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Abstract. We present here an elementary example, for every fixed positive
integer k, of a strictly stationary nongaussian stochastic process in discrete

time, all of whose k-marginals are gaussian.

1. Introduction

It is well known that, for every positive integer n > 1, there exists a probability
distribution in Rn which is not gaussian but has all its (n−1)-dimensional marginal
distributions gaussian. (See, for example, Section 10.3 in Stoyanov [2].) Using the
finer theory of pathwise stochastic integrals and martingale methods, Föller, Wu
and Yor [1] have shown that, for every positive integer k, there exists a variety of
nongaussian stochastic processes with continuous trajectories in the interval [0,∞)
which have the same k-dimensional marginals as the standard brownian motion
process. Here we present an elementary example, for every fixed positive integer
k > 1, a discrete time stationary stochastic process which is not gaussian but has
all its (k−1)-marginals gaussian. However, we do not know how to construct such
processes in continuous time.

2. The Basic Construction

Let k > 1 be any fixed positive integer and let ν be a probability distribution
in Rk, which is not gaussian but has all its (k − 1)-marginals gaussian with mean
0 and covariance matrix identity. For example, we may choose ν to have the
probability density function

ψ(x) = (2π)−
k
2

{
1 + x1x2 · · ·xk e−

1
2 |x|

2
}
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where x = (x1, x2, . . . , xk). If (X1, X2, . . . , Xk) is an Rk-valued random variable

with distribution ν, then the sequence X1, X2, . . . , X̂i, . . . , Xk with the i-th term
omitted consists of i.i.d. N(0, 1) random variables, for each i.

Now consider a bilateral sequence {(Xn1, Xn2, . . . Xnk),−∞ < n < ∞} of i.i.d
Rk-valued random variables with the common distribution ν as described in the
preceding paragraph. Define

Yn = Xnk +Xn+1 k−1 +Xn+2 k−2 + · · ·+Xn+k−1 1,−∞ < n <∞.
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It is to be noted that the sum of the two suffixes in each summand on the right
hand side is equal to n+ k.

Theorem 2.1. The sequence {Yn,−∞ < n < ∞} is strictly stationary, (k − 1)-
step independent with every (k−1)-dimensional marginal being gaussian with mean
0 and covariance matrix kI, I being the identity matrix of order k−1. In particular,
{Yn} is ergodic.

Proof. Fix an integer m and consider the two sets {Yn, n ≤ m} and {Yn, n ≥
m + k}. Since Ym = Xmk + Xm+1 k−1 + · · · + Xm+k−1 1 and Ym+k = Ym+k k +
Xm+k+1 k−1 + · · · + Xm+2 k−1 1 and the first suffix in the last summand in the
definition of Ym is less than the first suffix in the first summand in the definition of
Ym+k it follows that the two sets {Yn, n ≤ m} and {Yn, n ≥ m+k} are independent.
In other words {Yn} is a (k − 1)-step independent process.

We now look at the column vector-valued random variable
Yn+1

Yn+2

...
Yn+m

 =


Xn+1 k +Xn+2 k−1 + · · ·+Xn+k 1

Xn+2 k +Xn+3 k−1 + · · ·+Xn+k+1 1

Xn+m k +Xn+m+1 k−1 + · · ·+Xn+m+k−1 1


and express it as S1 + S2 + S3 where
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0
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...
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
+ · · ·+
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0
...
...
0

Xn+m+k−1 1

 .
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In each column on the right hand side of S1 or S3 there are at most k− 1 nonzero
entries whereas in each column on the right hand side of S2 there are exactly
k entries. All the column vectors appearing in S1, S2, S3 together are mutually
independent. By the choice of the measure ν, S1 and S3 are gaussian random
vectors. Denote by µ([i, j]) the (j−i+1)-dimensional standard normal distribution
imbedded in Rm so that the first i− 1 and the last m− j coordinates are 0 when
1 ≤ i ≤ j ≤ m. Similarly, denote by ν([j, k+ j−1]) the k-dimensional distribution
ν imbedded in Rm with the first j− 1 and the last m− k− j+1 coordinates 0 for
1 ≤ j ≤ m − k + 1, assuming m ≥ k. Then it follows that the random variables
Yn+1, Yn+2, . . . , Yn+m expressed as a single column vector has the m-dimensional
distribution νm (in Rm) given by

νm = µ([1, 1]) ∗ µ([1, 2]) ∗ . . . ∗ µ([1, k − 1])

∗ν([1, k]) ∗ ν([2, k + 1]) ∗ . . . ∗ ν([m− k + 1,m)

∗µ([m− k + 2,m]) ∗ µ([m− k + 3,m]) ∗ . . . ∗ µ([m,m]),

for every m ≥ k. Since νm is independent of n it follows that {Yn} is a strictly
stationary process. Since ν([1, k]) is nongaussian it is clear that νm is not gaussian
for every m ≥ k.

We now observe that Yn, being a sum of k independent N(0, 1) random vari-
ables, is an N(0, k) variable with mean 0 and variance k. Now consider the pair
(Y0, Ym). If m ≥ k we have already seen that Y0 and Ym are independent. If
m < k, we write[

Y0
Ym

]
=

[
X0k +X1 k−1 + · · ·+Xm−1 k−m+1

0

]
+

[
Xm k−m

Xm k

]
+

[
Xm+1 k−m−1

Xm+1 k−1

]
+ · · ·++

[
Xk−1 1

Xk−1 m+1

]
+

[
0

Xkm +Xk+1 m−2 + · · ·+Xk+m−1 1

]
.

Now the special choice of ν implies that Y0 and Ym are independent N(0, k) ran-
dom variables. Stationarity of the process {Yn} implies that Yn1 and Yn2 are
independent N(0, k) random variables for any n1, n2.

Now consider, for any n1 < n2 < · · · < nk−1 the random vector

Ỹ =


Yn1

Yn2

...
Ynk−1

 =


Xn1k +Xn1+1 k−1 + · · ·+Xn1+k−1 1

Xn2k +Xn2+1 k−1 + · · ·+Xn2+k−1 1

...
Xnk−1k +Xnk−1+1 k−1 + · · ·+Xnk−1+k−1 1

 .
The right hand side can be expressed as a sum of column vectors in which the
entries in each column are either 0 or an Xrs where the first suffix r is fixed
and the second suffix takes at most k − 1 values from the set {1, 2, . . . , k}. The
different column vectors are independent and by the choice of ν each column has

a multivariate gaussian distribution. Thus Ỹ is gaussian. Since any two Yi and Yj
are independent where k > 2, it follows that Yn1 , Yn2 , . . . , Ynk−1

are i.i.d N(0, k)
random variables. This completes the proof. �
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Remark 2.2. From the proof of Theorem 2.1 it is clear that any k − 1 of the
random variables {Yn} are i.i.d N(0, k). This motivates the introduction of the
following notion of limited exchangeability. We say that a stationary random pro-
cess {Zn,−∞ < n < ∞} is k-exchangeable if any Zn1 , Zn2 , . . . , Znk

has the same
distribution for any k-point set {n1, n2, . . . , nk} ⊂ Z. The probability measures of
all such k-exchangeable stationary processes constitute a convex set. One wonders
what are the extreme points of this convex set.
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