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Abstract. We are interested in a nonlinear partial differential equation:
the granular media one. Thanks to some of our previous results [10, 11],

we know that under easily checked assumptions, there is a unique steady
state. We point out that we consider a case in which the confining potential
is not globally convex. According to recent articles [8, 9], we know that there

is weak convergence towards this steady state. However, we do not know
anything about the rate of convergence. In this paper, we make a first step
to this direction by proving a deterministic Kramers’type law concerning the
first time that the solution of the granular media equation leaves a local well.

In other words, we show that the solution of the granular media equation is
trapped around a local minimum during a time exponentially equivalent to

exp
{

2
σ2 H

}
, H being the so-called exit-cost.

1. Introduction

In this paper, we are interested in the following so-called granular media equa-
tion:

∂

∂t
µσ
t (x) =

∂

∂x

{
σ2

2

∂

∂x
µσ
t (x) + µσ

t (x)
(
V ′(x) + F ′ ∗ µσ

t (x)
)}

, (1.1)

where the confining potential V is nonconvex (double-wells) and the interacting
potential F is convex. The exact assumptions will be given subsequently.

This partial differential equation has a natural interpretation in terms of sto-
chastic processes. Indeed, let us consider the following so-called McKean-Vlasov
diffusion: {

Xσ
t = X0 + σBt −

∫ t

0
(W σ

s )
′
(Xσ

s ) ds
Wσ

s = V + F ∗ L (Xσ
s )

. (1.2)

Here, ∗ denotes the convolution. Since the law of the process intervenes in the
drift, this equation is nonlinear - in the sense of McKean. By µσ

t , we denote the
law at time t of the process Xσ. It is well-known that the family of probability
measures {µσ

t ; t ≥ 0} satisfies the granular media equation starting from L (X0).
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We will use the recent results about the exit-problem of the McKean-Vlasov
diffusion (see [12, 13]) in order to prove a deterministic Kramers’type law for any
σ sufficiently small:

exp

[
2

σ2
(H0 − δ)

]
< Tκ(σ) < exp

[
2

σ2
(H0 + δ)

]
,

H0 being the associated exit-cost (which will be described later), δ being an arbi-
trarily small constant and

Tκ(σ) := inf
{
t ≥ 0 : E

[
(Xσ

t − b)
2
]
> κ2

}
= inf

{
t ≥ 0 :

∫
R
(x− b)

2
µσ
t (dx) > κ2

}
,

where b is a minimizer of V corresponding to a local and non global minimum.
We now give the assumptions on V and F .

Assumption 1.1. The potentials V and F satisfy the following hypotheses:

• The coefficients V ′ and F ′ are locally Lipschitz, that is, for each R > 0
there exists KR > 0 such that

|V ′(x)− V ′(y)|+ |F ′(x)− F ′(y)| ≤ KR|x− y| ,

for x, y ∈ {z ∈ R : |z| < R}.
• The function V is continuously differentiable.
• The potential V is convex at infinity: lim

|x|→+∞
V ′′(x) = +∞.

• The potential V has two wells (a < 0 and b > 0) and a local maximum
located in 0.

• The function V ′′ is convex.
• F (x) := α

2 x
2 with α > 0.

[Exit-time of granular media equation]Exit-time of granular media equation

starting in a local minimum An example of such potential is V (x) := x4

4 + x3

3 − x2

2 .

In this case a = −1+
√
5

2 < 0 < −1+
√
5

2 = b.
If the initial law is a Dirac measure, we know that there exists a unique

strong solution Xσ to Equation (1.2), see [5, Theorem 2.13]. Moreover, we have:

supt∈R+
E
{
|Xσ

t |
2p
}
< ∞ for any p ∈ N∗.

From now on, we consider the potential Wb := V + F ∗ δb. Indeed, by classi-
cal large deviations result, for any T > 0, in the small-noise limit, the diffusion
(Xσ

t )0≤t≤T starting at X0 = b is close to the diffusion (Y σ
t )0≤t≤T defined like so:

Y σ
t = b+ σWt −

∫ t

0

W ′
b (Y

σ
s ) ds .

An important tool to understand the long-time behaviour of µσ
t is the set of

invariant probabilities. This set has been precisely described in [6, 7, 10, 11]. From
these works, we know that there exists an invariant probability near - in the small-
noise limit - the distribution δb if and only if b is the unique global minimizer of
Wb.
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Assumption 1.2. There exists y ̸= b suh that Wb(y) < Wb(b).

Immediately, from Assumption 1.2, we deduce that Wb has another minimizer
than b, that is here denoted as a′ and a unique local maximizer (since V ′′ is convex)
denoted as c. From now on, we consider the following exit-cost:

H0 := Wb(c)−Wb(b) . (1.3)

The long-time behaviour of µσ
t has been solved in the convex case (see [1, 2, 3, 4])

and in the non-convex case (see [8, 9]).
An important and remaining question is the one of the rate of convergence.

In [3], a rate of convergence has been obtained if V is convex but not uniformly
strictly convex. Here, with double-wells potential, we can not use this result. It is
an easy exercise to show that µσ stays a long time (that does depend on σ) close
to δb in the small-noise limit. The result of the paper is a characterization of this
time.

According to [11], with Assumption 1.1 and Assumption 1.2, there exists -
if the noise σ is sufficiently small - a unique steady state for Equation (1.1).
Consequently, if µ0 = δx0 where x0 ∈]0; +∞[, we know that µσ

t converges weakly
towards the unique invariant probability.

The aim of the current work is to study what happens if x0 := b. For doing
so, we use the recent results about the exit-time of the associated McKean-Vlasov
diffusion in [12, 13].

From now on, we consider the deterministic time

Tκ(σ) := inf

{
t ≥ 0 :

∫
R
(x− b)2µσ

t (dx) ≥ κ2

}
for any κ > 0. In the following, κ is arbitrarily small. In particular, we assume
that

κ2 ≤ 1

2
(c− b)2 .

We consider an additional assumption on the interaction:

Assumption 1.3. We have α < V ′′(b)√
2

.

This last assumption is used in order to be able to apply the results in [13].
We now give the result of the article.

Theorem 1.4. For any κ ∈
]
0; 1√

2
|c− b|

[
, for any δ > 0, there exists σ(κ, δ) such

that for all 0 < σ < σ(κ, δ):

exp

[
2

σ2
(H0 − δ)

]
< Tκ(σ) < exp

[
2

σ2
(H0 + δ)

]
. (1.4)

2. Proof of Theorem 1.4

The lower-bound has already been proved in [13, Proposition C]. Indeed, in [13],

the constant Tκ does correspond to the first time t such that E
[
(Xt − b)

2
]
< κ2,

which here is 0 since X0 = b.
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Consequently, we have

sup
0≤t≤exp[ 2

σ2 (H0−δ)]
E
[
(Xt − b)

2
]
< κ2 ,

if σ is sufficiently small. We deduce Tκ(σ) > exp
[

2
σ2 (H0 − δ)

]
if σ is small enough.

We now prove the upper-bound by proceeding by a reducto ad absurdum. Set
δ > 0. We assume that there exists a sequence (σn)n which goes to 0 as n goes to
infinity such that, for any n ∈ N, we have:

exp

[
2

σ2
n

(H0 + δ)

]
≤ Tκ(σn) , (2.1)

We now introduce the two diffusions X+,κ and X−,κ by

X±,κ
t = b+ σnBt −

∫ t

0

∇V
(
X±,κ

s

)
ds− α

∫ t

0

(
X±,κ

s − (b± κ)
)
ds (2.2)

From now on, κ is arbitrarily small. By b±κ , we denote the positive critical point

(close to b) of the potential x 7→ V (x)+ α
2 (x− (b± κ))

2
. By a simple computation,

we get:

b±κ = b± α

V ′′(b) + α
κ+ o(κ) .

Now, if κ is small enough, we know that the Freidlin-Wentzell theory may be
applied to Diffusion X±,κ and domain ]c; +∞[. So, we deduce that

τ±]c;+∞[(σn) := inf
{
t ≥ 0 : X±,κ

t ≤ c
}

satisfies a Kramers’type law. In particular, we have

lim
σ→0

P
(
exp

[
2

σ2
n

(
H±

κ (c)− δ
)]

≤ τ±]c;+∞[(σn) ≤ exp

[
2

σ2
n

(
H±

κ (c) + δ
)])

= 0 ,

for any δ > 0. Here, H±
κ (c) := V (c)− V (b±κ ) +

α
2 (c− b± κ)

2
.

The main idea now is to compare the exit-time of X with the ones of X±,κ. We
have

sup

0≤t≤exp

[
2

σ2
n
(H0−δ)

]E
[
|Xt − b|2

]
< κ2 .

Consequently, for any t ∈
[
0; exp

[
2
σ2
n
(H0 − δ)

]]
, we have X−,κ

t ≤ Xt ≤ X+,κ
t . As

a consequence, if we put τ(σn) := inf {t ≥ 0 : Xt ≤ c}, we have

τ−κ (σn) ≤ τ(σn) ≤ τ+κ (σn) .

However, a Kramers’type law is satisfied by τ±κ (σn). So, for any ξ > 0, we have

lim
σ→0

P
(
exp

[
2

σ2
n

(
H−

κ (c)− ξ
)]

≤ τ(σn) ≤ exp

[
2

σ2
n

(
H+

κ (c) + ξ
)])

= 1 .

Consequently, by taking κ sufficiently small, we obtain that for any δ > 0, we have

lim
σ→0

P
(
exp

[
2

σ2
n

(H0 − δ)

]
≤ τ(σn) ≤ exp

[
2

σ2
n

(H0 + δ)

])
= 1 . (2.3)
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By Tc(σn), we denote the first time that Xσn returns to ]c; +∞[. By proceeding
similarly, we have the following inequality:

lim
n→∞

P
(
Tc(σn) ≤ exp

[
2

σ2
n

(H0 +
δ

2
)

])
= 0 . (2.4)

Indeed, the exit-cost for going from the left to the right is Wb(c) − Wb(a
′) >

Wb(c)−Wb(b). We recall that a′ is the global minimizer of Wb.
Inequalities (2.3) and (2.4) imply the following limit:

lim
n→∞

P

Xσn

exp

[
2

σ2
n
(H0+

δ
2 )

] ≥ c

 = 0 .

In particular:

lim
n→∞

E


∣∣∣∣∣∣Xσn

exp

[
2

σ2
n
(H0+

δ
2 )

] − b

∣∣∣∣∣∣
2
 ≥ (c− b)2 ≥ 2κ2 > κ2 .

Last limit means that Tκ(σn) < exp
[

2
σ2
n
(H0 +

δ
2 )
]
if n is large enough, which

is absurd according to (2.1).
We deduce that Hypothesis (2.1) was wrong. Consequently, we obtain the

upper-bound:

exp

[
2

σ2
(H0 + δ)

]
> Tκ(σ) ,

if σ is small enough. This achieves the proof.
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