PARTIALLY GAUSSIAN STATIONARY STOCHASTIC PROCESSES IN DISCRETE TIME

K. R. PARTHASARATHY

Abstract

We present here an elementary example, for every fixed positive integer k, of a strictly stationary nongaussian stochastic process in discrete time, all of whose k-marginals are gaussian.

1. Introduction

It is well known that, for every positive integer $n>1$, there exists a probability distribution in \mathbb{R}^{n} which is not gaussian but has all its ($n-1$)-dimensional marginal distributions gaussian. (See, for example, Section 10.3 in Stoyanov [2].) Using the finer theory of pathwise stochastic integrals and martingale methods, Föller, Wu and Yor [1] have shown that, for every positive integer k, there exists a variety of nongaussian stochastic processes with continuous trajectories in the interval $[0, \infty)$ which have the same k-dimensional marginals as the standard brownian motion process. Here we present an elementary example, for every fixed positive integer $k>1$, a discrete time stationary stochastic process which is not gaussian but has all its $(k-1)$-marginals gaussian. However, we do not know how to construct such processes in continuous time.

2. The Basic Construction

Let $k>1$ be any fixed positive integer and let ν be a probability distribution in \mathbb{R}^{k}, which is not gaussian but has all its $(k-1)$-marginals gaussian with mean $\mathbf{0}$ and covariance matrix identity. For example, we may choose ν to have the probability density function

$$
\psi(\mathbf{x})=(2 \pi)^{-\frac{k}{2}}\left\{1+x_{1} x_{2} \cdots x_{k} \quad e^{-\frac{1}{2}|\mathbf{x}|^{2}}\right\} e^{-\frac{1}{2}|\mathbf{x}|^{2}}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. If $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is an \mathbb{R}^{k}-valued random variable with distribution ν, then the sequence $X_{1}, X_{2}, \ldots, \widehat{X}_{i}, \ldots, X_{k}$ with the i-th term omitted consists of i.i.d. $N(0,1)$ random variables, for each i.

Now consider a bilateral sequence $\left\{\left(X_{n 1}, X_{n 2}, \ldots X_{n k}\right),-\infty<n<\infty\right\}$ of i.i.d \mathbb{R}^{k}-valued random variables with the common distribution ν as described in the preceding paragraph. Define

$$
Y_{n}=X_{n k}+X_{n+1 k-1}+X_{n+2 k-2}+\cdots+X_{n+k-11},-\infty<n<\infty .
$$

[^0]It is to be noted that the sum of the two suffixes in each summand on the right hand side is equal to $n+k$.

Theorem 2.1. The sequence $\left\{Y_{n},-\infty<n<\infty\right\}$ is strictly stationary, $(k-1)$ step independent with every $(k-1)$-dimensional marginal being gaussian with mean $\mathbf{0}$ and covariance matrix $k I, I$ being the identity matrix of order $k-1$. In particular, $\left\{Y_{n}\right\}$ is ergodic.

Proof. Fix an integer m and consider the two sets $\left\{Y_{n}, n \leq m\right\}$ and $\left\{Y_{n}, n \geq\right.$ $m+k\}$. Since $Y_{m}=X_{m k}+X_{m+1 k-1}+\cdots+X_{m+k-11}$ and $Y_{m+k}=Y_{m+k k}+$ $X_{m+k+1 k-1}+\cdots+X_{m+2 k-11}$ and the first suffix in the last summand in the definition of Y_{m} is less than the first suffix in the first summand in the definition of Y_{m+k} it follows that the two sets $\left\{Y_{n}, n \leq m\right\}$ and $\left\{Y_{n}, n \geq m+k\right\}$ are independent. In other words $\left\{Y_{n}\right\}$ is a $(k-1)$-step independent process.

We now look at the column vector-valued random variable

$$
\left[\begin{array}{c}
Y_{n+1} \\
Y_{n+2} \\
\vdots \\
Y_{n+m}
\end{array}\right]=\left[\begin{array}{l}
X_{n+1 k}+X_{n+2 k-1}+\cdots+X_{n+k 1} \\
X_{n+2 k}+X_{n+3 k-1}+\cdots+X_{n+k+11} \\
\\
X_{n+m k}+X_{n+m+1 k-1}+\cdots+X_{n+m+k-11}
\end{array}\right]
$$

and express it as $S_{1}+S_{2}+S_{3}$ where

$$
\begin{aligned}
& S_{1}=\left[\begin{array}{c}
X_{n+1 k} \\
0 \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{c}
X_{n+2 k-1} \\
X_{n+2 k} \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
X_{n+k-12} \\
X_{n+k-13} \\
\vdots \\
X_{n+k-1 k} \\
0 \\
\vdots \\
0
\end{array}\right], \\
& S_{2}=\left[\begin{array}{c}
X_{n+k} 1 \\
X_{n+k} 2 \\
\vdots \\
X_{n+k} k \\
0 \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
X_{n+k+11} \\
X_{n+k+12} \\
\vdots \\
X_{n+k+1} k \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
X_{n+m 1} \\
X_{n+m} 2 \\
\vdots \\
X_{n+m} k
\end{array}\right], \\
& S_{3}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
X_{n+m+11} \\
X_{n+m+12} \\
\vdots \\
X_{n+m+1 k-1}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
X_{n+m+21} \\
X_{n+m+2} 2 \\
\vdots \\
X_{n+m+2 k-2}
\end{array}\right]+\cdots+\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
X_{n+m+k-11}
\end{array}\right] .
\end{aligned}
$$

In each column on the right hand side of S_{1} or S_{3} there are at most $k-1$ nonzero entries whereas in each column on the right hand side of S_{2} there are exactly k entries. All the column vectors appearing in S_{1}, S_{2}, S_{3} together are mutually independent. By the choice of the measure ν, S_{1} and S_{3} are gaussian random vectors. Denote by $\mu([i, j])$ the $(j-i+1)$-dimensional standard normal distribution imbedded in \mathbb{R}^{m} so that the first $i-1$ and the last $m-j$ coordinates are 0 when $1 \leq i \leq j \leq m$. Similarly, denote by $\nu([j, k+j-1])$ the k-dimensional distribution ν imbedded in \mathbb{R}^{m} with the first $j-1$ and the last $m-k-j+1$ coordinates 0 for $1 \leq j \leq m-k+1$, assuming $m \geq k$. Then it follows that the random variables $Y_{n+1}, Y_{n+2}, \ldots, Y_{n+m}$ expressed as a single column vector has the m-dimensional distribution ν_{m} (in \mathbb{R}^{m}) given by

$$
\begin{aligned}
\nu_{m}= & \mu([1,1]) * \mu([1,2]) * \ldots * \mu([1, k-1]) \\
& * \nu([1, k]) * \nu([2, k+1]) * \ldots * \nu([m-k+1, m) \\
& * \mu([m-k+2, m]) * \mu([m-k+3, m]) * \ldots * \mu([m, m]),
\end{aligned}
$$

for every $m \geq k$. Since ν_{m} is independent of n it follows that $\left\{Y_{n}\right\}$ is a strictly stationary process. Since $\nu([1, k])$ is nongaussian it is clear that ν_{m} is not gaussian for every $m \geq k$.

We now observe that Y_{n}, being a sum of k independent $N(0,1)$ random variables, is an $N(0, k)$ variable with mean 0 and variance k. Now consider the pair $\left(Y_{0}, Y_{m}\right)$. If $m \geq k$ we have already seen that Y_{0} and Y_{m} are independent. If $m<k$, we write

$$
\begin{aligned}
{\left[\begin{array}{c}
Y_{0} \\
Y_{m}
\end{array}\right]=} & {\left[\begin{array}{c}
X_{0 k}+X_{1 k-1}+\cdots+X_{m-1} k-m+1 \\
0
\end{array}\right]+\left[\begin{array}{c}
X_{m k-m} \\
X_{m k}
\end{array}\right] } \\
& +\left[\begin{array}{c}
X_{m+1 k-m-1} \\
X_{m+1 k-1}
\end{array}\right]+\cdots++\left[\begin{array}{c}
X_{k-11} \\
X_{k-1 m+1}
\end{array}\right] \\
& +\left[\begin{array}{c}
0 \\
X_{k m}+X_{k+1 m-2}+\cdots+X_{k+m-11}
\end{array}\right]
\end{aligned}
$$

Now the special choice of ν implies that Y_{0} and Y_{m} are independent $N(0, k)$ random variables. Stationarity of the process $\left\{Y_{n}\right\}$ implies that $Y_{n_{1}}$ and $Y_{n_{2}}$ are independent $N(0, k)$ random variables for any n_{1}, n_{2}.

Now consider, for any $n_{1}<n_{2}<\cdots<n_{k-1}$ the random vector

$$
\widetilde{\mathbf{Y}}=\left[\begin{array}{c}
Y_{n_{1}} \\
Y_{n_{2}} \\
\vdots \\
Y_{n_{k-1}}
\end{array}\right]=\left[\begin{array}{c}
X_{n_{1} k}+X_{n_{1+1} k-1}+\cdots+X_{n_{1}+k-11} \\
X_{n_{2} k}+X_{n_{2}+1 k-1}+\cdots+X_{n_{2}+k-11} \\
\vdots \\
X_{n_{k-1} k}+X_{n_{k-1}+1 k-1}+\cdots+X_{n_{k-1}+k-11}
\end{array}\right] .
$$

The right hand side can be expressed as a sum of column vectors in which the entries in each column are either 0 or an $X_{r s}$ where the first suffix r is fixed and the second suffix takes at most $k-1$ values from the set $\{1,2, \ldots, k\}$. The different column vectors are independent and by the choice of ν each column has a multivariate gaussian distribution. Thus $\widetilde{\mathbf{Y}}$ is gaussian. Since any two Y_{i} and Y_{j} are independent where $k>2$, it follows that $Y_{n_{1}}, Y_{n_{2}}, \ldots, Y_{n_{k-1}}$ are i.i.d $N(0, k)$ random variables. This completes the proof.

K. R. PARTHASARATHY

Remark 2.2. From the proof of Theorem 2.1 it is clear that any $k-1$ of the random variables $\left\{Y_{n}\right\}$ are i.i.d $N(0, k)$. This motivates the introduction of the following notion of limited exchangeability. We say that a stationary random process $\left\{Z_{n},-\infty<n<\infty\right\}$ is k-exchangeable if any $Z_{n_{1}}, Z_{n_{2}}, \ldots, Z_{n_{k}}$ has the same distribution for any k-point set $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \subset \mathbb{Z}$. The probability measures of all such k-exchangeable stationary processes constitute a convex set. One wonders what are the extreme points of this convex set.

References

1. Föllmer, H., Wu, C. T., and Yor, M.: On weak brownian motions of arbitrary order, Ann. Inst. Henri Poincairé 36 (2000) 447-487.
2. Stoyanov, J.: Counterexamples in Probability. Wiley, 1987.
K. R. Parthasarathy: Theoretical Statistics \& Mathematics Unit, Indian Statistical Institute, Delhi Centre, 7, S. J. S. Sansanwal Marg, New Delhi - 110016, India

E-mail address: krp@isid.ac.in

[^0]: Received 2012-12-17; Communicated by Hui-Hsiung Kuo.
 2000 Mathematics Subject Classification. Primary 60G15, 60G10, 60G09.
 Key words and phrases. Gaussian distribution, strictly stationary process, partially gaussian process.

