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ABSTRACT

Software development always face a challenge in formulating mechanism for finding faults and developing effective
methods and measures to remove these faults. Reducing the number of defects from software is a primary goal of
software quality control. Software metrics and defect data is available to predict faults in software. This prediction
helps in proper resource allocation and reducing testing effort. But sometimes software metrics and defect data is
highly skewed towards the distribution of the non-faulty modules i.e. faulty modules are less in number than non-
faulty modules. This is a class imbalance problem and data is imbalanced data. This study investigates the Random
Forest algorithm for developing software fault prediction model that deals with imbalanced data. We used the
dataset from NASA promise repository. PC5 dataset is used in our study to investigate Random forest. The result
demonstrates that the accuracy of the proposed fault prediction model based on Random Forest is good and overall
misclassification error is also less than the model based on Naïve Bayes i.e. the proposed model outperforms model
based on Naïve Bayes.
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1. INTRODUCTION

The major challenge that software industry faces is to find the faults and to resolve them. The terms failure,
fault and bug have a significant role in the quality of the software. Fault is a defect that may or may not
causes failure while faults are the causes for internal errors. Because of human mistakes such as missing
instruction, incorrect syntax etc errors are generated that may result in a fault in software. Software does
not work according to the user needs in case of software failures. Bug is the non-conformance of software
to its requirements. The main objective of all software industries is to reduce number of defects from
software while developing it.

Highly reliable software is important to both developers who develop software and users who use these
software, as well as society in general, since software failures may result in major business shut downs.During
process of software development to assure the quality of software, we use the following basic methods:
Integration testing, Peer review and Defect prediction. With the help of these methods, the unseen faults
could be taken out and removed resulting a high quality software.

Fault prediction is to predict the probability that the software contains faults. To identify whether the
software contains modules with the defect, we analyzed the software measurement data and defect data.
Software quality and reliability are checked by predicting software faults at a particular period of the
time.If number of faults are predicted accurately in the software, it saves testing time, testing effort, cost,
and increases the reliability of a software. Good quality signifies that software contains less number of
faults and users are much satisfied. Software with less number of faults not only increase quality but its
reliability also.
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As software fault prediction systems are developed with the help of prior experiences. These systems
are trained to learn from software measurement and erroneous data to predict error prone units in system
and then the system is validated. To check the quality and estimate the quality in terms of numbers of defect
prone modules and non-defect prone modules, tools are developed. After estimating quality, resources are
assigned to the modules that are of poor quality [19].

A fault predictor trained on skewed dataset will not be practical as the dataset contains large number of
non-faulty modules, yields the model that is poor to predict faulty modules. This is very important issue to
address when developing fault prediction models [19]. Number of techniques has been developed that
deals with class imbalance problem but Random Forest is best among all these techniques. Random Forest
algorithm is being successfully applied for solving both classification and regression problems. It is therefore
important to investigate the capabilities of Random Forest algorithm in predicting software quality [16].
Random forest generally exhibits a substantial performance improvement over the single tree classifier
such as CART and C4.5 (both techniques are decision tress) [5].

Figure 1: Software Fault Prediction

2. RANDOM FOREST

The main principle of ensemble methods is to group a “weak learners” to “strong learner”. It can be used
for classification and regression. Random forest is an ensemble classification and integration of both bagging
and decision tree learning.. Random forest made from bootstrap samples of the training data, using random
feature selection in the tree induction process. Prediction is made by aggregating (majority vote for
classification or averaging for regression) the predictions of the ensemble.

The random forests algorithm is very much similar the bagging algorithm. Algorithm for random forest
is given below:

• Let the number of training cases be N and number of variables in the classifier be M.

• Use number m of input variables to determine the decision at a node of a tree; m should be less than M.

• Training set for this tree is chosen by choosing N times with replacement form all N available
training cases. Use the rest of the cases to estimate the error of the tree, by predicting their classes.
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• For each node of the tree, randomly choose m variables. Calculate the best split based on these m
variables in the training data set.

• Each tree is fully grown and not pruned.

The advantages of Random Forest are:

• It runs well on large data sets.

• It helps in resolving class imbalance problem.

• It helps in classification and prediction.

• It helps in estimating which variables are significant in the classification.

• It can handle thousands of variables without any variable deletion.

• It performs faster than boosting and bagging.

Figure 2: Random Forest
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3. RELATED WORK

Xu-Ying Liu et al. [22] introduced two techniques for addressing class imbalance problem. The main
problem that occurs in class imbalance problem is majority instances are not considered. To overcome
from this problem, author had investigated two techniques i.e. Easy Ensemble and Balance Cascade.
These two techniques utilizes the majority class instances but not by under-sampling. The results
showed that these two algorithms perform better than under-sampling because majority instances are
used and also the performance of these two algorithms is higher than the other class imbalance learning
algorithms.

Naeem Seliya et al. [19] addressed the class imbalance problems occurring when developing fault
prediction model. He had used Roughly Balanced Bagging Algorithm that integrates both data sampling
and bagging into one method that assists in constructing software fault prediction model. Naïve Bayes and
C4.5 decision tree (both are classification algorithms) are used by the author. In this paper, data set containing
software measurement and defect data is collected from software quality assurance systems. Each data set
contains the information about number of faulty, non-fault modules and metrics. The result showed that
system developed using Roughly Balanced Bagging performs better than the system without bagging or
data sampling and Naïve Bayes performs better than C4.5 but when integrated with Roughly Balanced
Bagging, the performance of the c4.5 is better than that Naïve Bayes.

Deepak Gupta et al. [7] presented different clustering techniques and examined their performances.
Clustering helps in classifying patterns into groups. He had discussed these clustering techniques clustering
techniques can be used to develop software fault prediction systems in order to predict fault prone and non-
fault prone modules. Early software fault prediction can also be possible with these prediction models. The
results showed that author analyzed fuzzy c means is more effective to use for development of software
fault prediction models. Fuzzy C-means clustering can be implemented in MATLAB.

Zhiwei Xu et al. [24] proposed the Fuzzy Non-linear Regression (FNR) technique for prediction of
faults in software modules. The linear regression technique is different from FNR modeling technique
because the output of FNR model is a fuzzy number/ The usefulness of FNR model is describes with the
help of case study of industrial software system. Because of limited information known in the early life
cycle of software development, this model performs better in this case. In this, FNR is the combination of
fuzzy logic and neural networks. The results demonstrated that FNR modeling technique gives good results.
FNR is very good technique for early-stage prediction.

Cagatay Catal et al [3] examined CK (chidamber-kemerer) metrics and other metrics that are module
based for Artificial Immune System (AIRS) algorithm for software fault prediction problem. NASA data
set is used. The main objective of author was to improve the performance of the prediction model. The
object-oriented metrics and module metrics helped to have better prediction performance. The results
demonstrated that integration of both CK metrics and module metrics gives good prediction output for
fault prediction system to predict faults in software.

Cong Jin et al. [6] proposed the adaptive dynamic and median particle swarm optimization (ADMPSO)
based on the PSO classification technique for software fault prediction. It is good technique to predict
faulty modules from software. NASA data set is used. This technique helps in predicting faulty modules
and shows higher performance. The accuracy of software prediction model developed using this technique
is also higher.

Shuo Wang et al. [21] discussed about the quality prediction. The software metrics obtained during the
software development phases may comprise of information that can help in predicting software quality.
The software fault prediction classification problem is the main problem. Two challenges that arise with
the modeling process:
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• High dimensionality of software measurement data.

• Imbalanced distributions between the two types of modules.

These problems can be solved by using techniques such as feature selection and data sampling.

4. EMPIRICAL EVALUATION

4.1. Goal

The goal of this study is to evaluate the accuracy of proposed model and overall misclassification error. The
accuracy is evaluated using dataset containing information about software metrics and defect data.

4.2. Dataset

The software measurement and defect data are taken from NASA Promise Repository. PC5 dataset is used
regarding defect problems. It contains imbalanced data consisting of 39 attributes and 17001 modules
where 16498 (97.04%) are non-faulty modules and 503(2.96%) are faulty modules. Different attributes
(software metrics) present in this dataset are:

LOC_BLANK, BRANCH_COUNT, CALL_PAIRS, LOC_CODE_AND_COMMENT, LOC_COMMENTS,
CONDITION_COUNT, CYCLOMATIC_COMPLEXITY, CYCLOMATIC_DENSITY, DECISION_COUNT,
DESIGN_COMPLEXITY, DESIGN_DENSITY, EDGE_COUNT, ESSENTIAL_COMPLEXITY,
ESSENTIAL_DENSITY, LOC_EXECUTABLE, PARAMETER_COUNT, GLOBAL_DATA_COMPLEXITY,
HALSTEAD_CONTENT, HALSTEAD_DIFFICULTY, HALSTEAD_EFFORT, HALSTEAD_ERROR_EST,
HALSTEAD_LENGTH, HALSTEAD_LEVEL, HALSTEAD_PROG_TIME, HALSTEAD_VOLUME,
MAINTENANCE_SEVERITY, MODIFIED_CONDITION_COUNT, MULTIPLE_CONDITION_COUNT,
NODE_COUNT, NORMALIZED_CYLOMATIC_COMPLEXITY, NUM_OPERANDS, NUM_OPERATORS,
NUM_UNIQUE_OPERANDS, NUM_UNIQUE_OPERATORS, NUMBER_OF_LINES, PERCENT_COMMENTS,
LOC_TOTAL,

c {FALSE, TRUE}.

4.3. Independent and Dependent Variables

Independent variables are the attributes (software metrics) of dataset and dependent variable is Random
forest.

5. RESEARCH METHODOLOGY

Random Forest is used for training the model. We run this technique on Weka and compare the results with
simple classification algorithm, i.e. Naïve Bayes.

5.1. Performance Evaluation

The random classifier is evaluated using confusion metrics. Confusion metrics after running Random Forest
on classifier is given by the following table 1.

Where NFP is non-faulty modules

FP* is faulty Modules

Table 1
Confusion Matrix

Predicted Class

NFP FP*

Actual Class NFP 16493 (TN) 5 (FP)

FP* 14 (FN) 489 (TP)
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Here,

• TN (True Negative): number of non-faulty modules that are correctly classified as non-faulty modules.
Here 16943 are correctly classified as non-faulty.

• FN (False Negative): number of faulty modules that are incorrectly identified as non-faulty module.
Here 42 faulty modules are incorrectly classified as non-faulty.

• TP (True Positive): number of faulty modules that are correctly identified as faulty module. Here
461 faulty modules are correctly classified as faulty.

• FP (False Positive): number of non-faulty modules that are incorrectly classified as faulty modules.
Here 5 non-faulty modules that are incorrectly classified as non-faulty.

5.1.1. Accuracy

The accuracy (AC) measures the chances that the fault proneness of module is correctly predicted. Its
equation is as follows:

TN TP
AC

TN FN TP FP

16943 489
99.8%

16943 5 14 489
AC

5.1.2. Precision

Precision (P) measures the chance of correctly predicting the faulty modules among the modules classified
as fault prone. Its equation is as follows:

TP
P

TP FP

489
98.9%

489 5
P

The recall or true positive rate (TPR) is the proportion that the faulty modules are correctly identified.
Its equation is as follows:

/( )TPTPR FN TP

489
97.2%

14 489
TPR

� False Positive Rate (FPR):

The false positive rate (FPR) is the proportion of the non-faulty modules that are incorrectly identified
as faulty. Its equation is as follows:

FP
FPR

TN FP

5
0.03%

5 16943
FPR

� True Negative Rate (TNR):

The true negative rate (TNR) is defined as the proportion of non-faulty modules that are correctly
identified as non-faulty. Its equation is as follows:
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TN
TNR

TN FP

16943
98.4%

16943 5
TNR

� False Negative Rate (FNR):

The false negative rate (FNR) is the proportion of faulty modules that are incorrectly identified as non-
faulty. Its equation is as follows:

FN
FNR

FN TP

14
2.78%

14 489
FNR

5.1.3. Overall Misclassification Rate (OMR)

FN FP
OMR

TP FP FN TN

14 5
0.11%

16943 14 5 489
OMR

We have compared the result of proposed model with other model based on Naïve Bayes. The result
shows that proposed model has high accuracy than the model used for comparison. The comparison results
are given below:

The results of model based on Naïve Bayes are shown in below graph. The accuracy is 96.88%. FPR
and FNR is 2.09 % and 53.28% respectively. Its OMR is 3.61%.

The results of model based on Random Forest are shown in below graph. The accuracy is 99.80%. FPR
and FNR is 0.03% and 2.78% respectively. Its OMR is also less i.e. 0.11%.

The comparison graph for both models is given below. The graph shows that the proposed model has
high accuracy and less overall misclassification error. The percentage rate of both FPR and FNR is also less
for proposed model. The model based on Random Forest is more practical to use than model based on
Naïve Bayes.

Random Forest predicts faults in imbalanced data more accurately than other classification techniques.

Table 2
Comparison of Results

Model Naïve Bayes (%) Random Forest (%)

Accuracy 96.88 99.80

Recall 46.70 97.20

TNR 97.90 98.40

FNR 53.28 2.78

FPR 2.09 0.03

OMR 3.61 0.11

P 40.44 98.90
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Figure 3: Graph for model based on Naïve Bayes

Figure 4: Graph for model based on Random Forest

Figure 5: Graph for Comparison of Results
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6. CONCLUSION

The result demonstrates that the Random Forest can be used to predict faults in software containing
imbalanced data. Random Forest achieves higher accuracy and overall misclassification error is also less
which indicates that the percentage of misclassification of faulty modules as non-faulty or vice versa is
very less.

The Accuracy is 99.80%, its Recall is 97.20%, its precision is 99.80% and its overall misclassification
error is 0.11%. This results show that Random Forest Algorithm can be used in constructing models to
predict faults in software.

In future, most important attribute can be found for fault prediction and this work can be extended to
further programming languages. More algorithms can be evaluated and then we can find the best algorithm.
Data from more programming languages can be taken.
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