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Abstract. We derive the asymptotic spectral distributions of the distance-k
graphs of Hamming graphs H(N, q) as N → ∞. Moreover, we also derive the

ones of the distance-k graphs of Hamming graphs H(N, q) as N, q → ∞ in
such a way that N/q → λ > 0.

1. Introduction

The study of the spectrum of a graph has a long history. Recently, the asymp-
totic spectral distribution of a growing graph has been discussed in the framework
of quantum probability theory (see [5] and references cited therein). In this con-
tent, asymptotic spectral analysis for the adjacency matrix of a growing graph is
connected with the central limit theorem. We especially have an interest in the
case where the spectral structure is dominated by the growing sturucture, namely,
the limit distribution does not depend on the detailed structure of G, as the limit
distribution of the sum of independent and identically distributed randam vari-
ables is the Gaussian distribution independently of the distribution of the random
variables. For example, it is well-known that, even if it starts from any graph G,
the limit distribution of a growing graph by the power of the Cartesian product,
the comb product, the star product is the Gaussian distribution, the arcsine law,
the Bernoulli distribution, respectively.

For a given graph G = (V,E) having an adjacency matrix A, we consider the

graph G
(k)
N = (V N , E

(k)
N ) defined by E

(k)
N = {(x, y);x = (x1, x2, . . . , xN ), y =

(y1, y2, . . . , yN ) ∈ V N , for some 1 ≤ j1 < · · · < jk ≤ N, (xj , yj) ∈ E if j ∈
{j1, . . . , jk}, xj = yj if j 6∈ {j1, . . . , jk}}. Then the adjacency matrix A

(k)
N of G

(k)
N

is

A
(k)
N =

∑
1≤j1<···<jk≤N

I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I,

where A appears k times and sits at j1-th, . . . , jk-th positions, and where I denotes

an identity matrix. The study of the asymptotic spectral distribution of G
(k)
N first

appeared in [6] for G = K2 (the complete graph with two vertices) and k = 2.
In [7], it was studied in the case for G = K2 and arbitrary k ∈ N. In the present
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paper, we shall study the spectral distribution of G
(k)
N for G = Kq and arbitrary

k ∈ N. It goes without saying that the results are the generalization of [7].

We note that G
(1)
N is the Cartesian product of G. It is well-known that the

asymptotic spectral distribution of G
(1)
N is the standard Gaussian distribution be-

cause of the quantum central limit theorem for the commutative independence.
It is worth noting that the limit distribution is determined independently of the
details of a factor G.

The Cartesian product of N complete graphs Kq is called a Hamming graph

H(N, q) (e.g. [2]). Hence G
(1)
N for G = Kq is nothing but the Hamming graph

H(N, q). In this case, G
(k)
N for G = Kq is regarded as the distance-k graph of the

Hamming graph H(N, q).
This paper is organized as follows: In Section 2, we determine the spectral

distributions of the distance-k graphs of the Hamming graph H(N, q) in terms of
the Krawtchouk polynomials.

In Section 3, we determine the asymptotic spectral distributions of the distance-
k graphs of the Hamming graph H(N, q) as N tends to infinity. As the result, the
limit distributions are independent of q. We can conjecture that the asymptotic

spectral distribution of G
(k)
N does not depend on the structure of G just like the

central limit theorem. It will be solved in the forthcoming paper [3].
In Section 4, when both N and q tend to infinity in such a way that N/q

tends to a positive constant, we determine the asymptotic spectral distributions
of the distance-k graphs of the Hamming graph H(N, q) by the use of the law
of small numbers of the Poisson distribution. This result can be regarded as a
generalization of [4].

2. Spectral Distributions of Distance-k Graphs of Hamming Graphs

Let G = (V,E) be a simple graph, where V is a set of vertices and E is the
set of edges. Here the simple graph means an unweighted and undirected graph
containing no loops nor multiple edges.

For an adjacency matrix A of a graph G, let A(G) be the adjacency algebra,
which is the ∗-algebra generated by A. Define the normalized trace by

ϕ(a) =
1

|V |
Tr(a), a ∈ A(G).

Then ϕ becomes a state on A(G). The adjacency matrix A is regarded as a real
random variable of the algebraic probability space (A(G), ϕ).

We have an interest in the spectral distribution µ(dx) such that

ϕ(Am) =

∫
R
xmµ(dx), for m = 0, 1, 2, . . . . (2.1)

For the normalized trace state, µ coincides with the eigenvalue distribution of the
graph G.

Remark 2.1. The vacuum state ϕ on A(G) is defined by

ϕ(a) = 〈δo, aδo〉, a ∈ A(G),
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where o is an origin of G. In the case where G is the complete graph Kq, because
of high symmetry, the vacuum state is determined independently of the choice
of the origin. Thus the spectral distribution of Kq coincides with the eigenvalue
distribution of it even if we employ the vacuum state in place of the trace state.

According to [6], for N, k ∈ N, N ≥ k, we define G
(k)
N = (V N , E

(k)
N ) by E

(k)
N =

{(x, y);x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ) ∈ V N , for some 1 ≤ j1 < · · · <
jk ≤ N, (xj , yj) ∈ E if j ∈ {j1, . . . , jk}, xj = yj if j 6∈ {j1, . . . , jk}}. Let A

(k)
N be

the adjacency matrix of G
(k)
N . Then

A
(k)
N =

∑
1≤j1<···<jk≤N

I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N times

, (2.2)

where A appears k times and sits at j1-th, . . . , jk-th positions, and where I denotes
an identity matrix of size |V |.

If we put ϕN = ϕ⊗· · ·⊗ϕ (N times), A
(k)
N is considered as a real random variable

of the algebraic probability space (A(G
(k)
N ), ϕN ). We also have an interest in the

asymptotic spectral distribution µk(dx) such that

lim
N→∞

ϕN

(
(Ã

(k)
N )m

)
=

∫
R
xmµk(dx), for m = 0, 1, 2, . . . ,

where Ã
(k)
N is the normalization of the adjacency matrix A

(k)
N to have mean 0 and

variance 1.

Remark 2.2. For k ∈ N, a distance-k graph G[k] = (V,E[k]) is defined by

E[k] = {(x, y);x, y ∈ V, ∂G(x, y) = k},

where ∂G(x, y) is the graph distance on G. The distance-k graph G[k] is not

necessarily connected even if G is connected. In the case where G = Kq, G
(1)
N is a

Hamming graph H(N, q) and G
(k)
N is the distance-k graph of the Hamming graph.

However, in general G
(k)
N is not necessarily the distance-k graph of G

(1)
N .

We hereafter suppose that G is the complete graph Kq. Then its adjacency

matrix A = (1− δij)1≤i,j≤q. It is easy to see that the mean ϕN (A
(k)
N ) = 0 and the

variance ϕN ((A
(k)
N )2) =

(
N
k

)
(q − 1)k.

Lemma 2.3. For k ≥ 2,

A
(1)
N A

(k)
N = (k + 1)A

(k+1)
N + (q − 2)kA

(k)
N + (q − 1)(N − k + 1)A

(k−1)
N . (2.3)

Proof. For the sake of convenience, we introduce F
(k)
N (X) by∑

1≤j1<···<jk−1≤N
j 6∈{j1,...,jk−1}

I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I ⊗X ⊗ I ⊗ · · · ⊗ I ⊗A⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N times

,

where A appears (k− 1) times and sits at j1-th, . . . , jk−1-th positions, and where
X appears once and sits at the j-th position.
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Using this notation, we have

A
(1)
N A

(k)
N = (k + 1)A

(k+1)
N + F

(k)
N (A2)

= (k + 1)A
(k+1)
N + (q − 2)F

(k)
N (A) + (q − 1)F

(k)
N (I)

= (k + 1)A
(k+1)
N + (q − 2)kA

(k)
N + (q − 1)(N − k + 1)A

(k−1)
N

where we used that A2 = (q − 2)A + (q − 1)I since A is the adjacency matrix of
Kq. �

Observe that if we use the convention A
(0)
N = I ⊗ · · · ⊗ I, then equation (2.3)

holds for k ∈ N.
Here we introduce Krawtchouk polynomials {k(N,p)

n (x)} with the parameters
N ∈ N and 0 < p < 1. They are the orthogonal polynomials associated with the
binomial distribution Bin(N, p) and satisfy the three-term recurrence relation

{x−(pN+n−2pn)}k(N,p)
n (x) = (n+1)k

(N,p)
n+1 (x)+p(1−p)(N−n+1)k

(N,p)
n−1 (x), (2.4)

k
(N,p)
0 (x) = 1, k

(N,p)
1 (x) = x−Np. For an additional information, refer to e.g. [1].

Put K
(N,q)
n (x) = qnk

(N,1/q)
n ((x +N)/q). Then {K(N,q)

n (x)} are the orthogonal
polynomials associated with the probability measure

β(dx) =
N∑
j=0

(
N

j

)(
1

q

)j (
1− 1

q

)N−j

δjq−N (dx).

Lemma 2.4. A
(k)
N = K

(N,q)
k (A

(1)
N ).

Proof. By changing variables from (2.4), {K(N,q)
n (x)} satisfy the three-term recur-

rence relation

{x− (q− 2)n}K(N,q)
n (x) = (n+1)K

(N,q)
n+1 (x)+ (q− 1)(N −n+1)K

(N,q)
n−1 (x), (2.5)

K
(N,q)
0 (x) = 1, K

(N,q)
1 (x) = x. The result follows immediately by comparing (2.5)

with (2.3). �

Lemma 2.5. The spectral distribution of A
(1)
N is β(dx), namely,

ϕN

(
(A

(1)
N )m

)
=

∫
R
xmβ(dx), (2.6)

for m = 0, 1, 2, . . . .

Proof. It is known that the spectrum of the Hamming graph H(N, q), namely

the set of eigenvalues of A
(1)
N , is jq − N with the multiplicity

(
N
j

)
(q − 1)N−j ,

j = 0, 1, 2, . . . , N . Thus the spectral distribution of A
(1)
N is β(dx). �

Theorem 2.6.

ϕN

(
(A

(k)
N )m

)
=

∫
R

(
K

(N,q)
k (x)

)m
β(dx), (2.7)

for m = 0, 1, 2, . . . .

Proof. The proof is obvious from Lemma 2.4 and Lemma 2.5. �
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3. Asymptotic Spectral Distributions of H(N, q) as N → ∞

Next we would like to determine the asymptotic spectral distribution µk(dx)
such that

lim
N→∞

ϕN

 A
(k)
N√(

N
k

)
(q − 1)k

m =

∫
R
xmµk(dx),

for m = 0, 1, 2, . . . .
For the sake of simplicity, we put

Ã
(k)
N =

A
(k)
N√(

N
k

)
(q − 1)k

.

Since A
(1)
N is mean 0 and variance (q − 1)N , for m = 0, 1, 2, . . . ,

ϕN

(
(Ã

(1)
N )m

)
=

∫
R

(
1√

(q − 1)N

)m

xmβ(dx) =

∫
R
xmβ̃(dx), (3.1)

where

β̃(dx) =
N∑
j=0

(
N

j

)(
1

q

)j (
1− 1

q

)N−j

δ
(jq−N)/

√
(q−1)N

(dx).

Put

K̃(N,q)
n (x) =

{(
N

n

)
(q − 1)n

}−1/2

K(N,q)
n (

√
(q − 1)Nx).

Then {K̃(N,q)
n (x)} are the orthonormal polynomials associated with β̃(dx) and

satisfy the three-term recurrence relation(
x− (q − 2)n√

(q − 1)N

)
K̃(N,q)

n (x) (3.2)

=

√
(N − n)(n+ 1)

N
K̃

(N,q)
n+1 (x) +

√
n(N − n+ 1)

N
K̃

(N,q)
n−1 (x),

K̃
(N,q)
0 (x) = 1, K̃

(N,q)
1 (x) = x.

Proposition 3.1.

ϕN

(
(Ã

(k)
N )m

)
=

∫
R

(
K̃

(N,q)
k (x)

)m
β̃(dx), (3.3)

for m = 0, 1, 2, . . . .

Proof. Normalizing (2.3), we have

Ã
(1)
N Ã

(k)
N =

√
(k + 1)(N − k)

N
Ã

(k+1)
N +

(q − 2)k√
(q − 1)N

A
(k)
N +

√
(N − k + 1)k

N
Ã

(k−1)
N .

(3.4)

Compare this with (3.2), and we obtain Ã
(k)
N = K̃

(N,q)
k (Ã

(1)
N ). By virtue of (3.1),

we complete the proof. �
Now we are in a position to take the limit N → ∞.
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Lemma 3.2. As N → ∞, the asymptotic spectral distribution of A
(1)
N is the

standard Gaussian distribution, namely,

lim
N→∞

ϕN

(
(Ã

(1)
N )m

)
=

∫
R
xmN (dx), for m = 0, 1, 2, . . . ,

where N (dx) = (2π)−1/2e−x2/2dx.

Proof. Due to the de Moivre-Laplace theorem, the weak limit of the normalized

binomial distribution β̃(dx) is the standard Gaussian distribution N (dx). Taking
the limit N → ∞ of (3.1), we can obtain the result. �

Let {Hn(x)} be Hermite polynomials. They are the orthogonal polynomials

associated with the distribution e−x2

dx and satisfy the three-term recurrence re-
lation

2xHn(x) = Hn+1(x) + 2nHn−1(x), (3.5)

H0(x) = 1, H1(x) = 2x.

Put H̃n(x) = (2nn!)−1/2Hn(x/
√
2). Then {H̃n(x)} are the orthonormal poly-

nomials associated with the standard Gaussian distribution N (dx), and satisfy the
three-term recurrence relation

xH̃n(x) =
√
n+ 1H̃n+1(x) +

√
nH̃n−1(x), (3.6)

H̃0(x) = 1, H̃1(x) = x.

Lemma 3.3.
lim

N→∞
K̃(N,q)

n (x) = H̃n(x).

Proof. By putting P̃n(x) = limN→∞ K̃
(N,q)
n (x), we have

xP̃n(x) =
√
n+ 1P̃n+1(x) +

√
nP̃n−1(x),

because of (3.2). This is identical with the recurrence equation (3.6) of normalized

Hermite polynomials {H̃n(x)}. Therefore, P̃n(x) = H̃n(x) since P̃0(x) = H̃0(x) =

1 and P̃1(x) = H̃1(x) = x. �
Theorem 3.4. As N → ∞, the asymptotic spectral distribution of the adjacency

matrix A
(k)
N is as follows:

lim
N→∞

ϕN

 A
(k)
N√(

N
k

)
(q − 1)k

m =

∫
R

(
H̃k(x)

)m
N (dx), (3.7)

for m = 0, 1, 2, . . . .

Proof. Lemma 3.3 assures that the coefficients of K̃
(N,q)
k (x) converge to those of

H̃k(x). Since the convergence of Lemma 3.2 is weak,

lim
N→∞

∫
R
xnβ̃(dx) =

∫
R
xnN (dx),

for n = 0, 1, 2, . . . . From Proposition 3.1, we obtain

lim
N→∞

ϕN

(
(Ã

(k)
N )m

)
= lim

N→∞

∫
R

(
K̃

(N,q)
k (x)

)m
β̃(dx) =

∫
R

(
H̃k(x)

)m
N (dx),
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for m = 0, 1, 2, . . . , by noting that both
(
K̃

(N,q)
k (x)

)m
and

(
H̃k(x)

)m
are poly-

nomials of degree km. Thus the proof is completed. �

Remark 3.5. It is noteworthy that the right-hand side of (3.7) does not depend
on q. Even if G is not Kq, Lemma 3.2 is a straightforward consequence from the

quantum central limit theorem for the commutative independence since A
(1)
N is the

sum of the commutative independent random variables. This fact suggests us that

we have the same limit distribution for G
(k)
N even if it starts from any graph G.

(see [3])

4. Asymptotic Spectral Distributions of H(N, q) as N, q → ∞

In this section, we consider the asymptotic spectral distributions of the distance-
k graphs of Hamming graphs as both N and q tend to infinity. We need to assume
a good balance between N and q so that N/q tends to λ > 0 (constant).

Lemma 4.1. As N, q → ∞ and N/q → λ > 0, the asymptotic spectral distribution

of A
(1)
N is the normalized Poisson distribution, namely,

lim
N,q→∞
N/q→λ

ϕN

(
(Ã

(1)
N )m

)
=

∫
R
xmP(dx), for m = 0, 1, 2, . . . ,

where

P(dx) =
∞∑
j=0

λj

j!
e−λδ(j−λ)/

√
λ(dx).

Proof. Due to the law of small numbers of the Poisson distribution, when N and
q tend to infinity in such a way that N/q tends to a constant λ > 0, the weak
limit of the binomial distribution Bin(N, 1/q) is the Poisson distribution Pois(λ).

Thus, the weak limit of β̃(dx) is P(dx). �

Remark 4.2. This lemma means that the Hamming graph H(N, q) asymptotically
corresponds to the Poisson distribution when N, q → ∞ with N/q → λ > 0. This
fact was already obtained in [4].

Here we introduce Charlier polynomials {Cn(x, λ)} with the parameter λ >
0. They are the orthogonal polynomials associated with the Poisson distribution
Pois(λ) and satisfy the three-term recurrence relation

(x− n− λ)Cn(x, λ) = −λCn+1(x, λ)− nCn−1(x, λ), (4.1)

C0(x, λ) = 1, C1(x, λ) = 1− x/λ. For more details, refer to e.g. [1].

Put C̃λ
n(x) = (−1)n(λn/n!)1/2Cn(

√
λx + λ, λ). Then {C̃λ

n(x)} are the ortho-
normal polynomials associated with P(dx), and satisfy the three-term recurrence
relation (

x− n√
λ

)
C̃λ

n(x) =
√
n+ 1C̃λ

n+1(x) +
√
nC̃λ

n−1(x), (4.2)

C̃λ
0 (x) = 1, C̃λ

1 (x) = x.

121



282 YUJI HIBINO

Lemma 4.3. lim
N,q→∞
N/q→λ

K̃(N,q)
n (x) = C̃λ

n(x).

Proof. By putting P̃n(x) = limN,q→∞;N/q→λ K̃
(N,q)
n (x), we have(

x− n√
λ

)
P̃n(x) =

√
n+ 1P̃n+1 +

√
nP̃n−1,

because of (3.2). This is identical with the recurrence equation (4.2) of normalized

Charlier polynomials {C̃λ
n(x)}. Therefore, P̃n(x) = C̃λ

n(x) since P̃0(x) = C̃λ
0 (x) =

1 and P̃1(x) = C̃λ
1 (x) = x. �

Theorem 4.4. As N, q → ∞ and N/q → λ > 0, the asymptotic spectral distribu-

tion of the adjacency matrix A
(k)
N is as follows:

lim
N,q→∞
N/q→λ

ϕN

 A
(k)
N√(

N
k

)
(q − 1)k

m =

∫
R

(
C̃λ

k (x)
)m

P(dx), (4.3)

for m = 0, 1, 2, . . . .

Proof. Since the convergence of Lemma 4.1 is weak,

lim
N,q→∞
N/q→λ

∫
R
xnβ̃(dx) =

∫
R
xnP(dx),

for n = 0, 1, 2, . . . . From Proposition 3.1 and Lemma 4.3, we obtain

lim
N,q→∞
N/q→λ

ϕN

(
(Ã

(k)
N )m

)
= lim

N,q→∞
N/q→λ

∫
R

(
K̃

(N,q)
k (x)

)m
β̃(dx) =

∫
R

(
C̃λ

k (x)
)m

P(dx),

for m = 0, 1, 2, . . . , by noting that both
(
K̃

(N,q)
k (x)

)m
and

(
C̃λ

k (x)
)m

are polyno-

mials of degree km. Thus the proof is completed. �
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