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ABSTRACT

Nonrigid registration of point sets is a common problem in many applications. Existing methods are highly sensitive to
outliers because of l

2
 norm. In this paper, a sparse nonrigid registration based on thin plate spline (SNR-TPS) for point

sets is proposed. The method introduces p-norms in the measurement of error residuals to reduce the penalty for large
outliers. A matching probability matrix is applied to construct the soft correspondence. Then TPS-based transformations
are achieved using a combination of deterministic annealing and alternating direction method of multipliers (ADMM).
The results on synthetic and real data show that the proposed SNR-TPS method outperforms the state-of-art methods
when outliers are present in point sets.
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1. INTRODUCTION

Nonrigid registration of point sets is a fundamental
task in many applications, such as motion tracking,
3D reconstruction, medical image analysis and shape
matching. The aim of nonrigid registration is to find
a spatial transformation that optimally maps one point
set onto the other. Since the transformation is
nonrigid and the correspondence is unknown,
achieving an accurate mapping is not a trivial work.
To deal with this problem, the energy function of
nonrigid registration is usually divided into two
terms: error residual term and regularization term.
The error residual term reflects the similarity between
the two sets. The regularization term controls the
transformation to avoid over-fitting. Both of two
terms can be expressed as a norm formulation.

Since decades, many methods have been
proposed. Based on the norm formulation, nonrigid
registration methods are divided into two categories.
One category used the l

2
 norm in the two terms.

Thin plate spline based robust point matching (TPS-
RPM) 1, 2 was a representative method. With the soft
correspondence and TPS-based transformations,
TPS-RPM introduced the well-known iterative closet
point (ICP) 3 method into nonrigid registration. The

outliers were controlled by a weighting function.
Some other researchers attempted to get the optimal
solution by pruning the outliers. A representative
pruning method was random sample consensus
(RANSAC)4. Because of the randomness of
sampling, RANSAC usually falls into local
minimum. Optimal RANSAC 5 integrated many
local RANSAC methods 6–8 to a unique reproducible
method to get the optimal solution. In contrast to
these methods, coherent point drift (CPD) 9, 10

method represented the nonrigid registration as a
mixture density estimation problem. Two point sets
were treated as a Gaussian mixture model (GMM)
centroid set and a sample point set from this GMM,
respectively. The outliers were controlled by a fixed
value of outliers ratio. To define the outliers ratio
automatically, several variants 11–13 were proposed.
The survey of nonrigid registrations 14 analyzed the
registration of 3D point sets from the view point of
data fitting. Although these methods are more or
less effect ive for some applicat ions,  the
optimization in all of them used a least-squares
formulation. This implies a basic assumption that
error residuals are normal, which is highly sensitive
to outliers.
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Instead of weighting or pruning outliers, the
sparsity of error residuals was introduced to handle
outliers. Many methods used l

1
 norm to model inliers

or outliers, such as nonrigid ICP with statistical shape
model (NICP-SSM) 15 and sparse deformable model

with 1l  norm regularization (SDM-l
1
)16. In these

methods, the shape model was an important part in
achieving accurate transformation. Recently, a sparse
nonrigid registration (SNR)17 was proposed. The
transformation was estimated based on the ‘1
regularization term when the deformable object is
piecewise smooth. Though the shape model was not
used in the SNR method, the accuracy of registration
was highly dependent on the initial correspondence.
Besides, SNR requires knowledge not only about the
location of points but also about the relationship
between the points to get accurate results.

Since p-norms ( � �0,1p� ) outperform 1l  norm

in inducing sparsity 18, they have been applied in rigid
registration. Sparse ICP (SICP) 19 and its variant
ESICP 20 were two representative methods. Though
SICP and ESICP effectively handled outliers in rigid
registration, they failed when directly applied to
nonrigid registration. They were usually used as an
initial registration method, then another nonrigid
registration method, e.g. TPS-RPM, was used to
achieve final nonrigid transformation. Using these
methods, sparsity cannot be effective for nonrigid
registration. In this paper, we propose a sparse
nonrigid registration method based on thin plate
spline (SNR-TPS). Sparsity is directly applied to
nonrigid registration. Our method introduces p-norms

( � �0,1p� ) in the error residual term to handle

outliers, uses alternately soft correspondence and
TPS to estimate the correspondence and
transformations, and optimizes energy function by a
combination of deterministic annealing
and alternating direction method of multipliers
(ADMM) 21.

The rest of the paper is organized as follows.
After presenting the principle of thin plate spline
based robust point matching (TPS-RPM) in Section
2, the proposed SNR-TPS method is described in
Section 3. The results on synthetic data and real data
from cranio-maxillofacial surgery planning are

presented in Section 4, followed by conclusion in
Section 5.

2. PRINCIPLE OF THIN PLATE SPLINE
BASED ROBUST POINT MATCHING

Given a data set � �1 2, , , Nx�X x x x�  and a model

set � �1 2, , , Ny�Y y y y� , the task is to estimate a

nonrigid transformation which effectively maps the
data set onto the model set. Due to the coupled
problem of unknown correspondence and
transformation, an iterative method is usually applied
for nonrigid registration.

TPS-RPM 1, 2 is a popular iterative method for
nonrigid registration of point sets. To deal with
outliers, soft correspondence is built by a matching
probability matrix M. Then TPS is applied to model
the nonrigid registration. In this framework, the
nonrigid transformation is divided into an affine
transformation d and a non-affine warping coefficient
matrix w of TPS. The associated energy function is
given by:
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The first term is error residual term. � �i� x  is the
kernel function of TPS, and

� � � � � �� �1 2, , , Nx� � �� � x x x� . The minimization

of this term aims to deform each ix  to its counterpart

jy . The second and third terms are used to ensure

� �0,1ijm � . T is the temperature parameter of
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deterministic annealing algorithm. The fourth term
is a regularization term to punish non-affine local
warping coefficient w. The fifth term is used to avoid

unphysical reflection transformation of d. � , 1� ,

and 2�  are regularization parameters.�  is usually set

to a value close to zero. The values of 1�  and 2�  are
linked to temperature T.

Though TPS-RPM somewhat controls outliers
by soft correspondence, its final transformations will
not be optimal when the error residual of an outlier
is much larger than others. Besides, error residuals
were still assumed to be a normal distribution when
using the l

2
 norm. However, this assumption will be

substantially violated if there are outliers.

3. SPARSE NONRIGID REGISTRATION
BASED ON THIN PLATE SPLINE

With respect to the existing TPS-RPM method, we
propose so-called SNR-TPS method that consists of

using p-norms ( � �0,1p� ) to measure error residuals.

The value of p controls the penalty of outliers. For a
small value of p, large outliers will not induce large
penalties (Fig. 1). This means that the optimization
cannot be deviated when reducing the large penalty
associated with an outlier. Figure 1 indicates that the
performance of alignment is gradually improved by
decreasing the value of p. The histograms
demonstrate the sparse character of our method. As
decreasing the value of p, more error residuals of the

Figure 1: Left: behaviors of p-norms used to measure error residuals in our method. Right: alignment of 3D face10 with
different values of p.

counterparts equal zero, and the non-zero
error residual is few. The sparsity of error residual
term ensures the performance of nonrigid
registration.

In contrast to TPS-RPM, p-norms are used in
the proposed SNR-TPS method to measure error
residuals.  Hence, the energy funct ion of
the proposed SNR-TPS method can be formulated
as:
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where the error residual term is expressed as a

function � � � �� �0,1
p

r r p� � �  and 
2

r � � .
This energy function can be solved iteratively by

a well-known two-step optimization:
Step 1. Estimation of soft correspondence:
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Step 2. Estimation of affine transformation d and
non-affine warping coefficient matrix w of TPS:
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However, the above two problems are non-
convex and non-smooth. To obtain a robust and
efficient solution, deterministic annealing will be
combined with ADMM 21 as explained later.

3.1. Estimation of soft correspondence

Since � � � �� �0,1
p

r r p� � �  is a non-decreasing

function when 
2

r � � ,
2

p
�  has the same minimum

point as 
2

� . Consequently, the optimization in Eq.

3 is equivalent to
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This optimization function is the same as that in
the TPS-RPM method. Hence, the soft corresponding

point of ix  can be attained as follows:
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3.2. Estimation of transformation

We introduce a new set of error residual variables

� �1 2, , , Nx�Z z z z�  to optimize Eq. 4:
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where � �i i i i i� �� � � �x d x w c z .

The above equation is an optimization problem
with one constraint. Augmented Lagrangian method
(ALM) is an effective method to solve this problem.
Hence, we define the associated ALM function of
Eq. 7 as
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where � �1 2, , , Nx�A a a a�  is a Lagrangian

multipliers set, and 0� �  is a penalty weight.
To minimize the above ALM function, ADMM21

was adopted in the proposed method. The
transformations are estimated in three steps:

Step 2.1. Estimation of error residual variable Z:
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Step 2.2. Estimation of TPS-based nonrigid
transformations:
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Step 2.3. Update of Lagrangian multiplier ia :

i i i��� �a a (11)

where i i i i �� � �e c z a  and

� �i i i i i� �� � � �h x d x w c a .

Since each element z
i
 of Z is independent in Step

2.1, it can be optimized independently. In other
words, the estimation of error residual variable Z
can be separated as:
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Then the individual element iz  can be solved

efficiently using the following shrinkage operator 22:
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where 
1p
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p
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�
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is a value linked to p. After two or three iterations, it

will converge by initializing 
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iteration.
Indeed, Eq. 13 can be seen as a classification

function with the threshold 
ih� . All points will be

separated as inliers or outliers based on their error

residuals. When 0p � , �  will always be one. That

is a binary classification: iz  is either 0 or itself. Eq.

10 in Step 2.2 is similar to that in TPS-RPM method.
The difference between them is only in the

computation of the corresponding point  ie .

Therefore, the same QR decomposition for TPS was
used in the proposed method.

3.3. Estimation of the value of p

p is a control parameter of outliers in the proposed

SNR-TPS method. When 0p � , the minimization
of error residuals is equivalent to minimizing the
number of non-zero elements in the variable Z .
Figure 1 shows that as p tends to 1, a strong penalty

will be applied to an outlier having 
2

0iz � . Since

the process of registration is from global to local, a
fixed value of p cannot express this procedure very
well.

With the deterministic annealing, a data set X  is
mapped onto the soft correspondence set

� �1 2, , , Nx�C c c c�  at each temperature. At the

beginning, points in the data set X are far from their
counterparts. p is set to one to get a large penalty for
an obvious outlier. Then the current p is decreased
based on the emerging error residuals err according
to:

� �
� � � �max min

mean err
p

err err
�

� (14)

where 
2

2terr � �C X , tX  designating the current

deformed set of X . � �mean err , � �max err

and � �min err  are the mean, maximum and minimum

value of error residuals err, respectively.
Eq. 14 means that when the distribution of error

residuals is uniform, p will become large. The value
of p gradually decreases with the increase of the
difference between error residuals. In other words,
the value of p will become smaller if more outliers
are detected in the process of registration. However,
the alignment of two point sets with outliers will
lead to over-fitting if p is directly computed using
Eq. 14. To remedy this, a learning rate is used to
update p:

� �1old new old

t

p p p p
�

� � � (15)

where newp  is defined by Eq. 14, oldp  is the old p at

the last iteration, and t�  is the learning rate.

The learning rate t�  is an empirical parameter

allowing to avoid over-learning. In the present

study, t�  is an increasing value and set to the current

iteration time t . At the initial iteration, p  updates
faster to get a rapid optimization. Then it updates
more slowly to avoid over-fitting. The complete
algorithm of the proposed SNR-TPS method is
summarized below.

Figure 2: Algorithm of SNR-TPS method
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4. EXPERIMENTAL RESULTS

The performance of the proposed SNR-TPS method
is evaluated by comparing it with some related
nonrigid registration methods (TPS-RPM and SNR).
Matching error is measured by Root Mean Square

Error (RMSE). It is defined as � � 2

2
1

1 N

i i
iN �

�� T x c ,

where ic  is the counterpart of ix , N is the number of

corresponding points and T is the transformation

matrix. When the ground-truth ig  is known, ic  is

replaced by ig .

Throughout the paper, unless otherwise specified,
an adaptive value of p was applied. To evaluate the
sparsity in the different optimization terms, SNR 17

is implemented with correspondence by k-d tree and
without  multi-resolution. The comparative
experiments were focused on two classes of outliers:
noisy and incomplete datasets, which are the most
challenging problems in nonrigid registration. Two
simple but yet demonstrative examples of 3D face
and 3D bunny 10 were used as the original datasets.

4.1. Results on noisy datasets

Random noise was proportionally added in the original
3D face and 3D bunny datasets.10 Noise ratios was
set from 10% to 100% for 3D face, and set to 10%,
20% and 30% for 3D bunny. Two situations were
considered: noisy data set and noisy model set.

Quantitative comparison and matching results are
shown in Figs. 3 and 4. Our method performs better
than the other methods for both noisy data set and
noisy model set whatever the noise ratio is. The
performance of our method is little affected by the
noise in the model set.

The results indicate that our method more easily
detects noise than the other methods. As we know,
the use of soft correspondence can reduce, but cannot
avoid the influence of noise. Therefore, TPS-RPM
does not align two faces or bunnies well in case of
noisy data or noisy model sets. TPS-RPM produces
the worst alignments though its RMSE is not the
worst. Due to the sparsity of the regularization term,
over-fitting occurs when using SNR method. In the
presence of noise, SNR transforms all points into
model points, no matter it is a noisy point or a data
point. For example, when noise is present in the

Figure 3: Performance comparison for noisy data set (top row) or noisy model set (bottom row). (a) RMSE curves; (b) to (e) The
alignment of 3D face with 40% noisy data set (top row) and noisy model set (bottom row). Red stars are the points of original data
set, and blue circles are the points of original model set. Green stars or circles are noise in data or model set, respectively. Ground
truth is that all of the red starts are in an unique blue circle, but all of the green points are not mapped onto any points.
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model set, 156 counterparts are wrong for 3D face
when using SNR method. However, our method is
able to easily find the noise and remove them with a
combination of sparse error residuals and soft
correspondence. Our method attains all right
counterparts and therefore aligns two point sets well.

4.2. Results on incomplete datasets

Synthetic datasets were constructed as follows: the
points of left face were proportionally deleted from
data or model set; the points on head and ears of
bunny were proportionally removed from data or
model set. Three incomplete ratios were chosen:
10%, 20%, 30%.

Figure 5 demonstrates that our method performs
better than the other methods on 3D face datasets.
Since the face is entirely smooth, SNR always over-
fits it with the sparsity of regularization. Both our
method and TPS-RPM get the right correspondence
when incomplete occurs in data set, but our method
aligns more accurately than TPS-RPM. When some

of model points are missing, the corresponding data
points should not have the matched model points.

But TPS-RPM cannot find that. As a result, TPS-
RPM transforms all data points onto the remained
model points, and finally leads to a wrong alignment.
With the sparsity error measurement, our method
classified the inliers and outliers. Hence, matching
results are closer to the ground truth when using our
method.

Figure 6 also indicates that our method gives
better registration results than the other methods for
3D bunny dataset. Since the head and two ears of
bunny are removed, they should not have
counterparts after registration. The results show that
the removed points become the counterparts when
using SNR. This is because the sparse regularization
in SNR is set for the point sets with piecewise
smooth, but the bunny is entirely smooth and thus
over-fitting occurs. TPSRPM and our method yield
similar results when the data set is incomplete, but
our method attains better results than TPS-RPM

Figure 4: Performance comparison for noisy data set (top row) or noisy model set (bottom row). (a) RMSE curves; (b) to (e)
The alignment of 3D bunny with 20% of noise ratio. Red stars are the points of original data set, and blue circles are the points
of original model set. Green stars or circles are noise in data or model set, respectively. Ground truth is that all of the red starts
are in an unique blue circle, but all of the green points are not mapped onto any points.
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Figure 5: Performance comparison when data set (top row) or model set (bottom row) is incomplete. (a) RMSE curves; (b) to
(e) The alignment of 3D face with 10% of incomplete ratio. The points in data or model set are labeled red and blue, respectively.
The counterparts of removed points are labeled green. Ground truth is that all of the red and blue points are matched with each
other, but all of the green points are not mapped onto any points.

Figure 6: Performance comparison when data set (top row) or model set (bottom row) is incomplete. (a) RMSE curves; (b) to
(e) The alignment of 3D bunny with 10% of incomplete ratio. The points in data or model set are labeled red and blue,
respectively. The counterparts of removed points are labeled green. Ground truth is that all of the red and blue points are
matched with each other, but all of the green points are not mapped onto any points.
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when the model set is incomplete. The optimization
is better in our method than in TPS-RPM, because
the penalties of p-norms are smaller than that of the
l
2
 norm. As a result, the right counterparts were more

easily detected using our method than the other
methods.

4.3. Adaptive selecting of “p” values

The parameter p controls the performance of our
method with respect to outliers. Its value is iteratively
changed using Eqs. 14 and 15.

Figure 7 indicates that an adaptive p is more
suitable than a fixed p when there are outliers. The
value of p is fixed to 0.4, which is an empirical value

used in Sparse ICP 19. The value of p in p-norms is
linked to the error residuals of outliers, but they
cannot be known in advance. A fixed value of p can
only handle the penalty associated with this value.
The influence of outliers is gradually increased with
a large value of p. On the other hand, the alignment
will run much more slowly when using a much
smaller value of p. In this paper, an adaptive value
of p is applied. This value is dependent on error
residuals. If a point has a larger error residual than
other points, it is treated as an outlier and the value
of p is decreased. Thus the penalty of this point is
reduced and the alignment will not be skew. The
intuitional results can be seen in Fig. 7.

Figure 7: Performance comparison of a fixed p (p = 0.4) and an adaptive p. The top row shows the RMSE curves of different
outliers. The bottom row gives an example when noise is present in data set and noise ratio is 40%. Red stars are the points of
original data set. Blue circles are the points of original model set. Green stars are the noise in data set.

4.4. Convergence analysis

Convergence is an important  element in the
registration methods addressed in the present paper.
For this reason, running time of different methods is
first analyzed.

The above experiments were performed 10 times
for all methods. Table 1 indicates that our method
needs more time than TPS-RPM, but less time than
SNR. The running time of our method is not

dependent on the value of p. More points there are,
more time all methods need.

Although with soft correspondence, TPS-RPM
avoids the estimation of initial transformations and
somewhat reduces the influence of outliers. But TPS-
RPM cannot prevent local minimum (Fig. 8), even
if it is in a deterministic annealing framework. That
is because TPS-RPM cannot distinguish inliers and

outliers. Soft corresponding point ic will be wrong
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for the point ix  when the outliers are close to ix . Then

the optimization will be skew to punish the large error
residual of the outliers.

In contrast to TPS-RPM, the error residual
between c

i
 and x

i
 is sparse in our method. With the

shrinkage operator 22, our method can detect whether
the soft corresponding point c

i
 i is an outlier or inlier.

If it is an outlier, it will be assigned a larger vector e
i
.

Otherwise, it will remain unchanged. Therefore the
new variable e

i
 is closer to its counterpart xi. Hence,

our method will not fall into local minimum and
produce more accurate results (Fig. 8).

Figure 9 shows that our method can find more
accurate correspondences than the other methods.
The number of correct correspondences found by our

Table 1: Comparison of computation time among the three methods (Unit: second)

Dataset Outliers Methods

TPS-RPM SNR Fixed p Adaptive p

Noisy data set 14.4 1088.9 231.9 232.4

3D face Noisy model set 8.4 1137.7 79.5 81.9

Incomplete data set 3.1 230.7 35.3 33.0

Incomplete model set 5.3 707.7 82.6 86.4

Noisy data set 47.6 668.4 654.9 649.5

3D bunny Noisy model set 37.8 1137.7 420.7 418.4

Incomplete data set 22.7 261.3 258.8 256.9

Incomplete model set 31.1 325.8 420.8 417.9

Figure 8: Convergence comparison of TPS-RPM (middle row) and our method (bottom row) when noise is in data set and
noise ratio is 30%. Red stars are points in data set. Blue circles are points in model set.
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method is much more than the other methods
whether there is noisy point set or incomplete point
set. That is because our method more easily
distinguished the inliers and outliers with the sparse
error residuals. So the alignment using our method
is better than the other methods. Besides, more

accurate counterparts are obtained when using
adaptive p in comparison with the fixed p in most
cases. Even if the number of counterparts is the
same, smaller distance between the counterparts can
be achieved when using adaptive p than when using
fixed p in our method (Fig. 7).

Figure 9: Correspondence comparison of three methods under four situations on 3D face (top row) and 3D bunny (bottom
row).

4.5 Results on real datasets

In this section, the task is to automatically find the
location of physiological points. The real data was
from Shanghai 9th Hospital. The zygoma of the
patient were constricted after operation. The ground
truth of 13 physiological po ints were given
empirically by a clinical doctor.

To evaluate the performance of our method, the
pre-operation physiological points were mapped onto
the postoperation face by the three methods. The
RMSE values and matching results are shown in Fig.
10. TPS-RPM failed for all physiological points. The
RMSEs of our method and SNR are 207 and 209,
respectively. Due to the constriction of zygoma, the

two temple points are the main failed points for our
method and SNR. When removing them, the RMSEs
of our method and SNR are decreased respectively
to 55 and 57. With the use of ADMM, our method
needs more time (2.9504s) than the other two
methods (2.3627s for TPS-RPM and 0.1922 for
SNR), but produces the results closer to the ground
truth.

5. CONCLUSION

A sparse nonrigid registration based on TPS (SNR-
TPS) is proposed for point sets. The method consists
of introducing p-norms in TPS-RPM to reduce the
penalty for large outliers, using a matching
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probability matrix to achieve a soft correspondence,
and combining deterministic annealing and
Alternating Direction Method of Multipliers
(ADMM) to optimize TPS-based nonrigid
transformations. The results show that the proposed
method performs better than

TPS-RPM and SNR when outliers are present in
the point sets.

In the future, we will improve the efficiency of
the proposed method (SNR-TPS) using a
combination of approximate distance queries,
subsampling and parallel execution. On the other
hand, how to effectively use sparsity on both of error
residuals term and regularization term is an
interesting future work.

Figure 10: Performance comparisons with respect to the physiological points. (a) quantitative comparison; (b) matching results.
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