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ABSTRACT: In the year 1987, D. Andrijevic et al. have introduced and studied the
concepts of �-sets (we call them as �-open sets). Since then many authors have been
utilized these sets to define various subsets, separation axioms and functions. In this
paper, we introduce and study two new classes of functions called �-irresolute functions
and almost-irresolute functions using �-open sets inbetween topological spaces.
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1. INTRODUCTION

In 1982, Mashhour et al. [12] introduced the notion of preopen sets, also called as
locally dense sets by Corson and Michael [5]. The class of preopen sets properly contains
the class of open sets. As the intersection of two preopen sets may fail to be preopen,
the class of preopen sets does not always form a topology. In a submaximal space i.e. a
topological space X in which every dense subset is open, collection of all preopen sets
form a topology. Indeed, many notions in Topology can be defined in terms of preopen
sets (see [4], [7], [8], [13] and [18]. Many researchers also used the notion of preopen
sets in fuzzy topological spaces. Professor El-Naschie has recently shown in [8] the
importance of the notion of fuzzy topology which may be relevent to quantam particle
physics in connection with string theory and �� theory.

Andrijevic [3] desined a new class of open sets called �-open sets by utilizing preopen
sets and proved that the family �� of �-open sets in a topological space contains the
family �� of �-open sets. Recently, Abd El-Monsef et al. [1] have applied preopen sets
in connection with the topological applications of rough set measures in information
systems. In 1972, Crossley and Hildebrand [6] introduced the concept of irresolute
functions in topological spaces. The class of functions was defined by Maheshwari and
Thakur [14] in 1980 and in 2000, Yusuf [20] defined and investigated the almost
�-irresolute functions. In this paper, we introduce the �-irresolute functions and almost
�-irresolute functions and we show that a �-irresolute function is �-irresolute only when
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the family of �-open sets is a subset of the family of all semi open sets [11]. Moreover,
we also study these functions comparing with other type of already known functions
like, continuous functions, �-irresolute, pre-irresolute and almost �-irresolute. It turns
out that �-irresoluteness implies almost -irresoluteness.

2. PRELIMINARIES

Throughout this paper, X and Y denote topological spaces (X, �) and (Y, �) respectively.
The interior and closure of a subset A of X are denoted by int(A) and cl(A) respectively.

Definition 2.1: A subset A of a topological space X is said to be a

(i) �-open set [17] if A ��(int(cl(int(A))),

(ii). semi-open set [11] if A � (cl(int(A)),

(iii). pre-open set [12] if A ��(int(cl(A)),

(iv). �-open set [1] if A ��(cl(int(cl(A))).

In a topological space (X, �), the �-open sets were defined by Abd El-Monsef et al.
[1] and Andrijevic [2] called the �-open sets as semi-pre open sets. Njastad [17] proved
that the family of �-open sets is a topology. The family of �-open sets, semi-open sets,
pre-open sets and �-open sets in X is denoted by �O(X), SO(X), PO(X) and �O(X)
respectively.

Theorem 2.2: If X = {�X� :���� I} is the product space, then for any positive

integer n, 1 j

n
j jA A X� ��� �� � � ��  is pre-open in X if and only if 

j
A�  is pre-open in

j
X �  for each j = 1, 2, 3, ..., n [7].

Definition 2.3: A subset A of a topological space X is said to be a �-open set [3] if
A�S � PO(X) for every S � PO(X).

We denote the family of �-open sets in X by �O(X). The complement of a �-open
set in X is called a �-closed set in X. Andrijevic [3] proved that �O(X) � PO(X)�(X)
[10]. Andrijevic [3] proved that the family of �-open sets is a topology on X such that
�O(X)��O(X). For a topological space X, �O(X) = �O(X) if and only if �O(X) �
SO(X) [3].

For any subset A of X, �cl(A) [3] and �int(A) [3] stand for the closure of A and the
interior of A in the topological space (X, �O(X)). Hence for any subset A of X, �cl(A) is
the intersection of all the �-closed sets containing A and int(A) is the union of all the
�-open sets contained in A. Therefore, a subset A of X is �-closed if and only if �cl(A) =
A and �-open if and only if �int(A) = A.
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Definition 2.4: A function f : X � Y is said to be

(i) �-irresolute [14] if the inverse image of each �-open set of Y is a �-open set in X,

(ii) �-irresolute [15] if the inverse image of each �-open set of Y is a �-open set in X.

(iii) pre-irresolute [19] if the inverse image of each pre-open set of Y is a pre-open
set in X.

Definition 2.5: A function f : X � Y is said to be almost �-irresolute [20] if the
inverse image of each �-open set in Y is a �-open set in X.

Definition 2.6: A topological space X is said to be �-Hausdorff [16] if for any pair
of distinct points x, y of X there exist disjoint �-open sets U and V in X such that x � U
and y � V.

3. IRRESOLUTE FUNCTIONS

In this section we introduce the �-irresolute function and characterize it.

Definition 3.1: A function f : X � Y is said to be �-irresolute if the inverse image of
each �-open set in Y is a �-open set in X.

Remark 3.2: Continuous functions and �-irresolute functions are independent to
each other as shown in the following examples.

Example 3.3: Let X = {a, b, c, d}, ��= {Ø, {a}, {b, c}, {a, b, c}, X} and Y = {p, q, r},
��= {Ø, {p}, Y}. Define a function f : X � Y by f(a) = p, f(b) = q, f(c) = f(d) = r. Then f
is continuous but not �-irresolute since f

 
–1({p, r}) = {a, c, d} � �O(X).

Example 3.4: Let X = {a, b, c, d}, ��= {Ø, {a}, X} and Y = {p, q, r}, ��= {Ø, {p}, Y}.
Define a function f : X � Y by f(a) = f(b) = p, f(c) = q and f(d) = r. Then f is �-irresolute
but not continuous since f

 
–1({p}) = {a, b}����.

The following examples illustrate the independence of �-irresoluteness and
�-irresoluteness.

Example 3.5: Let X = {a, b, c, d}, ��= {Ø, {a}, {b, c}, {a, b, c}, X} and Y = {p, q, r},
��= {Ø, {q, r}, X}. Define a function f : X � Y by f(a) = q, f(b) = p = f(d) and f(c) = r.
Then f is �-irresolute but not �-irresolute since f–1({q, r}) = {a, c}���O(X).

Example 3.6: Let X = {a, b, c}, ��= {Ø, {a}, X} and Y = {p, q, r}, � = {Ø, {q, r}, Y}.
Define a function f : X � Y by f(a) = q, f(b) = r and f(c) = p. Then f is �-irresolute. Since
f
 
–1({r}) = {b}���O(X), f is not �-irresolute.

Theorem 3.7:

(i) A �-irresolute function f : X � Y is �-irresolute if �O(X) ��SO(X).

(ii) An �-irresolute function f : X � Y is �-irresolute if �O(Y) ��SO(Y).
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Proof:

(i) Let f : X � Y be �-irresolute and �O(X) ��SO(X). Let B ��Y be a �-open set in
Y. Then B is a �-open set in Y and by our assumption, f

 
–1(B) is a �-open set in X,

and f
 
–1(B) is a �-open set in X. Hence f is �-irresolute.

(ii) Let f : X � Y be �-irresolute and �O(Y) ��SO(Y). Let B ��Y be a �-open set in
Y. Then B is a �-open set in X and it follows that f –1(B) is a �-open set in X.
Hence f is �-irresolute.

Remark 3.8: By Example 3.5 and Example 3.6, it is observed that �-irresoluteness
and �-irresoluteness are independent. However, it is not true if f : X � Y is a function
such that in both the spaces X and Y the family of �-open sets is contained in the family
of semi-open sets.

The following examples illustrate the independence of pre-irresoluteness and
�-irresoluteness.

Example 3.9: Let X = {a, b, c}, ��= Ø, {a}, {b}, {a, b}, X} and Y = {p, q, r}, ��= {Ø,
{q, r}, Y}. Define a function f : X � Y by f(a) = q, f(b) = r and f(c) = p. Then f is
�-irresolute. Since f

 
–1({p, q}) = {a, c} ��PO(X), f is not pre-irresolute.

Example 3.10: Let X = {a, b, c}, ��= {Ø, {a}, X} and Y = {p, q, r}, � = {Ø, {q, r}, Y}.
Define a function f : Y � X by f(p) = c, f(r) = b and f(q) = a. Then f is pre-irresolute.
Since f –1({a, c}) = {p, q}���O(X), f is not �-irresolute.

Theorem 3.11: If f : X � Y and g : Y � Z are �-irresolute functions then g � f is
�-irresolute.

Proof: Let V ��Z be a �-open set in Z. Then (g ��f)–1(V) = f 
–1(g–1(V)). Since f and g

are �-irresolute, it follows that f–1(g–1(V)) is a �-open set in X.

Theorem 3.12: Let f : X � Y be a function. Then the following are equivalent.

(i) f is �-irresolute.

(ii) For each x � X and any �-open set V of Y containing f(x), there exists U �
�O(X) such that x � U and f(U) ��V.

(iii) Inverse image of every �-closed set is �-closed in X.

Proof:

(i) � (ii): Let V be a �-open set in Y containing f(x). Since f is �-irresolute, f –1(V) is
a �-open set in X and x � f –1(V). Set U = f –1(V). Then x � U and f(U) ��V.

(ii) � (i): Let V be a �-open set in Y and x � f
 
–1(V). Then f(x) � V. By (ii), there

exists a �-open set U
x
 in X such that x � U

x
 and f(U

x
) ��(V). Therefore, x � U

x
 ��f

 
–1(V).



On �-irresolute Functions 129

This implies that f
 
–1(V) is a union of �-open sets in X. Hence f

 
–1(V) is a �-open set in X,

f is �-irresolute.

(iii) � (i): Let V ��Y be a �-open set in Y. Then Y \V is a �-closed set in Y and f
 
–

1(Y\V)  = X\f
 
–1(V) is �-closed in X by (iii) and so f–1(V) is a �-open set in X. Hence f is

�-irresolute.

(i) � (iii): It is followed in a similar manner.

Lemma 3.13: If A ���O(X) and B ���O(Y) then, A × B ���O(X × Y).

Proof: A ���O(X) implies that A � PO(X) and A�U � PO(X) for all U � PO(X). B
���O(Y) implies that B � PO(Y) and B�V � PO(Y) for all V � PO(Y). A � PO(X) and
B � PO(Y) implies that A × B � PO(X × Y) by Theorem 2.2 and U × V � PO(X × Y)
whenever, U � PO(X) and V � PO(Y). Then (A × B)�(U × V) = (A�U) × (B�V) �
PO(X × Y). Hence A × B ���O(X × Y).

Let f : X � Y be a function. The subset {(x, f(x)) : x � X} of the product space X × Y
is called the graph of f and is denoted by G( f ).

Theorem 3.14: If f : X � Y is �-irresolute and Y is �-Hausdorff then G(
 
f ) is a

�-closed set of X × Y.

Proof: Let (x, y) � X × Y\G( f ). Then y � f(x). Since Y is �-Hausdorff there exist
disjoint �-open sets U, V of Y such that f(x) � U and y � V. By (ii) of Theorem 3.12,
there exists a �-open set W in X such that x � W and f(W)���U. Hence we get (x, y) �
W × V ��X × Y \G( f ). By Lemma 3.13, W × V ���O(X × Y). Thus X × Y \G( f ) is a
union of �-open sets of X × Y, and so a �-open set in X × Y. Hence G( f ) is �-closed in
X × Y.

Theorem 3.15: If f and g are two �-irresolute functions from a space X into a
�-Hausdorff space Y then the set A ={x/f(x) = g(x)} is a �-closed set of X.

Proof: Let y � X\A. Then f(y) � g(y). Since Y is �-Hausdorff, there exist disjoint
�-open sets U and V of Y such that f(y) � U and g(y) � V. Then f –1(U) and f –1(V) are
�-open sets in X. Set B = f

 
–1(U)\g–1(V). It is clear that B ���O(X) and y � B and A�B =

Ø. Therefore, y � B � X\A which shows that X\A is a union of �-open sets of X. Hence
A is �-closed in X.

Lemma 3.16: Let A be a subset of X. Then x ���cl(A) if and only if for any �-open
set U containing x, A � U � Ø.

Proof:

Necessity: Let x ���cl(A) and let U be a �-open set containging x such that U�A =
Ø. But X\U is a �-closed set containing A and hence �cl(A) X\U. Since x � X\U, we get
x ���cl(A), a contradiction.
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Suciency: Suppose that for every �-open set of X containing x meets A. If x ���cl(A)
then there exists a �-closed set F of X such that A ��F and x � F. Therefore, x � X\F and
X\F is a �-closed set such that X\F\A = Ø, a contradiction.

Theorem 3.17: If f is �-irresolute function of a �-Hausdorff space X into itself then
the set A = {x/f(x) = x} is �-closed.

Proof: Let a ���cl(A). If a � A then f(a) � a. Since X is �-Hausdorff, there exist
disjoint �-open sets U, V such that f(a) � U and a � V. The function f is �-irresolute, and
so f

 
–1(U) is a �-open set containing a. By the Lemma 3.16, f

 
–1(U)�V�A � Ø which is a

contradiction. Therefore, a � A and so A = �cl(A) and A is �-closed.

4. ALMOST -IRRESOLUTE FUNCTIONS

Definition 4.1: A function f : X � Y is said to be almost �-irresolute if f –1(V) is �-open
in X for every �-open set of Y.

Theorem 4.2: Every �-irresolute function is almost �-irresolute.

Proof: Let V ��Y be a �-open set. Then f –1(V) is a �-open set in X and is a �-open set
in X since �O(X) ���O(X).

Example 4.3: The statement in Theorem 4.2 is not reversible.

Let X = {a, b, c}, ��= {Ø, {b}, {c}, {b, c}, X} and Y = {p, q}, ��= {Ø, Y}. Define a
function f : X � Y by f(a) = q = f(c) and f(b) = p. Then f is almost �-irresolute but not
�-irresolute since f –1({q}) = {a, c}���O(X).

Theorem 4.4: Every �-irresolute function is almost �-irresolute but the converse is
not true.

Proof: Let V ��Y be a �-open set and so a �-open open set. Since f is �-irresolute,
f –1(V) is a �-open set in X and a �-open set in X. Hence f is almost �-irresolute.

Example 4.5: Let X = {a, b, c}, ��= {Ø, {a, b}, X} and Y = {a, b, c}, � = {Ø, {a}, Y}.
Define a function f : X � Y by f(a) = a, f(b) = b and f(c) = c. Then f is almost �-irresolute
but not �-irresolute since f –1({a, c})={a, c}����O(X).

Theorem 4.6: Every almost �-irresolute function is almost �-irresolute.

Proof: Follows from the fact that every �-open set is a �-open set.

The next example shows that an almost �-irresolute function is not almost
�-irresolute.

Example 4.7: In Example 3.5, define a function f : X � Y by f(a) = q, f(b) = p = f(c)
and f(d) = r. Then f is almost �-irresolute but not almost �-irresolute since f –1({r}) =
{a, d} ���O(X).
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Theorem 4.8: The following are equivalent for a function f : X � Y.

(i) f is almost �-irresolute.

(ii) f : (X, �) � (Y , �O(Y)) is �-continuous.

(iii) For each x � X and each �-open set V of Y containing f(x), there exists a �-open
set U of X containing x such that f(U) � V.

(iv) For every �-open set V of Y , f –1(V) ��cl(int(f –1(V))).

(v) For every �-closed set F, of Y f –1(F) is �-closed in X.

(vi) For every subset B of Y, int(cl(f–1(B))) �� f–1(�cl(B).

(vii)For every subset A of X, f(int(cl(A))) ���cl( f(A)).

Proof:

(i) � (ii): Let x � X and V be any �-open set of Y containing f(x). By (i), f –1(V) is a
�-open set in X and it contains x. Hence f : (X, �) � (Y, �O(Y)) is �-continuous.

(ii) � (iii): Let x � X and let V be any �-open set of Y containing f(x). Let U = f –1(V).
Then by (ii), U is a �-open set in X containing x and f(U) ��V.

(iii) � (iv): Let V be any �-open set of Y and x � f –1(V). By (iii), there exists a
�-open set U of X containing x such that f(U) ��V. We have x � U ��(cl(int(cl(U))) �
(cl(int(cl( f –1(V)))) and hence f –1(V) � cl(int(cl( f –1(V)))).

(iv) � (v): Let F be any �-closed set of Y. Then V = Y\F is a �-open set in Y. By (iv),
f –1(V) ��cl(int(cl( f –1(V)))) and hence f –1(F) = X\f –1(Y \F) = X\f –1(V) is �-closed in X.

(v) � (vi): Let B be any subset of Y. Since �cl(B) is �-closed in Y, f –1(cl(B)) is
�-closed in X and hence int(cl(int((�cl(B))))���f –1(�cl(B)). Therefore, int(cl(int(f –1(B))))
��f –1(cl(B)).

(vi) � (vii): Let A be any subset of X. By (vi), int(cl(int(A))) ��int(cl(int(f–1( f(A)))))
��f–1(�cl( f(A))) and hence f(int(cl(int(A)))) ���cl( f(A)).

(vii) � (i): Let V be any �-open set in Y. Then f–1(Y\V ) = X \ f –1(V) is a subset of X
and so by (vii), f(int(cl(int(f –1(Y\V )))) ��(�cl( f(f –1(Y\V))) ���(cl(Y\V ) = Y \�int(V) = Y\V.
Hence X\cl(int(cl(f –1(V)))) = int(cl(int(X\f –1(V))) = int(cl(int( f –1(Y \V )))) � f –1

( f(int(cl(int(f –1(Y\V ))))) ��f –1(Y\V) = X\ f –1(V). Therefore, f –1(V) � cl(int(cl( f –1(V))))
which shows that f –1(V) is a �-set in X. Hence f is �-irresolute.

Theorem 4.9: A function f : X � Y is almost �-irresolute if the graph function g : X
� X × Y defined by g(x) = (x, f(x)) for each x � X, is almost �-irresolute.

Proof: Let x � X and V be any �-open set of Y containing f(x). Then by Lemma 3.13,
X × V is a �-open set of X × Y containing g(x). Since g is almost �-irresolute, there exists
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�-open set U of X containing x such that g(U) X × V. Then g(x) = (x, f(x)) � X × V and
hence f(x) � V implies that f(U) � V. Thus the function f is almost �-irresolute.

Theorem 4.10: Let f : X � Y and g : Y � Z be functions. Then the composition g ��f :
X � Z is almost �-irresolute if f and g satisfy one of the following conditions.

(i) f is almost �-irresolute and g is �-irresolute.

(ii) f is �-irresolute and g is almost �-irresolute.

Proof: (i) Let V be a �-open set in Z. Since g is �-irresolute g–1(V) is �-open in Y and
f –1(g–1(V)) = (g � f)–1(V) is �-open in X since f is almost �-irresolute.

(ii) Let V be a �-open set in Z. Since g is almost �-irresolute g–1(V) is �-open in Y
and f–1(g–1(V)) = (g ��f )–1(V) is �-open in X since f is �-irresolute.
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