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Abstract: Software reliability is one of the attributes of software quality. Due to the increasing complexity of the 
software systems, delivering reliable software in a timely manner becomes a challenging task. Software Reliability 
Growth Models (SRGMs) are used to estimate the reliability of the software systems during testing. Although large 
number of SRGMs have been proposed, it appears that no single model can be considered to be suitable to describe 
every software failure data set. The research is still continuing to develop more robust models. However, the success 
of reliability modeling for a given project depends on selection of appropriate SRGM that will fi t the software failure 
data adequately. This paper presents a brief review of existing SRGMs, model selection methods.
Keywords: Software Reliability Growth Models, Selection Method, Non-Homogeneous Poisson Process, Combinational 
Model, Soft computing techniques.

1. INTRODUCTION
The reliability of a software system is defi ned as the probability that the software will not fail during stated 
period of time.Many SRGMs have been proposed during past three decades and used both by the software 
industry and researchers. To use these SRGMs, Software practitioners have to estimate the parameters of the 
SRGM using software failure data during testing. Using these software failure data, SRGMs can estimate future 
failure occurrence times, total number of initial faults, number of faults remaining at the time of release, the 
failure intensity, software reliability achieved at any given time during testing and release time determination 
[1]. A single SRGM could give varying degree of goodness of fi t statistic for different software failure data sets 
because the characteristics of software failure data sets may vary [2]. Hence, it appears that no single model 
is available to provide accurate result in all situations. On the other hand, researchers have suggested that 
combining more than one model may improve estimation accuracy than selecting a single model [2].Estimation 
accuracy may also vary depending on the different parameter estimation methods and model evaluation criteria 
[3]. However, the success of software reliability modeling depends on selecting an appropriate SRGM that 
produces better estimation accuracy in all cases. Hence, this paper presents a review on selection methods to 
select appropriate SRGM suitable for a given project.The process for selection of appropriate SRGM for a 
given projectcomprise four stages: study the data, choose SRGMs that may be suitable for the data and the type 
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of metrics to be collected, fi nd goodness of fi t and accept or reject the chosen SRGM using model selection 
methods.This paper presents a brief review on already proposed SRGMs with their parameter estimation 
methods, evaluation criteria and selection methods. We briefl y discuss about different model selection methods 
used in  existing SRGMs.

This paper is organized as follows: Section 2 gives a review of existing SRGMs with different parameter 
estimation techniques. Section 3 presents the review ofestimation evaluation criteria. Section 4 presents review 
on selection of appropriate SRGM for a given project. Summary and conclusions are given in section 5.

2. REVIEW OF EXISTING SRGMS

The traditional software reliability growth models are proposed based on a set of assumptions and distributions[4]. 
Hudson published the fi rst paper on software reliability in 1967 for Markov Birth-Death process [5]. Later, 
the early developed models include Jeliski-Moranda Model[6], Littelwood-Verral Model[7], Schneidewind 
model[8] and Goel-okumoto model[3] etc. More than 300 SRGMs have been proposed in the last three decades. 
When there are a large number of models, they need to be grouped according to chosen characteristics in order 
to have a better understanding.Thus, this review presents how the existing software reliability growth models 
have been classifi ed into different categories.This classifi cation covers simple and fl exible SRGMs which are 
widely used by software practitioners under different conditions. 

According to Musa[1], the software reliability models could be classifi ed as shown in Table 1.
Table 1

Musa-  Software Reliability Models Classifi cation

Category Description

Time Clock time or execution time

Category Finite failure or Infi nite failure

Type Probability distribution of the number of failures experienced at time t.

Goel [4] classifi ed the software reliability models as shown in Table 2.
Table 2

Goel-  Software Reliability Models Classifi cation

Catogory Description

Time between failure models Time between two successive failures follows a distribution whose parameters depend on 
the number of faults remaining in the software during this  interval.

Failure or fault count models Number of failures or faults in specifi ed time interval which follows a stochastic process 
with a time dependent discrete or continuous failure rate.

Fault seeding models Seed a set of identifi ed faults in a program which is assumed to have an unidentifi ed set of 
indigenous faults.

Input domain models Createa number of test cases from a model distribution as input which is assumed to be 
representative of the operational usage of the program.

Xie [9] classifi ed the software reliability models based on the failure occurrence process as shown in Table 3.
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Table 3
Xie-  Software Reliability Models Classifi cation

Category Description

Markovian models
A stochastic process in which its future action depends on the present 
state of the process and not on the  past. Ex. Jelinski-Moranda(J-M) 

model [6].

Bayesian models

Bayesian models used knowledge on the previous performance of the 
system. They are described by two distributions. The failure times 

which follows one distribution with a certain failure rate and the failure 
rate follows another one distribution. Ex. Littlewood-Verrall(L-V) 

model [7].

Non-Homogeneous Poisson Process (NHPP) 
models

A process that follows Poisson distribution with a time dependent 
failure rate [4]. 

Yamada et al.[10] classifi ed NHPP based SRGMs into two categories as shown in Table 4.
Table 4

Yamada et al. -  NHPP based Software Reliability Growth Models Classifi cation

Category Description

Continuous time SRGM It uses machine execution time/CPU time or calendar time as a unit of 
fault detection period which varies with time.

Discrete time SRGM
It uses the number of test cases as a unit of fault detection period 

without considering time  and unit of fault detection period is 
countable.

Subburaj[11] classifi ed NHPP based continuous time SRGM as shown in Table 5.
Table 5

Subburaj- NHPP based Software Reliability Growth Models Classifi cation

Category Description

Failure based and Fault based SRGMs
Failure based models assume perfect debugging that a failure is caused 
by one fault. In fault based models, a failure is caused by one or more 

faults.

Exponential growth and S-shaped growth mean 
value function

Mean value function either follows exponential growth or S-shaped 
growth.

Testing Effort models
Since time-based SRGMs assume efforts are constant during entire 

testing period, it transforms into effort based SRGM using time 
transform property.

Graphical models Models which are generalized and fl exible to address both exponential 
and S-shaped mean value function.

Quality metrics producing models
Models estimate the quality of debugging and other measures such as 

learning index, total number of faults etc. observed in the project that is 
useful to the software management to improve its assessment.
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The parameters on the above models are estimated by either one of the two commonly used statistical 
parameter estimation methods namely: Maximum Likelihood Estimation(MLE) and Least Square 
Estimation(LSE).NHPP models are widely used by researchersandthey possess other two important properties 
called superposition and time transformation [9]. Instead of developing new SRGMs, we can use existing 
SRGMs effectively by incorporating these two properties. Time transform property develops testing effort 
based SRGMs as given in table 5.We can develop new combinational SRGMs by summing up two or more 
SRGMswith their respective mean value functions using superposition property.

2.1. Review of NHPP based combinational SRGMS
While combining the models, the assumptions behind each parameter and model become lost. Hence a non-
parametric distribution-free modeling technique may come out [2]. Non-parametric models can produce better 
estimation accuracy than classical parametric models[12].Combinational SRGM may give accurate parameter 
estimation than single component model alone [2]. It combines the  results of individual component models. It 
performs well for a few data sets and poor for  some other data sets based on the component models.

Almering et al. [13] proposed parametric and non-parametric classifi cation of SRGMs as shown in Table 6.
Table 6

Almering et al. -  Parametric and non-parametric classifi cation of SRGMs

Category Description

Parametric SRGM
Parametric or traditional SRGMs assume a predetermined behavior 

for parameters during model evolution. The parameters are explicitly 
defi ned in the model and have a physical interpretation.

Non-parametric SRGM Although the non-parametric SRGMs include parameters in their 
model evolution, they don’t have any physical interpretation.

Instead of depending on the result of any single model, Lyu[2] introduced SRGM combination model that 
combine the results of selected candidate models based on assigned weights. The weights are assigned using 
equally weighted linear combination, dynamic weighted linear combination, median-oriented combination 
approaches. Keene et al.[14] proposed an approximation approach for software reliability combinational model 
and applied for software and hardware failure rate to predict the availability. Popenitiu et al.[15] proposed a linear 
combination model using supermodel approach and Li et al.[16] suggestted a hierarchical mixture approach 
for software reliability combination model. Subburajet al.[17, 18] proposed dynamic weighted combination 
approach for fault-based and failure-based SRGMs respectively. The parameters on these combinational models 
are estimated using statistical parameter estimation methods like MLE, LSE and Expectation-Maximization [16] 
algorithm. The results from these combinational models show that, the more component models we combine, 
the better estimation and prediction.

To improve the parameter estimation accuracy, different methods and algorithms using soft computing 
techniques have been proposed to estimate the parameters.Karunanidhiet el. [12] introduces Artifi cial Neural 
Network (ANN) to software reliability models and proposed feed-forward and Jordon’s semi-recurrent 
connectionist neural networks for software reliability estimation and prediction. Cai et al.[19] and Yogesh et 
al.[20] proposed feed-forward neural network approaches to estimate and predict software reliability. These 
authors built ANN using sigmoid activation function and compare the results with existing classical SRGMs. 
The results from these approaches concludes that parameter estimation using ANN may give better accuracy 
than statistical parameter estimation methods. However, the results from the above ANN approaches show that 
the estimation accuracy using ANN for SRGMs depends on the selection of network architecture by determining 
the number of neurons is a kind of art.To address this issue, Huang et al.[21], Jung [22], Wang et al.[23], Roy 
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et al.[24] and Indhurani et al.[25] proposed ANN based combinational model for software reliability estimation 
using existing classical SRGMs. They have combined more than two SRGMs and implemented feed-forward 
and recurrent neural network architectures by designing activation functions from selected SRGMs.

Guo et al.[26], Sultan et al.[27] and Pachauri et al.[28] explored the use of fuzzy logic and applied fuzzy 
set theory to build SRGM. They estimate the parameters using fuzzy modeling and calculated the total software 
cost. Costa et al.[29] , Huang et al.[30], Kim et al. [31] and Jung et al.[32] proposed genetic algorithm to 
estimate the parameters of combinational SRGM.Xie et al.[33], Zheng et al.[34]  Mohandy et al.[35] and Roy 
et al.[36] proposed hybrid intelligent system by combining neural network and genetic algorithm to estimate 
the parameters of combinational SRGM. The other soft computing techniques used to estimate the parameters 
of combinational SRGM are Ant Colony Optimization(ACO) [37], Particle Swarm Optimization(PSO) [38], 
Cuckoo Search [39] and Bacterial Foraging Optimization Algorithm(BFOA) [40]. Jin et al.[41] and Subburaj 
et al.[42] proposed parameter estimation using PSO and ANN respectively with testing effort function and 
concludes that it is fl exible and effective than existing methods. Although the results using soft computing 
techniques give incrementally better parameter estimation, they also depend on the selected SRGMs [21, 24, 
25]. Hence, the selection of appropriate fl exible SRGMs will reduce the number of component models in the 
combinational SRGM and produce accurate results for parameter estimation [25, 42].

3. REVIEW OF EVALUATION CRITERIA METHODS
Some meaningful measures are used by researchers to evaluate the SRGMs in terms of goodness of fi t and 
predictive validity. Table7.shows different evaluation criteria used by reliability researchers.

Table 7
 Evaluation criteria used by reliability researchers

Bias Variance Noise MSE SSE RMSE R2 RE AE MSF

Lyu&Nikora [2] * *

Xie et al. [33] *

Li et al. [16] *

Huang et al. [21, 
30] * * * * * *

Cai et al. [19] *

Roy et al. [24] * *

Subburaj et al. 
[11, 17, 18, 25, 

42]
* * * * * * * * * *

Zheng et al. [34] * * *

Guo et al. [26] *

Jung et al. [22] * * *

4. REVIEW OFSRGM SELECTION METHODS FOR A GIVEN PROJECT
Although many SRGMs are proposed, it appears that there is no clear guide to select appropriate SRGM for a 
given project. The success of reliabilitymodeling depends on the selection of appropriate SRGMs. Khoshgoffaer 
et al.[43] suggested to use Akaike Information Criterian (AIC) to select the best SRGM.  Stringfellow et al.[44] 
proposed an empirical selection method for choosing the best SRGM in terms of goodness of fi t, stability and 
predictive validity. Sharma et al.[45] and Liang et al. [46] proposed distance based approach to select optimal 
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SRGMs.Kharchenko et al. [47] proposed a method to select an SRGM using assumptions matrix by taking 
software engineering features and testing processes. Rana et al.[48] suggested a method to select appropriate 
SRGM by predicting the expected shape of on-going project data and also observing the software process. 
For example, it is observed that Gompertz SRGM is best for either V-model process or agile type software  
development process and logistic SRGM is best for waterfall software development process. Park et al.[49] 
proposed a systematic reliability prediction framework using decision trees for dynamic model selection and 
combination.

Current practice to select best SRGMs is to apply several SRGMs by fi tting models and evaluate their 
respective goodness-of-fi t using software failure data and select appropriate model based on comparison criteria 
such as Mean Squared Error (MSE), Bias, Noise, Variance and Relative Error (RE) etc. But this approach 
shows that different methods of model selection criteria result in different model being chosen. Hence, software 
practitioners may end up with confl ict in the model evaluation like best MSE and worst bias etc. All these 
approaches focus on the goodness of fi t to the software failure data, and it may cause the under and over-fi tting 
problems in the predictive validity [49]. Thus, it is necessary to develop a selection method that can easily adopt 
and produce accurate estimation results in all cases.

5. CONCLUSION
Software Reliability Growth Model is essential to assess the growth of reliability during software testing and it 
is used to estimate future failure occurrence times, number of faults remaining at the time of release etc. This 
paper reviewsthe various classifi cations of SRGMs and the selection of appropriate SRGM for a given project. 
We present a review of existing SRGMs anddifferent parameter estimation methodsusing statistical and soft 
computing techniques. We also discuss about different evaluation criteria used to measure the fi tting error of the 
model for the chosen data and model selection methods proposed by various reliability researchers.

6. APPENDIX
Table 8. provides some simple and fl exible NHPP based continuous time SRGMs.

Table 8
Simple and fl exible NHPP based SRGMs

S.No. Model Mean value function μ(t) Equation

1 Goel-okumotto-1979 [3] m(t) = a(1 – e–bt)

2 S-shaped by Yamada-1983 [50] m(t) a(1 – (1 + bt)e–bt)

3 Ohba Infl ection S-Shaped-1984[51]
–

–

(1 – )( )
1 –

bt

bt

a em t
e

=
β

4 Kapur- Garg imperfect debugging-1990 [52] (– )( ) (1 – )bptam t e
p

=

5 Logistic Growth by Huang- 2002 [53] ( )
1 bt

am t
ce

=
+

6
Musa BET,LPET-1989 [54]

Basic Execution Time (BET)
Logarithmic Poisson Execution Time (LPET)

( ) 1 – –m t e t
⎛ ⎞⎛ ⎞λ= γ ⎜ ⎟⎜ ⎟γ⎝ ⎠⎝ ⎠

m(t) =  ln (1 + bt)
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S.No. Model Mean value function μ(t) Equation

7 Yamada - Imperfect Debugging 1 & 2-1992 [55]

( ) ( – )at btabm t c e
b

=
+ α

( ) (1 – ) 1 –btm t a e at
b
α⎛ ⎞= + α⎜ ⎟⎝ ⎠

8 P-Z (Pharm and Zuang)-1997[56]
( –

–

–

1( ) ( )(1 – )
1

– ( – )
–

bt
bt

t bt

m t c a e
e

a e e
b

α

= +
+ β

α

9 P-N-Z (Pharm, Nordmann and Zuang)-1999[57] –
–( ) ((1 – ) 1 –

1
bt

bt

am t e at
e b

α⎛ ⎞= + α⎜ ⎟⎝ ⎠+ β

10 Duane - Power law-1964 [58] m(t) = atb

11 Modifi ed Duane - Littlewood-1984 [59] ( ) 1 –
c

bm t a
b t

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

12 Logarithmic law-1993 [60] m(t) = a ln{bt}

13 Log-power-law(mixure of  power-law and 
logarithmic law)-1993 [60] m(t) = a (ln t)b

14 Log-power-1993 [60] m(t) = a lnb (1+ t)

15 Exponential law-1993 [60] m(t) = aebt

16 Inverse-exponential law-1993 [60] m(t) = ae–b/t

17 Combination of logarithmic  and log power 
model-1993 [60] m(t) = a lnc (1+ bt)

18 Goel generalized-1985 [4] m(t) = a (1 – e –btc)

19 S-G (Subburaj and Gopal) GE-2006 [61] ( )–( ) N 1 –
t

m t e
β⎛ ⎞

⎜ ⎟⎝ ⎠θ=

20 SGK (Subburaj, Gopal and Kapur)-2007 [62]
––( ) N

1 –
t

m t
e

β⎛ ⎞γ⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠θ⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

21 Generalized NHPP with sWF ROCOF-2008 [63] ( )–( ) 1 –
ct

m t e
β⎛ ⎞

⎜ ⎟⎝ ⎠θ=

22 SGK-2012 [64]
–– –( )

1 –
tcam t

ec

β⎛ ⎞γ⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠θ⎝ ⎠
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S.No. Model Mean value function μ(t) Equation

23 Yamada et al. (Exponential and Rayleigh Testing 
efforts)-1986 [65]

1– 1(1 – )( ) (1 – )
tb em t a e

βα=
1 2–

2– 1(1 –( ) (1 – )
t

b em t a e
β

α=

24 Yamada et al. (WeibullTesting effort)-1993 [66] 1– 1(1 – )( ) (1 – )
tb em t a e
γβα=

25 Huang et al. (Logistic Testing effort)-2002 [53] (– 1 )
1–

1 1( ) 1 –
tb

em t a e
β

⎛ ⎞α
⎜ ⎟+ γ⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠
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