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Near Optimal Trajectory Generation of 
an Ascent Phase Launch Vehicle with 
Minimum Control Effort
Dileep M V*, and Dr. Surekha Kamath

Abstract: The offline trajectory optimization is carried out for a single stage of a multi stage launch vehicle. The 
problem is solved using classical steepest descent method by considering the control parameter to be the angle of 
attack. The behavior of the system is studied, with and without minimum control including constraints. The process 
has been carried out, starting from mathematical formulation to the offline trajectory generation. The formulation 
entails nonlinear 2- dimensional launch vehicle flight dynamics with mixed boundary conditions and multiple 
constraints. The objective is to reduce the terminal error. The problem is stated as a fixed time boundary problem, 
since the burn duration of the liquid propellant engine is fixed. Numerical results are analyzed with effectiveness of 
the minimum control problem, and the optimal flight procedure and trajectory were obtained.
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1. INTRODUCTION 
Designing an ascent phase trajectory of a launch vehicle is a challenging task in space mission problems. 
To develop numerical algorithms for solving these types of problems is difficult. But in recent decades 
the researchers developed many numerical methods to solve these problems. Many of this work will 
concentrate to minimize the launch vehicle mass or operating cost [1]. To ensure this the selection 
of different propellants and engines in different stages are very important. For formulating staging 
optimization problem, ideal velocity consideration is important. But in ideal condition the velocity is not 
achievable due to the environmental force disturbances and there is no way to get the exact values of the 
velocity reduction occurs in the stage. To reduce these effects the offline trajectory optimization is carried 
out with separate stages.

Normal launch vehicle trajectory generation process includes two or more different phases to get 
the effectiveness. The primary phase is open loop guidance for most of the launch vehicle to cover 
the atmospheric region. Most of the researches are concentrating on this stage to avoid costly launch 
delay. From the second stage onwards it will be a closed loop control guidance [2]. The final stage is 
the most crucial stage because the vehicle is approaching the orbit and should satisfies the final orbital 
conditions more precisely. Most of the time the final injection accuracy decides the success or failure of 
the mission[3]. 

Numerical integration of differential equations and optimization are the two main parts of finding 
solutions of optimal control problems[4,5]. Betts [6] took a detailed survey on these methods and tried to 
highlight the merits and demerits of each methods. Mainly the numerical methods are divided in to two, 

Manipal institute of technology, Manipal University, Manipal 576104, India
* e-mail: dileeppsla@gmail.com



1218

direct and indirect methods. Indirect methods are widely used in early stages because of its high accuracy. 
But the trend got changed to direct method due to increasing size in higher dimensional problems in 
indirect method. The size gets doubled in indirect method by the addition of co-state variables.

Trajectory optimization is done for a hypersonic multistage launch vehicle to minimize the terminal 
error with some control as well as state boundary. The problem is solved with and without minimum 
control effort using steepest descent method [7]. This is one the standard methods to solve optimization 
problem based on Gradient methods. The cost function is developed in such a way that will minimize the 
terminal error as well as the control effort. The cost function has two parts, first one corresponds to the 
terminal penalty and the second one is for control minimization. In the existing literatures, the trajectory 
optimization problem is solved by incorporating multiple constraints [8][9][10].

2. MATHEMATICAL MODELING

2.1. Rocket equation of motion
Trajectory optimization of multistage launch vehicle is the one of the complicated optimal control 
problems. It is formulated by combining several nonlinear equations and various models such as 
aerodynamic and propulsion model with some path constraints [11,12]. Point-mass equations of motion is 
considered which represents the dynamic behavior of the launch vehicle. Inorder to simplify the system 
non-rotating spherical earth approximation is considered. The governing equations are given below:
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Where r ,γ  and v  represents the altitude from earth center, the flightpath angle and velocity 
respectively.  α ,T and m , is angle of attack, thrust and mass respectively,  g is the gravitational of earth,  
x  is the horizontal range. The lift and drag is given by,
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To include the variation of the earth’s gravity with altitude, it is represented as;
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Where  0g the gravity of earth is at sea level and er  is earth radius.

The propulsion system used is liquid propellant system which produces constant thrust throughout the 
flight. The thrust produced by the thrusters can be calculated by, 

 T mve=   
(7)
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ev  is the exhaust velocity and m is the mass flow rate.

A medium lift launch vehicle is considered. Two types of trajectory optimization is investigated: 
1) trajectory optimization to minimize the terminal error, 2) Trajectory optimization using minimum 
control effort with and without control constraints. The comparison of the two approaches is carried out 
numerically. 

The problem considered in this paper is to estimate the optimum angle of attack to transfer the launch 
vehicle from an initial condition to the terminal conditions with minimum terminal error. The terminal 
error [12] is minimized by considering the path constraints [13] throughout the trajectory. Most of the 
trajectory optimization problem is having high accuracy in some of the variables [14]. This problem can 
be formulated as a fixed time two point boundary value problem. The objective is to generate an angle 

of attack which satisfies the following. 1) At final time ft , the terminal condition has to be achieved as 
accurately as possible. The terminal condition include final state variables. 2) The system should demand 
minimum guidance command, which can be ensured by formulating a minimum control problem. The 
structural load on the vehicle should be minimum, which can be obtained by ensuring minimum control 
variation in high dynamic pressure region.

To ensure the above objective the following objective function is selected. It has two parts; the first 
part is for terminal penalty. Terminal conditions can be met by proper tuning the weighting factor for the 
corresponding terminal term or can select priori articulation of preferences [15] the second part is to ensure 
minimum control effort. Selection of the weighting factor,  Xs  depends upon the control minimization. In 
this paper the selection of R , which is the weighting factor for the control variable is adaptively selected 
to improve the minimum control nature of the problem.
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The objective function X represents the state variables and u represents the control variable. fX  
and ftX represents the desired and actual terminal state variables respectively. The main state variable 
constraints considered in this paper [16,17] is given below.

 V V Vmin max≤ ≤  
(9)

 γ γ γmin max≤ ≤  (10)

 m mc= −  (11)

Where, minV  and maxV  are the velocity boundaries, minγ and maxγ are the flightpath angle boundaries, 

cm   is propellant consumption in unit time.

3. ALGORITHM DEVELOPMENT
The trajectory optimization problem is solved by the classical steepest descent method. The optimal control 

problem can be formulated as follows [18]: consider 
n

RtX ∈)(  and 
m

RtU ∈)( , the state variable and the 
control variable respectively in order the following objective functions.
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Subjected to the state differential equations constraints; 

The initial conditions constraints; 0]),([ 00 =ttXϕ

And the unified form of the equality and inequality path constraints; 0)),(),(( 0 ≤ttUtXC

The terminal time constraints; ϕ[ ( )]x t f = 0  

Thus the Hamiltonian is given by,

  0)( =++= CfLH T µλ   (13)

Necessary and sufficient conditions of optimality is given by,
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4. STEEPEST DESCENT METHOD
The problem is solved using Steepest descent method [12] which is a gradient method. Several steps are 
involved in this process [4] and it is summarized below.

1) Guess the initial steering control  )(
0

tα where  fttt ≤≤0 using 

2) The system states is calculated by integrating the dynamic equations from  0t to ft . For this the 
initial control variable is used.

3) Find the values of co-state vectors from ft to 0t  from initial values of co-state variables. Initial 

values for co-state variable,  )( ftλ  can be find out using terminal boundary conditions.

4) Calculate the gradient, α∂
∂H

from 0t  to tt f ∆−

5) Control parameter can be updated using 
α

ταα
∂
∂

−=+ Htt kk )()()1( . Where, )1,0(∈τ  is the learning 
rate and k is the iteration number.

6) Step (2) to step (4) will repeat till the objectives are achieved within a specified tolerance level. 

All integration methods can be done by Euler’s method. To update control variable the weighting 
factor τ  is adaptively changed with each iteration. This also improves the performance of the problem. 
Since this an indirect method it needs an initial guess for control variable to start the optimization process. 
In order to find the feasible steering angle profile, acceleration of the vehicle is assumed to be a linearly 
increasing quantity. 

5. RESULT AND DISCUSSIONS
In this section, the Matlab simulation results are explained. Optimization is done for two cases. The first 
one is optimization of the trajectory with and without minimum control constraint. The second is by 
considering minimum control and control constraint.
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The launch vehicle parameter are given. Initial mass of the launch vehicle is 5200 kg. Total time 
of flight is 510 seconds. Since a constant thrust vehicle is considered, a constant propellant flow rate is 
achieved and is 4.881, which can produce a constant thrust of 14599 N. The upper and lower limits of 
control variables are given by, smV /5800min = , smV /7700max = , deg6min −=γ , deg6max =γ . The boundary 
conditions of the state variables are given in table 1.

Table 1

State of the vehicle during ascent phase

Initial conditions Terminal conditions
Parameters Value Parameters Value

Altitude 6805.8545 km Altitude 6862.4157 m
Velocity 5890.1127 m/s velocity 7623.5321 m/s
Flightpath angle 5.2229 0 Flightpath angle 00

5.1. Solving problem without minimum control 
In this section, the simulation results obtained is explained. The trajectory optimization problem is solved 
by using steepest descent method with and without minimum control effort. Some control boundaries are 
also considered in this problem and analyzed the effects on the behavior of the system. The structural load 
is maintained within limits by forcing angle of attack to a maximum allowable value at that instant. In this 
no control constraints are imposed. So the angle of attack varies over a wide range. So the angle of attack 
varies over a wide range. The launch vehicle first reaches an altitude more than the desired value and then 
achieves the target altitude by changing the angle of attack.

5.2. Solving problem with minimum control
In this section the problem is solved by considering minimum control effort. The control parameter should 
vary at a minimum rate. To ensure the minimum control a new function other than terminal penalty function 
is introduced. The below results shows the comparison between trajectory optimization problem solved 
with and without minimum control effort.

        
Figure 1: (a) Control parameter variation with time, 1(b) Altitude variation with time 

Figure (1) and (2) are the graphical representation of both control and state variables with time. It 
is observed that the vehicle maneuvering is less in minimum control problem. The vehicle takes higher 
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altitude in the case of non-minimum control problem and with minimum control it is comparatively 
less. The control parameter variation is limited in minimum control problem so it can be used in high 
atmospheric density regions. This is method has an added advantage that it will help in smooth functioning 
to the actuators as compared to the other.

   

Figure 2 (a): Velocity variation with time                        Figure 2(b): Flightpath angle variation with time

Figure. 2(a), 2(b) shows the velocity and flightpath angle variation. It has been observed from the 
above figures that the launch vehicle achieves the target within acceptable tolerance level. Table. 2 shows 
the error occurred while achieving the terminal conditions. From the table it is clear that the accuracy is 
more in case (1) ie, without minimum control. For practical application the control variation should be 
minimum. 

Table 2

Terminal condition error for single stage launch vehicle

Methods Error in altitude Error in velocity Error in flightpath angle
Without minimum control –0.02216 0.00747 –0.9912

With minimum control –0.0373 8.0565 1.1688

6. CONCLUSION 
The offline trajectory optimization for a single stage of a multistage launch vehicle is presented. 
Classical steepest descent method, considering angle of attack as a control variable is used for solving 
the optimization problem. Nonlinear 2- dimensional launch vehicle flight dynamics with mixed boundary 
conditions and multiple constraints is taken for the study. Numerical results are analyzed with and with 
applying minimum control problem and the optimal flight procedure and trajectory were obtained. In 
minimum control problem the control variation limits are less. Future research will include the application 
of various combinations of evolutionary algorithms. 
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