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EXIT-TIME OF GRANULAR MEDIA EQUATION
STARTING IN A LOCAL MINIMUM

JULIAN TUGAUT

ABSTRACT. We are interested in a nonlinear partial differential equation:
the granular media one. Thanks to some of our previous results [10, 11],
we know that under easily checked assumptions, there is a unique steady
state. We point out that we consider a case in which the confining potential
is not globally convex. According to recent articles [8, 9], we know that there
is weak convergence towards this steady state. However, we do not know
anything about the rate of convergence. In this paper, we make a first step
to this direction by proving a deterministic Kramers’type law concerning the
first time that the solution of the granular media equation leaves a local well.
In other words, we show that the solution of the granular media equation is
trapped around a local minimum during a time exponentially equivalent to

exp 4 5 H ¢, H being the so-called exit-cost.
o

1. Introduction

In this paper, we are interested in the following so-called granular media equa-
tion:

o) = 2T L@ @ (Vi + P @) b )

where the confining potential V' is nonconvex (double-wells) and the interacting
potential F' is convex. The exact assumptions will be given subsequently.

This partial differential equation has a natural interpretation in terms of sto-
chastic processes. Indeed, let us consider the following so-called McKean-Vlasov
diffusion:

{ g:XO"'UBt_fot(Wsa),(Xg)ds (1 2)
W=V +FxL(X7) '

Here, % denotes the convolution. Since the law of the process intervenes in the
drift, this equation is nonlinear - in the sense of McKean. By u?, we denote the
law at time t of the process X?. It is well-known that the family of probability
measures {uf ; t > 0} satisfies the granular media equation starting from £ (Xj).
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We will use the recent results about the exit-problem of the McKean-Vlasov
diffusion (see [12, 13]) in order to prove a deterministic Kramers’type law for any
o sufficiently small:

2 2
Xp | =3 (Ho—6)| <Tx(o) <exp po) (Ho+4)]| »
Hy being the associated exit-cost (which will be described later), § being an arbi-
trarily small constant and

To(o) =inf {t >0 : E[(X7 )] > x?}

—ut{ez0 [ eonParan > )

where b is a minimizer of V' corresponding to a local and non global minimum.
We now give the assumptions on V and F.

Assumption 1.1. The potentials V and F satisfy the following hypotheses:

e The coefficients V' and F' are locally Lipschitz, that is, for each R > 0
there exists Kr > 0 such that

V!(x) = V()| + |F'(z) = F'(y)| < Kglz —yl,

forz,ye {z€R : |z| < R}.
The function V is continuously differentiable.
The potential V is convex at infinity: |lim V"(z) = +o0.

|z| =400
The potential V' has two wells (a < 0 and b > 0) and a local mazimum
located in 0.
The function V"' is convex.
F(z) := $a* with a > 0.

[Exit-time of granular media equation|Exit-time of granular media equation

starting in a local minimum An example of such potential is V() := % x—; — ’”—22

In this case a = — 1+2\/5 <0< 71;\/5 =b.

If the initial law is a Dirac measure, we know that there exists a unique
strong solution X7 to Equation (1.2), see [5, Theorem 2.13]. Moreover, we have:
Sup;eg, E {|Xt"|2p} < oo for any p € N*.

From now on, we consider the potential W;, := V + F x d,. Indeed, by classi-
cal large deviations result, for any 7' > 0, in the small-noise limit, the diffusion
(X7 )o<i<r starting at Xo = b is close to the diffusion (Y,7),.,~, defined like so:

t
Yt":bJrchtf/ W (Y)ds.
0

An important tool to understand the long-time behaviour of uf is the set of
invariant probabilities. This set has been precisely described in [6, 7, 10, 11]. From
these works, we know that there exists an invariant probability near - in the small-
noise limit - the distribution §;, if and only if b is the unique global minimizer of
W
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Assumption 1.2. There exists y # b suh that Wy(y) < Wy (b).

Immediately, from Assumption 1.2, we deduce that W}, has another minimizer
than b, that is here denoted as a’ and a unique local maximizer (since V"' is convex)
denoted as c¢. From now on, we consider the following exit-cost:

Hy = Wb(c) — Whp(D). (1.3)

The long-time behaviour of 117 has been solved in the convex case (see [1, 2, 3, 4])
and in the non-convex case (see [8, 9]).

An important and remaining question is the one of the rate of convergence.
In [3], a rate of convergence has been obtained if V' is convex but not uniformly
strictly convex. Here, with double-wells potential, we can not use this result. It is
an easy exercise to show that u? stays a long time (that does depend on o) close
to dp in the small-noise limit. The result of the paper is a characterization of this
time.

According to [11], with Assumption 1.1 and Assumption 1.2, there exists -
if the noise o is sufficiently small - a unique steady state for Equation (1.1).
Consequently, if g = 65, where g €]0; +00[, we know that pf converges weakly
towards the unique invariant probability.

The aim of the current work is to study what happens if zg := b. For doing
so, we use the recent results about the exit-time of the associated McKean-Vlasov
diffusion in [12, 13].

From now on, we consider the deterministic time

T.(0) := inf {t >0: /(x —b)?ug (dx) > ,%Q}
R

for any x > 0. In the following, x is arbitrarily small. In particular, we assume
that

1

k? < Z(c—Db)?.
2
We consider an additional assumption on the interaction:

Assumption 1.3. We have a < V:If(zb).

This last assumption is used in order to be able to apply the results in [13].
We now give the result of the article.

Theorem 1.4. For any k € ]0; %\c - {, for any 6 > 0, there exists o(k,0) such
that for all0 < o < o(k,9):

exp {022 (Ho — 5)} < Tu(0) < exp {022 (Ho+ 5)} . (1.4)

2. Proof of Theorem 1.4

The lower-bound has already been proved in [13, Proposition C]. Indeed, in [13],
the constant 7}, does correspond to the first time ¢ such that E {(Xt - b)Z} < K2,

which here is 0 since Xg = b.
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Consequently, we have

sup E {(Xt - b)ﬂ < K2,
OStScxp[ﬁ%(Hofé)]
if o is sufficiently small. We deduce T},(0') > exp [ (Ho — §)] if o is small enough.
We now prove the upper-bound by proceeding by a reducto ad absurdum. Set

d > 0. We assume that there exists a sequence (o), which goes to 0 as n goes to
infinity such that, for any n € N, we have:

exp {022 (Ho + 5)} < To(om), (2.1)

n

We now introduce the two diffusions X and X ~* by
t t
X5 =b+0,B; — / VV (XF")ds — a/ (XFr—(b£r))ds (2.2)
0 0

From now on, & is arbitrarily small. By b, we denote the positive critical point
(close to b) of the potential 2 +— V(2)+§ (z — (b =+ x))%. By a simple computation,
we get:

br=b+ K+ o(K) .
a

@
V/I(b) +

Now, if & is small enough, we know that the Freidlin-Wentzell theory may be
applied to Diffusion X** and domain |c; +00[. So, we deduce that

: +.k
7']§+OO[(an) =inf{t>0: X;" <c}

satisfies a Kramers’type law. In particular, we have

lim P (exp {022 (HZ(c) - 5)} < rE L (ow) S exp [022 (HZ(c) + 5)]) ~0,

n n

for any 6 > 0. Here, HE(c) :=V(c) =V (b) + Z (c— b+ k)%
The main idea now is to compare the exit-time of X with the ones of X**. We
have
sup E {|Xt = b|2] < K2
OStSexp[%%(Hofé)]
Consequently, for any ¢ € [O;exp [% (Ho — 5)”, we have X, " < X, < X;7". As

a consequence, if we put 7(oy,) := inf {t>0: X; <c}, we have
Ty (on) < 7(on) < TJ(Un)~
However, a Kramers’type law is satisfied by 77 (0,,). So, for any ¢ > 0, we have

i P (o0 | 5 (170~ )| < o) <o | % (1200 +9)]) = 1.

n n

Consequently, by taking x sufficiently small, we obtain that for any § > 0, we have

lim P <exp {022 (Ho — 5)} < (o) < exp [022 (Ho + 5)]) ~1. (2.3)

n n
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By T.(0,), we denote the first time that X7 returns to ]¢; +00[. By proceeding
similarly, we have the following inequality:

lim P (Tc(an) < exp [;(HO + 5)]) ~0. (2.4)

n— 00 s 2

Indeed, the exit-cost for going from the left to the right is Wy(c) — Wy(a') >
Wy(c) — Wy(b). We recall that o’ is the global minimizer of Wj.
Inequalities (2.3) and (2.4) imply the following limit:

lim P [ X" >c] =0
e \ e[ ()|
In particular:
2
lim E || X" —b| | > (c—b)?>2k% > K.

nooe || e (o)
n

Last limit means that Ty (o,) < exp [G%(HO + %)} if n is large enough, which

is absurd according to (2.1).
We deduce that Hypothesis (2.1) was wrong. Consequently, we obtain the
upper-bound:

o2

exp { 2 (Ho + 5)] > To(o),

if o is small enough. This achieves the proof.
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