
j=0

f(βj,n)
(
2nH(∆j,nX)

)2r−1


t≥0

Law−→
(
σr

∫ t

0

f(Xs)dWs

)
t≥0

,

(1.1)
where W is a standard Brownian motion independent of X, σr is the constant
given by

σ2
r = E[X4r−2

1 ] + 2
∞∑
j=1

E[(X1(X1+j −Xj))
2r−1], (1.2)

and the convergence holds in the Skorokhod space D([0,∞)).

The proof of this result is based on the methodology of big blocks-small blocks,
used, for instance, in [5, 6] and the following stable convergence of odd-power
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variations of the fBm2−n/2

⌊2nt⌋−1∑
j=0

(
2nH∆j,nX

)2r−1
, Xt


t≥0

Law−→
n→∞

(σrWt, Xt)t≥0 , (1.3)

where σr is defined in (1.2) and in the right-hand side of (1.3), the process W is
a Brownian motion independent of X. The proof of the convergence (1.3) for a
fixed t follows from the Breuer-Major Theorem (we refer to [15, Chapter 7] and
[6] for a proof of this result based on the Fourth Moment theorem).

A rather complete analysis of the asymptotic behavior of weighted power varia-
tions of the fBm was developed in [13, Corollary 3]. However, the case of symmetric
weighted power variations was not considered in this paper. On the other hand,
motivated by applications to the asymptotic behavior of symmetric Riemann sums
for critical values of the Hurst parameter, Theorem 1.1 was proved in [2, Propo-
sition 3.1] when H = 1

4r−2 for a function of the form f (2r−1) and assuming that

f ∈ C20r−15(R) is such that f and its derivatives up to the order 20r − 15 have
moderate growth. The proof given here, inspired by the recent work of Harnett,
Jaramillo and Nualart [8], allows less derivatives and no growth condition.

In the second part of the paper we present two applications of Theorem 1.1 First,
we deduce the following convergence in law of the trapezoidal weighted odd-power
variations of the fBm with Hurst parameter H < 1/2.

Proposition 1.2. Let X be a fBm with Hurst parameter H < 1/2. Fix an integer
r ≥ 1. Then, if f ∈ CM (R), where M > 2r − 2 + 1

2H , as n → ∞, we have2−n/2

⌊2nt⌋−1∑
j=0

1

2
(f(Xj2−n) + f(X(j+1)2−n))

(
2nH∆j,nX

)2r−1


t≥0

Law−→
(
σr

∫ t

0

f(Xs)dWs

)
t≥0

,

in the Skorokhod space D([0,∞)), where W is a Brownian motion independent of
X.

In the particular case r = 2 and H = 1/6, this result has been proved in [16]
with longer arguments and using in a methodology introduced in [12]. The limit

in this case, that is σ2

∫ t

0
f(Xs)dWs, is the correction term in the Itô-type formula

in law proved in [16].
The asymptotic behavior of weighted odd-power variations of fBm with Hurst

parameter H < 1/2 has been already studied (see [13] and the references therein).
More precisely, it is proved that for H < 1/2, for any integer r ≥ 2, and for a
sufficiently smooth function f , we have

2nH−n

⌊2nt⌋−1∑
j=0

f(Xj2−n)
(
2nH∆j,nX

)2r−1 L2

−→
n→∞

−µ2r

2

∫ t

0

f ′(Xs)ds,
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where µ2r := E[N2r] with N ∼ N (0, 1). By similar arguments, one can show that

2nH−n

⌊2nt⌋−1∑
j=0

f(X(j+1)2−n)
(
2nH∆j,nX

)2r−1 L2

−→
n→∞

µ2r

2

∫ t

0

f ′(Xs)ds,

which implies that

2nH−n

⌊2nt⌋−1∑
j=0

1

2
(f(Xj2−n) + f(X(j+1)2−n))

(
2nH∆j,nX

)2r−1 L2

−→
n→∞

0. (1.4)

Thus, a natural question is to know whether it is possible to replace the nor-
malization 2nH−n by another one in order to get a non-degenerate limit in the
convergence (1.4)? Proposition 1.2 gives us the answer to this question.

Our second application of Theorem 1.1 deals with the asymptotic behavior
of weighted odd-power variations of the so-called fractional Brownian motion in
Brownian time (fBmBt in short) when H < 1/2. The fBmBt is defined as

Zt = XYt , t ≥ 0,

where X is a two-sided fractional Brownian motion, with Hurst parameter H ∈
(0, 1), and Y is a standard (one-sided) Brownian motion independent of X. The
process Z is self-similar of order H/2, it has stationary increments but it is not
Gaussian. In the case H = 1

2 , where X is a standard Brownian motion, one
recovers the celebrated iterated Brownian motion (iBm). This terminology was
coined by Burdzy in 1993 (see [3]), but the idea of considering the iBm is actually
older than that. Indeed, Funaki [7] discovered in 1979 that iBm may be used to
represent the solution of the following parabolic partial differential equation:

∂u

∂t
=

1

8

(
∂u

∂x

)4

, (t, x) ∈ (0,∞)× R.

We refer the interested reader to the research works of Nane (see, e.g., [11] and
the references therein) for many other interesting relationships between iterated
processes and partial differential equations.

In 1998, Burdzy and Khoshnevisan [4] showed that iBm can be somehow con-
sidered as the canonical motion in an independent Brownian fissure. As such,
iBm reveals to be a suitable candidate to model a diffusion in a Brownian crack.
To support their claim, they have shown that the two components of a reflected
two-dimensional Brownian motion in a Wiener sausage of width ϵ > 0 converge
to the usual Brownian motion and iterated Brownian motion, respectively, when
ϵ tends to zero.

Let us go back to the second application of Theorem 1.1, we have the following
theorem on the convergence in law of modified weighted odd-power variations of
the fBmBt.
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Theorem 1.3. Suppose that H < 1
2 and fix an integer r ≥ 1. Let f ∈ CM (R),

where M > 2r − 2 + 1
2H . Then, we have(

2−
n
4

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)(
2

nH
2 (ZTk+1,n

− ZTk,n
)
)2r−1

)
t≥0

Law−→
n→∞

(
σr

∫ Yt

0

f(Xs)dWs

)
t≥0

, (1.5)

in the Skorokhod space D([0,∞)), where for u ∈ R,
∫ u

0
f(Xs)dWs is the Wiener-

Itô integral of f(X) with respect to W defined in (4.12) and {Tk,n : 1 ≤ k ≤ 2nt}
is a collection of stopping times defined in (4.3) that approximates the common
dyadic partition {k2−n : 1 ≤ k ≤ 2nt} of order n of the time interval [0, t].

Theorem 1.3 completes the study of the asymptotic behavior of the modified
weighted odd-power variations of the fBmBt in [19], where the case H ≤ 1/6 was
missing. In addition, in Theorem 1.3 we have convergence in the Skorokhod space
D([0,∞)), whereas in [19] we only proved the convergence of the finite dimensional
distributions.

We remark that in many papers (see, for instance [2]) the authors use the
uniform partition, but in this paper we work with dyadic partitions. Actually,
Theorem 1.1 and Proposition 1.2 hold also with the uniform partition. However,
the dyadic partition plays a crucial role in Theorem 1.3.

The paper is organized as follows. In Section 2 we give some elements of Malli-
avin calculus and some preliminary results. In Section 3, we prove Theorem 1.1
and finally in Section 4 we prove Proposition 1.2 and Theorem 1.3.

2. Elements of Malliavin Calculus

In this section, we gather some elements of Malliavin calculus we shall need
in the sequel. The reader in referred to [17, 15] for details and any unexplained
result.

Suppose that X = (Xt)t∈R a two-sided fractional Brownian motion with Hurst
parameter H ∈ (0, 1). That is, X is a zero mean Gaussian process, defined on a
complete probability space (Ω,A , P ), with covariance function,

CH(t, s) = E(XtXs) =
1

2
(|s|2H + |t|2H − |t− s|2H), s, t ∈ R.

We suppose that A is the σ-field generated by X. For all n ∈ N∗, we let En be
the set of step functions on [−n, n], and E := ∪nEn. Set εt = 1[0,t] (resp. 1[t,0]) if
t ≥ 0 (resp. t < 0). Let H be the Hilbert space defined as the closure of E with
respect to the inner product

⟨εt, εs⟩H = CH(t, s), s, t ∈ R. (2.1)

The mapping εt 7→ Xt can be extended to an isometry between H and the Gaussian
space H1 associated with X. We will denote this isometry by φ 7→ X(φ).

Let F be the set of all smooth cylindrical random variables of the form

F = ϕ(Xt1 , . . . , Xtl),
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where l ∈ N∗, ϕ : Rl → R is a C∞-function such that f and all its partial derivatives
have at most polynomial growth, and t1 < · · · < tl are some real numbers. The
derivative of F with respect to X is the element of L2(Ω;H) defined by

DsF =
l∑

i=1

∂ϕ

∂xi
(Xt1 , . . . , Xtl)εti(s), s ∈ R.

In particular DsXt = εt(s). For any integer k ≥ 1, we denote by Dk,2 the closure
of F with respect to the norm

∥F∥2k,2 = E(F 2) +
k∑

j=1

E[∥DjF∥2H⊗j ].

The Malliavin derivative D satisfies the chain rule. If φ : Rn → R is C1
b and if

F1, . . . , Fn are in D1,2, then φ(F1, . . . , Fn) ∈ D1,2 and we have

Dφ(F1, . . . , Fn) =
n∑

i=1

∂φ

∂xi
(F1, . . . , Fn)DFi.

We denote by δ the adjoint of the derivative operator D, also called the diver-
gence operator. A random element u ∈ L2(Ω;H) belongs to the domain of the
divergence operator δ, denoted Dom(δ), if and only if it satisfies

|E⟨DF, u⟩H| ≤ cu
√
E(F 2) for any F ∈ F .

If u ∈ Dom(δ), then δ(u) is defined by the duality relationship

E
(
Fδ(u)

)
= E

(
⟨DF, u⟩H

)
, (2.2)

for every F ∈ D1,2.
For every n ≥ 1, let Hn be the nth Wiener chaos of X, that is, the closed

linear subspace of L2(Ω,A , P ) generated by the random variables {Hn(X(h)), h ∈
H, ∥h∥H = 1}, where Hn is the nth Hermite polynomial. Recall that H0 = 0,

Hp(x) = (−1)p exp(x
2

2 ) dp

dxp exp(−x2

2 ) for p ≥ 1. The mapping

In(h
⊗n) := Hn(X(h)) (2.3)

provides a linear isometry between the symmetric tensor product H⊙n and Hn.
The relation (2.2) extends to the multiple Skorokhod integral δq (q ≥ 1), and we
have

E
(
Fδq(u)

)
= E

(
⟨DqF, u⟩H⊗q

)
, (2.4)

for any element u in the domain of δq, denoted Dom(δq), and any random variable
F ∈ Dq,2. Moreover, δq(u) = Iq(u) for any u ∈ H⊙q.

For any Hilbert space V , we denote Dk,p(V ) the corresponding Sobolev space
of V -valued random variables (see [17, page 31]). The operator δq is continuous
from Dk,p(H⊗q) to Dk−q,p, for any p > 1 and every integers k ≥ q ≥ 1, that is, we
have

∥δq(u)∥Dk−q,p ≤ Ck,p∥u∥Dk,p(H⊗q),

for all u ∈ Dk,p(H⊗q) and some constant Ck,p > 0. These estimates are conse-
quences of Meyer inequalities (see [17, Proposition 1.5.7]). We need the following
result (see [12, Lemma 2.1]) on the Malliavin calculus with respect to X.
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Lemma 2.1. Let q ≥ 1 be an integer. Suppose that F ∈ Dq,2, and let u be a sym-
metric element in Dom δq. Assume that, for any 0 ≤ r+j ≤ q,

⟨
DrF, δj(u)

⟩
H⊗r ∈

L2(Ω;H⊗q−r−j). Then, for any r = 0, . . . , q−1, ⟨DrF, u⟩H⊗r belongs to the domain
of δq−r and we have

Fδq(u) =

q∑
r=0

(
q

r

)
δq−r(⟨DrF, u⟩H⊗r ).

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙n and
g ∈ H⊙m, for every r = 0, . . . , n ∧m, the contraction of f and g of order r is the
element of H⊗(n+m−2r) defined by

f ⊗r g =
∞∑

k1,...,kr=1

⟨f, ek1
⊗ · · · ⊗ ekr

⟩H⊗r ⊗ ⟨g, ek1
⊗ · · · ⊗ ekr

⟩H⊗r .

2.1. Preliminary results. We will make use of the following notation:

∂j2−n = 1[j2−n,(j+1)2−n], εt = 1[0,t], ε̃j2−n =
1

2

(
εj2−n + ε(j+1)2−n

)
.

We need the following preliminary results.

Lemma 2.2. We fix two integers n > m ≥ 2, and for any j ≥ 0, define k :=
k(j) = sup{i ≥ 0 : i2−m ≤ j2−n}. The following inequality holds true for some
constant CT depending only on T :

⌊2nT⌋−1∑
j=0

∣∣⟨∂j2−n , ε̃k(j)2−m

⟩
H

∣∣ ≤ CT 2
m(1−2H). (2.5)

Proof. See Lemma 2.2, inequality (2.11), in the paper by Binotto Nourdin and
Nualart [2]. In this paper the inequality is proved for εk(j)2−m but the case ε̃k(j)2−m

can be proved by the same arguments. □

Lemma 2.3. Let 0 ≤ s < t. Then

⌊2nt⌋−1∑
j=⌊2ns⌋

∣∣⟨∂j2−n , ε̃j2−n

⟩
H

∣∣ = 1

2
2−2nH (⌊2nt⌋ − ⌊2ns⌋)2H . (2.6)

Proof. We can write

⌊2nt⌋−1∑
j=⌊2ns⌋

∣∣⟨∂j2−n , ε̃j2−n

⟩
H

∣∣
=

1

2

⌊2nt⌋−1∑
j=⌊2ns⌋

∣∣∣E[(X(j+1)2−n −Xj2−n

)(
X(j+1)2−n +Xj2−n

)]∣∣∣
= 2−2nH 1

2

⌊2nt⌋−1∑
j=⌊2ns⌋

[
(j + 1)2H − j2H

]
,

which gives the desired result. □
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3. Proof of Theorem 1.1

In this section we provide the proof of Theorem 1.1. We will make use of the
following notation:

Φn(t) = 2−n/2

⌊2nt⌋−1∑
j=0

f(βj,n)
(
2nH∆j,nX

)2r−1
(3.1)

and Zt = σr

∫ t

0
f(Xs)dWs, where we recall that W is a Brownian motion inde-

pendent of X. In order to prove Theorem 1.1, we need to show the following two
results:
(A) Convergence of the finite dimensional distributions: Let 0 ≤ t1 < · · · < td be
fixed. Then, we have

(Φn(t1), . . . ,Φn(td))
Law→ (Zt1 , . . . , Ztd).

(B) Tightness: The sequence Φn is tight in D([0,∞)). That is, for every ε, T > 0,
there is a compact set K ⊂ D([0, T ]), such that

sup
n≥1

P [Φn ∈ Kc] < ε.

The proof of statements (A) and (B) will be done in several steps.

Step 1: Reduction to compact support functions. As in [8] in the proof of (A)
and (B) we can assume that f has compact support. Indeed, fix L ≥ 1 and let
fL ∈ C2r−1(R) be a compactly supported function, such that fL(x) = f(x) for all
x ∈ [−L,L]. Define

ΦL
n(t) = 2−n/2

⌊2nt⌋−1∑
j=0

fL(βj,n)
(
2nH∆j,nX

)2r−1
(3.2)

and ZL
t = σr

∫ t

0
fL(Xs)dWs. For (B), we choose L such that P (supt∈[0,T ] |Xt| >

L) < ε
2 . Then, ifKL ⊂ D([0, T ]) is a compact set such that supn≥1 P

[
ΦL

n ∈ Kc
L

]
<

ε
2 , we obtain

P [Φn ∈ Kc
L] ≤ P

[
ΦL

n ∈ Kc
L, sup

t∈[0,T ]

|Xt| ≤ L

]
+ P ( sup

t∈[0,T ]

|Xt| > L) < ε.

With a similar argument, we can show that given a compactly supported function
ϕ ∈ C(Rd), the limit

lim
n→∞

E[ϕ(ΦL
n(t1), . . . ,Φ

L
n(td))− ϕ(ZL

t1 , . . . , Z
L
td
)] = 0

implies the same limit with ΦL
n(ti) replaced by Φn(ti) and ZL

ti replaced by Zti .
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Step 2: Proof (A) assuming that f has compact support. The proof is based on
the small blocks-big blocks approach. Fix m ≤ n and for each j ≥ 0 we write
k := k(j) = sup{i ≥ 0 : i2−m ≤ j2−n}, that is, k(j) is the largest dyadic number
in the mth generation which is less or equal than j2−n. Define

Φ̃n,m(t) = 2−n/2

⌊2nt⌋−1∑
j=0

f(βk(j),m)
(
2nH∆j,nX

)2r−1
. (3.3)

This term can be decomposed as follows

Φ̃n,m(t) = 2−n/2

⌊2mt⌋−1∑
k=0

f(βk,m)

(k+1)2n−m−1∑
j=k2n−m

(
2nH∆j,nX

)2r−1

+2−n/2f(β⌊2mt⌋,m)

⌊2nt⌋−1∑
j=⌊2mt⌋2n−m

(
2nH∆j,nX

)2r−1

The convergence (1.3) implies that for any A -measurable and bounded random

variable η, the random vector (Φ̃n,m(t1), . . . , Φ̃n,m(td), η) converges in law, as n
tends to infinity, to the vector (Y 1

m, . . . , Y d
m, η), where

Y i
m = σr

⌊2mti⌋−1∑
k=0

f(βk,m)
(
∆k,mW

)
+ σrf(β⌊2mti⌋,m)

(
Wti −W(⌊2mti⌋)2−m)

for i = 1, . . . , d. Clearly, Y i
m converges in L2(Ω), as m tends to infinity, to Zti for

i = 1, . . . , d.
Then, it suffices to show that

lim
m→∞

lim sup
n→∞

d∑
i=1

∥Φn(ti)− Φ̃n,m(ti)∥L2(Ω) = 0. (3.4)

Let c1,r, . . . , cr,r will denote the coefficients of the Hermite expansion of x2r−1,
namely,

x2r−1 =
r∑

u=1

cu,rH2(r−u)+1(x).

Then, we can write

(2nH∆j,nX)2r−1 =

r∑
u=1

cu,rH2(r−u)+1

(
2nH∆j,nX

)
=

r∑
u=1

cu,r2
nH(2(r−u)+1)δ2(r−u)+1

(
∂
⊗2(r−u)+1
j2−n

)
. (3.5)

Set w := w(u) = 2(r − u) + 1. Substituting (3.5) into (3.1), yields

Φn(ti) =
r∑

u=1

cu,r

⌊2nti⌋−1∑
j=0

f(βj,n)2
−n/2+wnHδw

(
∂⊗w
j2−n

)
.
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On the other hand, (3.3) can be also written as

Φ̃n,m(ti) =
r∑

u=1

cu,r

⌊2nti⌋−1∑
j=0

f(βk(j),m)2−n/2+wnHδw
(
∂⊗w
j2−n

)
.

With the help of Lemma 2.1 we can express these terms as linear combinations of
Skorokhod integrals:

Φn(ti) =
r∑

u=1

cu,r

w∑
ℓ=0

(
w

ℓ

)
Θn

u,ℓ(ti)

and

Φ̃n,m(ti) =
r∑

u=1

cu,r

w∑
ℓ=0

(
w

ℓ

)
Θ̃n,m

u,ℓ (ti)

where

Θn
u,ℓ(ti) = 2−

n
2 +wnH

⌊2nti⌋−1∑
j=0

δw−ℓ
(
f ℓ(βj,n)∂

⊗(w−ℓ)
j2−n ⟨ε̃j2−n , ∂j2−n⟩ℓH

)
,

and

Θ̃n,m
u,ℓ (ti) = 2−

n
2 +wnH

⌊2nti⌋−1∑
j=0

δw−ℓ
(
f ℓ(βk(j),m)∂

⊗(w−ℓ)
j2−n ⟨ε̃k(j)2−m , ∂j2−n⟩ℓH

)
.

Then, it suffices to show that

lim
m→∞

lim sup
n→∞

d∑
i=1

∥Θn
u,ℓ(ti)− Θ̃n,m

u,ℓ (ti)∥L2(Ω) = 0

for all 1 ≤ u ≤ r and 0 ≤ ℓ ≤ w. We can decompose the difference Θn
u,ℓ(ti) −

Θ̃n,m
u,ℓ (ti) as follows

Θn
u,ℓ(ti)− Θ̃n,m

u,ℓ (ti) = 2−
n
2 +wnH

⌊2nti⌋−1∑
j=0

δw−ℓ
(
Fn,m
j,ℓ ∂

⊗(w−ℓ)
j2−n

)
=: Tn,m

i,ℓ

where

Fn,m
j,ℓ = f ℓ(βj,n)⟨ε̃j2−n , ∂j2−n⟩ℓH − f ℓ(βk(j),m)⟨ε̃k(j)2−m , ∂j2−n⟩ℓH.
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By Meyer’s inequality

∥Tn,m
i,ℓ ∥22

≤ C2−n+2nwH
w−ℓ∑
h=0

∥∥∥∥∥∥
⌊2nti⌋−1∑

j=0

DhFn,m
k(j),j,ℓ ⊗ ∂

⊗(w−ℓ)
j2−n

∥∥∥∥∥∥
2

L2(Ω;H⊗(w−l+h))

= C2−n+2nwH
w−ℓ∑
h=0

⌊2nti⌋−1∑
j1,j2=0

E
[
⟨DhFn,m

j1,ℓ
, DhFn,m

j2,ℓ
⟩H⊗h

]
⟨∂j12−n , ∂j22−n⟩w−ℓ

≤ C2−n+2nℓH
w−ℓ∑
h=0

⌊2nti⌋−1∑
j1,j2=0

∥DhFn,m
j1,ℓ

∥L2(Ω;H⊗h)

×∥DhFn,m
j2,ℓ

∥L2(Ω;H⊗h)|ρH(j1 − j2)|w−ℓ.

We will consider two different cases:

Case w − ℓ ≥ 1: We can make the decomposition

Fn,m
j,ℓ = f (ℓ)(βj,n)⟨ε̃⊗ℓ

j2−n − ε̃⊗ℓ
k(j)2−m , ∂⊗ℓ

j2−n⟩H⊗ℓ

+
(
f (ℓ)(βj,n)− f (ℓ)(βk(j),m)

)
⟨ε̃k(j)2−m , ∂j2−n⟩ℓH,

and hence, we have

DhFn,m
j,ℓ = f (ℓ+h)(βj,n)ε̃

⊗h
j2−n⟨ε̃⊗ℓ

j2−n − ε̃⊗ℓ
k(j)2−m , ∂⊗ℓ

j2−n⟩H⊗ℓ

+f (ℓ+h)(βj,n)
(
ε̃⊗h
j2−n − ε̃⊗h

k(j)2−m

)
⟨ε̃k(j)2−m , ∂j2−n⟩ℓH

+
(
f (ℓ+h)(βj,n)− f (ℓ+h)(βk(j),m)

)
ε̃⊗h
k(j)2−m⟨ε̃k(j)2−m , ∂j2−n⟩ℓH.

From the previous equality, and the compact support condition of f , we deduce
that there exists a constant C > 0, such that∥∥∥DhFn,m

j,ℓ

∥∥∥
L2(Ω;H⊗h)

≤ C
∥∥ε̃j2−n

∥∥h
H

∥∥∥ε̃⊗ℓ
j2−n − ε̃⊗ℓ

k(j)2−m

∥∥∥
H⊗ℓ

∥∥∥∂⊗ℓ
j2−n

∥∥∥
H⊗ℓ

+C
∥∥∥ε̃⊗h

j2−n − ε̃⊗h
k(j)2−m

∥∥∥
H⊗h

∥∥ε̃k(j)2−m

∥∥ℓ
H

∥∥∂j2−n

∥∥ℓ
H

+
∥∥∥f (ℓ+h)(βj,n)− f (ℓ+h)(βk(j),m)

∥∥∥
2

×
∥∥ε̃k(j)2−m

∥∥h+ℓ

H

∥∥∂j2−n

∥∥ℓ
H
.

Using Cauchy-Schwarz inequality we get, for any natural number p ≥ 1

∥∥∥ε̃⊗p
j2−n − ε̃⊗p

k(j)2−m

∥∥∥
H⊗p

≤
∥∥ε̃j2−n − ε̃k(j)2−m

∥∥
H

p−1∑
i=0

∥∥ε̃j2−n

∥∥i
H

∥∥ε̃k(j)2−m

∥∥p−1−i

H

≤ C
∥∥ε̃j2−n − ε̃k(j)2−m

∥∥
H
.
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Therefore∥∥∥DhFn,m
j,ℓ

∥∥∥
L2(Ω;H⊗h)

≤ C
∥∥∂j2−n

∥∥ℓ
H

(∥∥ε̃j2−n − ε̃k(j)2−m

∥∥
H

+
∥∥∥f (ℓ+h)(βj,n)− f (ℓ+h)(βk(j),m)

∥∥∥
2

)
≤ C2−ℓnH

(
sup

|t−s|≤2−m

∥Xt −Xs∥2

+
∥∥∥f (ℓ+h)(βj,n)− f (ℓ+h)(βk(j),m)

∥∥∥
2

)
.

Because f (ℓ+h) is uniformly continuous, for any given ε > 0 there exists δ > 0 such
that |x− y| < δ implies |f (ℓ+h)(x)− f (ℓ+h)(y)| < ε. Therefore, we can write∥∥∥f (ℓ+h)(βj,n)− f (ℓ+h)(βk(j),m)

∥∥∥
2
≤ ε+

2

δ
∥f (ℓ+h)∥∞∥βj,n − βk(j),m∥2

and this leads to the estimate∥∥∥DhFn,m
j,ℓ

∥∥∥
L2(Ω;H⊗h)

≤ C2−ℓnH

(
sup

|t−s|≤2−m

∥Xt −Xs∥2 + ε

)
,

which implies

∥Tn,m
i,ℓ ∥22 ≤ C

(
sup

|t−s|≤2−m

w−ℓ∑
i=0

∥Xt −Xs∥2 + ε

)2 ⌊2nti⌋−1∑
j=0

|ρH(j)|w−ℓ.

Then, the series
∑∞

j=0 |ρH(j)|w−ℓ is convergent because w − ℓ ≥ 1 and H < 1/2,
and we obtain

lim
m→∞

sup
n

∥Tn,m
i,ℓ ∥22 = 0,

because ε is arbitrary.

Case ℓ = w. in this case we have

∥Tn,m
i,w ∥22 ≤ 2−n+2wnH

⌊2nti⌋−1∑
j=0

∥Fn,m
j,w ∥2

2

≤ C2−n+2wnH

⌊2nti⌋−1∑
j=0

|⟨ε̃j2−n , ∂j2−n⟩wH|+ |⟨ε̃k(j)2−m , ∂j2−n⟩wH|

2

≤ C2n(2H−1)

⌊2nti⌋−1∑
j=0

|⟨ε̃j2−n , ∂j2−n⟩H|+ |⟨ε̃k(j)2−m , ∂j2−n⟩H|

2

.

Finally, using (2.5) and (2.6), we obtain

∥Tn,m
i,w ∥22 ≤ C2n(2H−1)22m(1−2H),

which implies

lim
m→∞

lim sup
n→∞

∥Tn,m
i,w ∥22 = 0.
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Step 3: Proof (B) assuming that f has compact support. We claim that for every
0 ≤ s ≤ t ≤ T , and p > 2, there exists a constant C > 0, such that

E [|Φn(t)− Φn(s)|p] ≤ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) p
2

+ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)pH

. (3.6)

Then, by the ‘Billingsley criterion’ (see [1, Theorem 13.5]), (3.6) implies the desired
tightness property. From the computations in the proof of (A), we need to show
that for any 1 ≤ u ≤ r and for any 0 ≤ ℓ ≤ w, where w = 2(r − u) + 1,

∥Θn
u,ℓ(t)−Θn

u,ℓ(s)∥p ≤ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) 1
2

+ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)H

. (3.7)

By Meyer’s inequalities,

∥Θn
u,ℓ(t)−Θn

u,ℓ(s)∥p

= 2−
n
2 +wnH

∥∥∥∥∥∥
⌊2nt⌋−1∑
j=⌊2ns⌋

δw−ℓ
(
f (ℓ)(βj,n)∂

⊗(w−ℓ)
j2−n ⟨ε̃j2−n , ∂j2−n⟩ℓH

)∥∥∥∥∥∥
p

≤ C2−
n
2 +wnH

×
w−ℓ∑
h=0

∥∥∥∥∥∥
⌊2nt⌋−1∑
j=⌊2ns⌋

f (ℓ+h)(βj,n)ε̃
⊗h
j2−n ⊗ ∂

⊗(w−ℓ)
j2−n ⟨ε̃j2−n , ∂j2−n⟩ℓH

∥∥∥∥∥∥
Lp(Ω;H⊗(w−ℓ+h))

= C2−
n
2 +wnH

×
w−ℓ∑
h=0

∥∥∥∥∥∥∥
∥∥∥∥∥∥
⌊2nt⌋−1∑
j=⌊2ns⌋

f (ℓ+h)(βj,n)ε̃
⊗h
j2−n ⊗ ∂

⊗(w−ℓ)
j2−n ⟨ε̃j2−n , ∂j2−n⟩ℓH

∥∥∥∥∥∥
2

H⊗(w−ℓ+h)

∥∥∥∥∥∥∥
1
2

p
2

.

As a consequence, since f has compact support, applying Minkowski inequality,
there is a constant C such that

∥Θn
u,ℓ(t)−Θn

u,ℓ(s)∥2p

≤ C2−n+2wnH
w−ℓ∑
h=0

∥∥∥∥ ⌊2nt⌋−1∑
j,k=⌊2ns⌋

f (ℓ+h)(βj,n)f
(ℓ+i)(βk,n)

×
⟨
ε̃j2−n , ε̃k2−n

⟩h ⟨
δj2−n , δk2−n

⟩w−ℓ ⟨
ε̃j2−n , ∂j2−n

⟩ℓ
H
⟨ε̃k2−n , ∂k2−n⟩ℓH

∥∥∥∥
p
2

≤ C2−n+2ℓnH

⌊2nt⌋−1∑
j,k=⌊2ns⌋

|ρH(j − k)|w−ℓ
∣∣∣⟨ε̃j2−n , ∂j2−n

⟩
H

∣∣∣ℓ ∣∣⟨ε̃k2−n , ∂k2−n⟩H
∣∣ℓ .

We will consider two different cases:
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Case w − ℓ ≥ 1: In this case, we obtain

∥Θn
u,ℓ(t)−Θn

u,ℓ(s)∥2p ≤ C2−n

⌊2nt⌋−1∑
j,k=⌊2ns⌋

|ρH(j − k)|w−ℓ

≤ C
⌊2nt⌋ − ⌊2ns⌋

2n

⌊2nt⌋−1∑
h=⌊2ns⌋

|ρH(h)|w−ℓ

≤ C
⌊2nt⌋ − ⌊2ns⌋

2n
.

because the series
∑∞

j=0 |ρH(j)|w−ℓ is convergent because w− ℓ ≥ 1 and H < 1/2.

This implies the inequality (3.7) in this case.
Case ℓ = w: We have

∥Θn
u,w(t)−Θn

u,w(s)∥2p ≤ C2−n+2wnH

⌊2nt⌋−1∑
j=⌊2ns⌋

∣∣∣⟨ε̃j2−n , ∂j2−n

⟩
H

∣∣∣w
2

≤ C2−n+2nH

⌊2nt⌋−1∑
j=⌊2ns⌋

∣∣∣⟨ε̃j2−n , ∂j2−n

⟩
H

∣∣∣
2

.

Finally, applying (2.6) and the fact that 2−n+2nH ≤ 1, we obtain

∥Θn
u,w(t)−Θn

u,w(s)∥2p ≤ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)2H

.

This completes the proof of part (B).

4. Applications

4.1. The trapezoidal weighted odd-power variations of fractional Brow-
nian motion. The trapezoidal weighted odd-power variations of the fBm is given
in Proposition 1.2. We give its proof below.

Proof. By a localization argument similar to that used in the proof of Theorem
1.1, we can assume that f has compact support. Choose an integer N such that
1

2H − 1 < N ≤ M − (2r − 1), which is possible because M > 2r − 2 + 1
2H . Since

f ∈ CM (R), by Taylor expansion, we have for all x, y ∈ R and N ≤ M − (2r− 1),

f(y) = f(
1

2
(x+ y)) +

1

2
f ′(

1

2
(x+ y))(y − x)

+
N∑

k=2

1

2k
1

k!
f (k)(

1

2
(x+ y))(y − x)k +R

(1)
N ,

f(x) = f(
1

2
(x+ y)) +

1

2
f ′(

1

2
(x+ y))(x− y)

+
N∑

k=2

1

2k
1

k!
f (k)(

1

2
(x+ y))(x− y)k +R

(2)
N ,
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where the residual terms R
(1)
N and R

(2)
N are bounded by C|y − x|N+1. We deduce

that, for all integer N ≥ 1,

1

2
(f(x)+f(y)) = f(

1

2
(x+y))+

⌊N
2 ⌋∑

k=1

1

2k
1

k!
f (2k)(

1

2
(x+y))(y−x)2k+RN (x, y), (4.1)

where RN (x, y) ≤ C|y − x|N+1. Recall that βj,n := 1/2(Xj2−n +X(j+1)2−n) and

we also write ∆j,nf(X) := 1
2 (f(Xj2−n) + f(X(j+1)2−n)). Set

Ψn(t) = 2−n/2

⌊2nt⌋−1∑
j=0

∆j,nf(X)
(
2nH∆j,nX

)2r−1

and let Φn(t) be defined in (3.1). Then, in view of Theorem 1.1, it suffices to show
that the difference Ψn−Φn converges to zero in probability in the Skorokhod space
as n → ∞. Using the expansion (4.1), we obtain

Ψn(t)− Φn(t) = 2−n/2

⌊2nt⌋−1∑
j=0

(
∆j,nf(X)− f(βj,n)

)(
2nH∆j,nX

)2r−1

= 2−n/2−2nHk

⌊N
2 ⌋∑

k=1

1

2k
1

k!

⌊2nt⌋−1∑
j=0

f (2k)(βj,n)
(
2nH∆j,nX

)2k+2r−1

+2−n/2

⌊2nt⌋−1∑
j=0

RN (Xj2−n , X(j+1)2−n)
(
2nH∆j,nX

)2r−1

=: An(t) +Bn(t)

Thanks to Theorem 1.1, and taking into account that f (2k) ∈ C2k+2r−1(R) for all
k ≤ ⌊N/2⌋ because N +2r− 1 ≤ M , we deduce that An(·) converges to 0 in prob-
ability as n → ∞ in D([0,∞)). Therefore, it is enough to prove the convergence in
probability to 0 of Bn(·) in D([0,∞)). This follows from the following estimates

E

[
sup

0≤t≤T
|Bn(t)|

]
≤ C2−

n
2 2−nH(N+1)

⌊2nT⌋−1∑
j=0

E[|2nH∆j,nX|N+2r]

≤ CT 2
n
2 −nH(N+1),

taking into account that H(N + 1) > 1
2 . □

4.2. The weighted power variations of fractional Brownian motion in
Brownian time. The so-called fractional Brownian motion in Brownian time
(fBmBt in short) is defined as

Zt = XYt , t ≥ 0,

where X is a two-sided fractional Brownian motion, with Hurst parameter H ∈
(0, 1), and Y is a standard (one-sided) Brownian motion independent of X. The
process Zt is not a Gaussian process and it is self-similar (of order H/2) with sta-
tionary increments. When H = 1/2, one recovers the celebrated iterated Brownian
motion.
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Let f : R → R. Then, for any t ≥ 0 and any integer p ≥ 1, the weighted
p-variation of Z is defined as

M (p)
n (t) =

⌊2nt⌋−1∑
k=0

1

2

(
f(Zk2−n) + f(Z(k+1)2−n)

)
(∆k,nZ)p.

where, as before, ∆k,nZ = Z(k+1)2−n − Zk2−n . After proper normalization we
may expect the convergence (in some sense) to a non-degenerate limit (to be
determined) of

N (p)
n (t) = 2−nκ

⌊2nt⌋−1∑
k=0

1

2

(
f(Zk2−n) + f(Z(k+1)2−n)

)[
(∆k,nZ)p − E[(∆k,nZ)p]

]
,

(4.2)
for some κ to be discovered. Due to the fact that one cannot separate X from Y

inside Z in the definition of N
(p)
n , working directly with (4.2) seems to be a difficult

task (see also [10, Problem 5.1]). That is why, following an idea introduced by
Khoshnevisan and Lewis [9] in the study of the case H = 1/2, we introduce the
following collection of stopping times (with respect to the natural filtration of Y ),
denoted by

Tn = {Tk,n : k ≥ 0}, n ≥ 0, (4.3)

which are in turn expressed in terms of the subsequent hitting times of a dyadic
grid cast on the real axis. More precisely, let Dn = {j2−n/2 : j ∈ Z}, n ≥ 0, be
the dyadic partition (of R) of order n/2. For every n ≥ 0, the stopping times Tk,n,
appearing in (4.3), are given by the following recursive definition: T0,n = 0, and

Tk,n = inf
{
s > Tk−1,n : Y (s) ∈ Dn \ {YTk−1,n

}
}
, k ≥ 1.

As shown in [9], as n tends to infinity the collection {Tk,n : 1 ≤ k ≤ 2nt} approx-
imates the common dyadic partition {k2−n : 1 ≤ k ≤ 2nt} of order n of the time
interval [0, t] (see [9, Lemma 2.2] for a precise statement). Based on this fact, one
can introduce the counterpart of (4.2) based on Tn, namely,

Ñ (p)
n (t) = 2−nκ̃

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)[(

2
nH
2 (ZTk+1,n

− ZTk,n
)
)p − µp

]
,

with µp := E[Np], where N ∼ N (0, 1) and for some κ̃ > 0 to be discovered. At
this stage, it is worthwhile noting that we are dealing with a modified weighted
p-variation of Z. In fact, the collection of stopping times {Tk,n : 1 ≤ k ≤ 2nt} will
play an important role in our analysis as we will see in Lemma 4.2.

4.2.1. Known results about the weighted power variations of fBmBt. The asymp-

totic behavior of Ñ
(p)
n (t), as n tends to infinity, has been studied in [14] when

H = 1/2. For H = 1/2, one can deduce the following finite dimensional distribu-
tions (f.d.d.) convergence in law from [14, Theorem 1.2].

1) For f ∈ C2
b (R) and for any integer r ≥ 2, we have
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(
2−

n
4

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)(
2

n
4 (ZTk+1,n

− ZTk,n
)
)2r−1

)
t≥0

f.d.d.−→
n→∞

(∫ Yt

0

f(Xs)(µ2rd
◦Xs +

√
µ4r−2 − µ2

2r dWs)

)
t≥0

, (4.4)

with µn := E[Nn], where N ∼ N (0, 1), for all t ∈ R,
∫ t

0
f(Xs)d

◦Xs is the
Stratonovich integral of f(X) with respect to X defined as the limit in prob-

ability of 2−
nH
2 W

(1)
n (f, t) as n → ∞, with W

(1)
n (f, t) defined in (4.9), W is a

two-sided Brownian motion independent of (X,Y ) and for u ∈ R,
∫ u

0
f(Xs)dWs is

the Wiener-Itô integral of f(X) with respect to W defined in (4.12).
For H ̸= 1/2, the second author of this paper has proved in [19] the following

result with f ∈ C∞
b (R) (f is infinitely differentiable with bounded derivatives of

all orders),

2) For 1
6 < H < 1

2 and for any integer r ≥ 2, we have

(
2−

n
4

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)(
2

nH
2 (ZTk+1,n

− ZTk,n
)
)2r−1

)
t≥0

f.d.d.−→
n→∞

(
β2r−1

∫ Yt

0

f(Xs)dWs

)
t≥0

, (4.5)

where for u ∈ R,
∫ u

0
f(Xs)dWs is the Wiener-Itô integral of f(X) with respect to

W defined in (4.12) and β2r−1 = σr, where σr is defined in Theorem 1.1.

3) Fix a time t ≥ 0, for H > 1
2 and for any integer r ≥ 1, we have

2−
nH
2

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)(
2

nH
2 (ZTk+1,n

− ZTk,n
)
)2r−1

L2

−→
n→∞

(2r)!

r!2r

∫ Yt

0

f(Xs)d
◦Xs,

(4.6)

where for all t ∈ R,
∫ t

0
f(Xs)d

◦Xs is defined as in (4.4).
As it has been mentioned in [19], the limit of the weighted (2r− 1)-variation of

Z for H = 1
2 in (4.4) is intermediate between the limit of the weighted (2r − 1)-

variation of Z for 1
6 < H < 1

2 in (4.5) and the limit of the weighted (2r − 1)-

variation of Z for H > 1
2 in (4.6). A natural question is then to discovered what

happens for H ≤ 1/6. The answer is given in Theorem 1.3.

Remark 4.1. One can remark that, thanks to Theorem 1.3, (4.5) holds true for
H ≤ 1/6.

4.2.2. Asymptotic behavior of the trapezoidal weighted odd-power variations of the
fBmBt for H < 1/2. The asymptotic behavior of the trapezoidal weighted odd-
power variations of the fBmBt for H < 1/2 is given in Theorem 1.3. Inspired by
[9], the proof of Theorem 1.3, given below, will be done in several steps.
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Step 1: A key lemma. For each integer n ≥ 1, k ∈ Z and real number t ≥ 0, let
Uj,n(t) (resp. Dj,n(t)) denote the number of upcrossings (resp. downcrossings) of

the interval [j2−n/2, (j + 1)2−n/2] within the first ⌊2nt⌋ steps of the random walk
{YTk,n

}k≥0, that is,

Uj,n(t) = ♯
{
k = 0, . . . , ⌊2nt⌋ − 1 :

YTk,n
= j2−n/2 and YTk+1,n

= (j + 1)2−n/2
}
;

Dj,n(t) = ♯
{
k = 0, . . . , ⌊2nt⌋ − 1 :

YTk,n
= (j + 1)2−n/2 and YTk+1,n

= j2−n/2
}
.

The following lemma taken from [9, Lemma 2.4] is going to be the key when

studying the asymptotic behavior of the weighted power variation V
(2r−1)
n (f, t) of

order r ≥ 1, defined, for t ≥ 0, as:

V (2r−1)
n (f, t) =

⌊2nt⌋−1∑
k=0

1

2

(
f(ZTk,n

) + f(ZTk+1,n
)
)[(

2
nH
2 (ZTk+1,n

− ZTk,n
)
)2r−1]

.

(4.7)
Its main feature is to separate X from Y , thus providing a representation of

V
(2r−1)
n (f, t) which is amenable to analysis.

Lemma 4.2. Fix f : R → R, t ≥ 0 and r ∈ N∗. Then

V (2r−1)
n (f, t) =

∑
j∈Z

1

2

(
f(X

j2−
n
2
) + f(X

(j+1)2−
n
2
)
)

×
[(
2

nH
2 (X

(j+1)2−
n
2
−X

j2−
n
2
)
)2r−1](

Uj,n(t)−Dj,n(t)
)
.

Step 2: Transforming the weighted power variations of odd order. By [9, Lemma
2.5], one has

Uj,n(t)−Dj,n(t) =

 1{0≤j<j∗(n,t)} if j∗(n, t) > 0
0 if j∗(n, t) = 0
−1{j∗(n,t)≤j<0} if j∗(n, t) < 0

,

where j∗(n, t) = 2n/2YT⌊2nt⌋,n . As a consequence,

V (2r−1)
n (f, t) =

j∗(n,t)−1∑
j=0

1

2

(
f(X+

j2−n/2) + f(X+
(j+1)2−n/2)

)(
Xn,+

j+1 −Xn,+
j

)2r−1

if j∗(n, t) > 0, V
(2r−1)
n (f, t) = 0 if j∗(n, t) = 0 and

V (2r−1)
n (f, t) =

|j∗(n,t)|−1∑
j=0

1

2

(
f(X−

j2−n/2) + f(X−
(j+1)2−n/2)

)(
Xn,−

j+1 −Xn,−
j

)2r−1

if j∗(n, t) < 0, where X+
t := Xt for t ≥ 0, X−

−t := Xt for t < 0, Xn,+
t := 2

nH
2 X+

2−
n
2 t

for t ≥ 0 and Xn,−
−t := 2

nH
2 X−

2−
n
2 (−t)

for t < 0.
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Let us now introduce the following sequence of processes W
(2r−1)
±,n :

W
(2r−1)
±,n (f, t) =

⌊2n/2t⌋−1∑
j=0

1

2

(
f(X±

j2−
n
2
)+f(X±

(j+1)2−
n
2
)
)
(Xn,±

j+1−Xn,±
j )2r−1, t ≥ 0

(4.8)

W (2r−1)
n (f, t) :=

{
W

(2r−1)
+,n (f, t) if t ≥ 0

W
(2r−1)
−,n (f,−t) if t < 0

. (4.9)

We then have,

V (2r−1)
n (f, t) = W (2r−1)

n (f, YT⌊2nt⌋,n). (4.10)

Step 3: A result concerning the trapezoidal weighted odd-power variations of the
fBm. We have the following proposition.

Proposition 4.3. Let H < 1
2 . Given an integer r ≥ 1 then, for any f ∈ CM (R),

where M > 2r − 2 + 1
2H ,(

2−
n
4 W (2r−1)

n (f, t)

)
t∈R

Law−→
n→∞

(
σr

∫ t

0

f(Xs)dWs

)
t∈R

, (4.11)

in D(R), where W
(2r−1)
n (f, t) is defined in (4.9), W is a two-sided Brownian mo-

tion independent of (X,Y ), and
∫ t

0
f(Xs)dWs is defined in the following natural

way: for u ∈ R,∫ u

0

f(Xs)dWs :=

{ ∫ u

0
f(X+

s )dW+
s if u ≥ 0∫ −u

0
f(X−

s )dW−
s if u < 0

, (4.12)

where W+
t = Wt if t > 0 and W−

t = W−t if t < 0, X+ and X− are defined in
Step 2, and

∫ u

0
f(X±

s )dW±
s must be understood in the Wiener-Itô sense.

Proof. We define, for all j, n ∈ N, β̃±
j,n := 1

2 (X
±
j2−

n
2
+X±

(j+1)2−
n
2
). Let us introduce

the following sequence of processes:

M±,n(f, t) =

⌊2n/2t⌋−1∑
j=0

f
(
β̃±
j,n

)
(Xn,±

j+1 −Xn,±
j )2r−1, t ≥ 0,

Mn(f, t) :=

{
M+,n(f, t) if t ≥ 0
M−,n(f,−t) if t < 0

. (4.13)

Then, by the same arguments that have been used in the proof of Proposition 1.2,
we have

2−
n
4 Mn(f, ·)− 2−

n
4 W (2r−1)

n (f, ·) −→
n→+∞

0,

in probability in D(R). So, in order to prove (4.11) it is enough to prove the
following result (

2−
n
4 Mn(f, t)

)
t∈R

Law−→
n→∞

(
σr

∫ t

0

f(Xs)dWs

)
t∈R

, (4.14)

in D(R). The proof of (4.14) will be done in two steps, first we prove the conver-
gence in law of the finite dimensional distributions and later we prove tightness.
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1. Convergence in law of the finite dimensional distributions. Our pur-
pose is to prove that(

2−
n
4 Mn(f, t)

)
t∈R

f.d.d.−→
n→∞

(
σr

∫ t

0

f(Xs)dWs

)
t∈R

,

which is equivalent, by (4.13), to prove that(
2−

n
4 M±,n(f, t)

)
t≥0

f.d.d.−→
n→∞

(
σr

∫ t

0

f(X±
s )dW±

s

)
t≥0

. (4.15)

The proof of (4.15) uses arguments similar to those employed in part (A) of
the proof of Theorem 1.1, the main ingredient being the small blocks/big blocks
approach. Fix m ≤ n and for each j ≥ 0 we denote by k := k(j) = sup{i ≥ 0 :
i2−m/2 ≤ j2−n/2}. Define

M̃±
n,m(f, t) =

⌊2n/2t⌋−1∑
j=0

f(β̃±
k(j),m)

(
Xn,±

j+1 −Xn,±
j

)2r−1
.

It is known that (see (3.5) in [18] and part (a) in the proof of Proposition 5.1 in
[19]) (

2−n/4M̃±
n,m(f, t)

)
t≥0

f.d.d.−→
n→∞

(
L±
m(t)

)
t≥0

,

where

L±
m(t) := σr

⌊2m/2t⌋−1∑
k=0

f(β̃±
k,m)

(
W±

(k+1)2−m/2 −W±
k2−m/2

)
+σrf(β̃

±
⌊2m/2t⌋,m)

(
W±

t −W±
(⌊2m/2t⌋)2−m/2

)
,

with W+
t = Wt if t > 0 and W−

t = W−t if t < 0, where W is a two-sided
Brownian motion independent of (X,Y ). From the theory of stochastic calculus

for semimartingales, we deduce that L±
m(t)

L2

−→ σr

∫ t

0
f(X±

s )dW±
s as m → ∞.

Then, it is enough to prove that, for all t ≥ 0,

lim
m→∞

lim sup
n→∞

∥2−n
4 M+,n(f, t)− 2−n/4M̃+

n,m(f, t)∥L2(Ω) = 0,

lim
m→∞

lim sup
n→∞

∥2−n
4 M−,n(f, t)− 2−n/4M̃−

n,m(f, t)∥L2(Ω) = 0.

The proof of the last claim is similar to the proof of (3.4) and is left to the reader.

2. Proof of Tightness. The distribution of the sequence
(
2−

n
4 Mn(f, ·)

)
n∈N is

tight in D(R). To prove this claim we will show that for any T > 0 and for every
−T < s ≤ t < T , and p > 2, there exists a constant C > 0, such that

E
[
|2−n

4 Mn(f, t)− 2−
n
4 Mn(f, s)|p

]
≤ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) p
2

+C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)pH

. (4.16)

To do so, we distinguish three cases, according to the sign of s, t ∈ R:
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i). Suppose that 0 ≤ s ≤ t. In this case we can write

E
[
|2−n

4 Mn(f, t)− 2−
n
4 Mn(f, s)|p

]
= E

[
|2−n

4 M+,n(f, t)− 2−
n
4 M+,n(f, s)|p

]
≤ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) p
2

+ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)pH

,

where the proof of the last inequality is the same as the proof of (3.6).

ii). Suppose s ≤ t ≤ 0. Then, we have

E
[
|2−n

4 Mn(f, t)− 2−
n
4 Mn(f, s)|p

]
= E

[
|2−n

4 M−,n(f,−t)− 2−
n
4 M−,n(f,−s)|p

]
≤ C

(
⌊2n(−s)⌋ − ⌊2n(−t)⌋

2n

) p
2

+ C

(
⌊2n(−s)⌋ − ⌊2n(−t)⌋

2n

)pH

= C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) p
2

+ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)pH

,

where the proof of the second inequality is the same as the proof of (3.6) and we
get the last equality since for any x < 0, ⌊−x⌋ = −⌊x⌋ − 1.

iii). Suppose s < 0 < t. Then, we can write

E
[
|2−n

4 Mn(f, t)− 2−
n
4 Mn(f, s)|p

]
≤ C

(
E
[
|2−n

4 Mn(f, t)− 2−
n
4 Mn(f, 0)|p

]
+E

[
|2−n

4 Mn(f, s)− 2−
n
4 Mn(f, 0)|p

] )
= C

(
E
[
|2−n

4 M+,n(f, t)− 2−
n
4 M+,n(f, 0)|p

]
+E

[
|2−n

4 M−,n(f,−s)− 2−
n
4 M−,n(f, 0)|p

] )
≤ C

(
⌊2nt⌋
2n

) p
2

+ C

(
⌊2n(−s)⌋

2n

)pH

≤ C

(
⌊2nt⌋+ ⌊2n(−s)⌋+ 1

2n

) p
2

+ C

(
⌊2n(−s)⌋+ ⌊2nt⌋+ 1

2n

)pH

= C

(
⌊2nt⌋ − ⌊2ns⌋

2n

) p
2

+ C

(
⌊2nt⌋ − ⌊2ns⌋

2n

)pH

,

where we have the third inequality by i) and ii).
Finally, we have proved (4.16) which proves the tightness of

(
2−

n
4 Mn(f, ·)

)
n∈N

in D(R). □

Step 4: Convergence in law of YT⌊2n·⌋,n . As it was mentioned in [9], {2n/2YTk,n
:

k ≥ 0} is a simple and symmetric random walk on Z. Observe that for all t ≥ 0,

YT⌊2nt⌋,n = 2−n/2 × 2n/2YT⌊2nt⌋,n = 2−n/2
∑⌊2nt⌋−1

l=0 2n/2(YTl+1,n
− YTl,n

), where(
2n/2(YTl+1,n

−YTl,n
)
)
l∈N are independent and identically distributed random vari-

ables following the Rademacher distribution. By Donsker theorem, we get that
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(
YT⌊2nt⌋,n

)
t≥0

law−→
n→∞

(Yt)t≥0 in D([0,+∞)). (4.17)

Step 5: Last step in the proof of Theorem 1.3. Thanks to Proposition 4.3, to (4.17),
and to the independence of X, W and Y , we have(
2−

n
4 W (2r−1)

n (f, ·), YT⌊2n·⌋,n

) law−→
n→+∞

(
σr

∫ ·

0

f(Xs)dWs, Y ) in D(R)×D([0,+∞)).

(4.18)

Let us define (Bt)t∈R as follows Bt := σr

∫ t

0
f(Xs)dWs. Since (x, y) ∈ D(R) ×

D([0,+∞)) 7→ x ◦ y ∈ D([0,+∞)) is measurable (see M16 at page 249 in [1] for a
proof of this result) and since B ◦ Y is continuous, then, by (4.18) and Theorem
2.7 in [1], it follows that

2−
n
4 W (2r−1)

n (f, YT⌊2n·⌋,n)
law−→

n→+∞
B ◦ Y = σr

∫ Y (·)

0

f(Xs)dWs, in D([0,+∞)).

The proof of Theorem 1.3 follows from (4.10) and the last convergence in law.
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Stat. 46 (2010), no. 4, 1055–1079.

14. Nourdin, I. and Peccati, G.: Weighted power variations of iterated Brownian motion, Elec-
tron. J. Probab. 13 (2008), paper no. 43, 1229–1256.

15. Nourdin, I. and Peccati, G.: Normal Approximations using Malliavin Calculus: from Stein’s
Method to the Universality, Cambridge University Press, Cambridge, 2012.
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