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Multivariate Statistical Based Process 
Monitoring using Principal Component 
Analysis: An Application to Chemical reactor
K. Ramakrishna Kini* and Muddu Madakyaru**

Abstract :  The monitoring of industrial chemical plants and diagnosing the abnormalities in those set ups 
are crucial in process system domain as they are the deciding factors for the betterment of overall production 
quality in the process. Various statistical based malfunction detection methods have been included in the 
literature, namely, univariate and multivariate techniques. The univariate techniques are limited for monitoring 
only a single variable at a time whereas multivariate techniques can handle multiple correlated variables. 
Principal component analysis (PCA), a multi-variate technique, has been successfully used in the domain of 
process monitoring. PCA is used along with its two fault detection indices, T2 and Q statistics for detecting 
faults in any process. In the present study, a benchmark Continuous stirred tank reactor (CSTR) model is used 
to test the performance of the proposed PCA method. The simulated results show the effectiveness of the 
proposed method in handling different sensor faults in a CSTR process. 
Keywords: Fault detection; Principal component analysis; T2 and Q statistics; CSTR model.

1. INTRODUCTION 

In most chemical plants, monitoring and fault diagnosis are becoming increasingly important to maintain 
safe operation and quality in the process. Fault detection (FD), an important component of Abnormal 
Event Management System (AEM), is required to successfully detect, isolate and eliminate faults before 
the performance of the process is affected [1]. An abnormal event, also referred to as fault, is a continuous 
step where a variable undergoes change from its acceptable range of behavior leading to a malfunction 
and thus, huge losses in chemical plants. Several FD techniques have been proposed in the last two decade 
for the successful detection of faults in process industry, which could be broadly classifi ed into model-
based and process history based techniques. While a background knowledge of the system is required for 
a model based method, huge data set is required for a data based method [2]. 

The modelling based FD method involves comparing the measured variables of the system with the 
useful information that have been obtained from a mathematical model of the process [9]. Few commonly 
applied model based methods for process diagnosis include statistical based hypothesis testing strategies, 
observer based strategies, and interval based strategies and parity-space strategies [3]. For complex 
industrial processes involving large variables, deriving and developing models could be a challenging 
task, thus making model based methods highly non-applicable for many applications. 

In contrast to the model based approaches, statistics based FD strategy is performed by collecting 
historical data and applying various techniques for monitoring the process [12]. In general, data based 
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fault detection methods are divided as univariate methods and multivariate methods. Univariate methods 
are used in applications that monitor only one process variable at a given time and include methods 
like shewart charts, exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 
technique [4]. In contrast, multivariate techniques are used for monitoring multiple variables and are 
capable of successful monitoring in complex plants that involve large number of variables [13]. Some of the 
important multivariate FD strategies are partial least square (PLS), principal component analysis (PCA), 
Principal component regression (PCR), canonical variate analysis (CVA) and independent component 
analysis (ICA). 

PCA is an important multiple variable regression technique used for compressing and extracting useful 
information from a given data [7]. It has been applied in various disciplines of science and engineering 
ranging from face recognition, compressing data to visualization and fault detection [10]. In the fi eld of 
fault detection it has been successfully applied for process monitoring in various applications as given in 
[8][10[11]. PCA technique will project a given data from a multi-dimensional space with a dimension m 
(m defi nes the number of input variables) to a much lower principal component subspace with a dimension 
l (l < m) (l defi nes the number of principal components) by the maximization of variance of the projections. 
The resulting model would have the number of principal components (PC’s) either equal to or lesser than 
the number of original variables in an observed data. The lower dimensional PCA model along with the 
two fault detection indices, T2 and Q statistics, are used to detect faults in a given process.  This paper 
proposes a FD strategy based on Principal Component Analysis (PCA) model for a continuous stirred tank 
rector (CSTR) model. 

2.  PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is a method that would transform the variables of a correlated data 
on to a new set of variables (principal components or PC’s), which are not correlated and contain most 
of the information from the original data [13]. The transformation is developed such that the fi rst PC has 
the largest possible capture (fi rst PC would account for as much of the variability in the data as possible), 
and each following principal component in turn has the highest variance possible with an underlying 
constraint that each PC is orthogonal to the preceding PC.  The PCA model is developed by decomposing 
a data set X  Rnxm using the singular value decomposition (SVD) as follows: 

 X = TPT (1)
where T is a matrix containing principal components or score vectors and P is a matrix, of orthogonal 
loading vectors that are eigen vectors derived from the application of SVD on the covariance matrix of 
data set X, n is the number of samples and m is the number of variables of the data set. Score vectors 
contain useful information about the relation between the samples and loading vectors contain useful 
information regarding the relationship between the variables. The covariance matrix of X, Ĝ is defi ned as: 

 Ĝ = 
1

1n –  XTX = P£PT (2)

£ is a diagonal matrix having decreasing arrangement of eigien values. 
After the application of SVD, choosing the right number of principal components is a very crucial 

since it describes the goodness of a PCA model. Choosing more number would introduce noise that 
would mask few important parameters in data whereas choosing less number could lead to losing of 
few important features in the data, thus leading to degradation in the quality of the PCA model [4]. The 
cumulative percentage variance (CPV) technique has been used in the present task to determine the exact 
number of score components. Once a reference PCA model is been developed from a normal fault-free 
data, it is employed along with the Hotelling’s T2 and Q statistics for diagnosis in a faulty data [8]. The 
Hotelling’s T2 is a statistical based method for capturing the nature of the exact PCs retained through CPV 
technique. It is defi ned as: 
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 T2 = XT Pa –1 PTX (3)
 a is a diagonal matrix having the eigien values that is associated with the retained PC’s. The 

application process is said to be in control if T2 value is less than the limit, which is described as [5] :

 2T  = 
2( 1 ) F ( , – )

( – )
n – a n a

n n a   (4)

In contrast, the Q statistic data is used to measure variations of data which are not measured by the 
T2 statistics, and this would provide an idea of how good the data fi ts the developed PCA model and it is 
defi ned as: 

 Q = rTr (5)
where r = (I – PPT)x. The confi dence limits for Q statistics are considered as given in [6]. 

The whole PC based fault detection process can be explained as shown in Figure 1: 
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Figure 1: Fault detection process using PCA

3. CONTINUOUS STIRRED TANK REACTOR (CSTR)
 The effi cient performance of the developed monitoring strategy would be tested on the data derived from 
a simulated CSTR bench mark problem. A Continuous Stirred Tank Reactor (CSTR) is an important unit 
operation in many chemical plants that has very large operating range. Chemical reactions in the stirred 
tank process are either exothermic or endothermic in nature. They need that energy can either be added 
or removed to the process for maintaining a constant temperature. In the CSTR process where a non-
isothermal, non-reversible fi rst order reaction A → B occurs. The dynamics of CSTR can be explained 
with the following equations:  
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where ko is the rate constant of the reaction, E defi nes the activation energy of the reaction, R is the gas 
constant, F defi nes the feed fl ow rate, FC is the inlet coolant fl ow rate, V defi nes the reactor volume, 
Hr is the rate of reaction, TO is the temperature at the inlet, T is the reactor temperature, Tcin defi nes the 
coolant inlet temperature, CAO and CA are the concentration of inlet and reactor concentration of liquid A, 
respectively and 1, ,Cp and Cpc are the densities and specifi c heats of the CSTR process reacting material 
and CSTR jacket coolant, respectively. 

4. DATA GENERATION 

 In the present work, the reactor is used for generating the data set through simulations. The data is divided 
into two categories:  training data set and testing data set. The training data would be used to build a 
PCA model and developed model would be used for fi nding faults in the testing data set. Simulations 
are carried to get 400 observations of the CSTR model that would be used as training data for the PCA 
model. The data for execution would include four variables that are combination of two input and two 
output variables. They are fl ow rate of the coolant (Fc), fl ow rate of the input feed (F) the concentration 
at the outlet (Ca), and the temperature at the output of reactor (T). The two input variables Fc and F, are 
pseudo-random binary sequence (PRBS) with frequencies of 0.05 and 0.01 respectively.  Hence, the data 
set to be used for developing the PCA model after the normalization of all the variables, would constitute 
400 rows and 4 columns. As discussed in section 2, the Cumulative Percentage Variance technique is used 
for determining the right number of PCs with a 90% limit and in this case, it results in retaining three 
PC’s.  Similarly, 400 rows and 4 columns of the CSTR model would be generated to be used for testing 
the developed PCA model.  Different kind of faults would be added to the steady state reactor temperature 
(Ts) variable and effect of developed PCA model would be checked. The nominal simulated parameter 
values for the CSTR plant are as given in [14].

5. RESULTS AND DISCUSSION

In the following section, the developed PCA FD model performance is being checked for detecting faults 
in a CSTR data having several fault scenarios. In the fi rst scenario, one variable from testing data set 
is with additive bias faults i.e. bias sensor fault (case A). Secondly, fault with degraded precision for a 
sensor is being taken, where the variable is contaminated by an additional random noise (case B). This is 
followed by a scenario where it is assumed that the variable is having an aging fault (case C). Finally, a 
case of outlier type of sensor fault is also considered (case D). 

Case A: Sensor bias fault

 A scenario where sensor bias additive fault is being added to the Steady state reactor temperature (Ts) 
variable.  The fault is inserted in the variable Ts from samples 300 to 350. This type fault can be shown 
by a constant amplitude of 500 in variable Ts and this could be easily detected b. On simulation, it can be 
seen that both T2 and Q indices exceed their threshold value between the samples 300 and 350, as shown 
in fi gure 2. 
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Case B: Precision degradation fault
 In this scenario, the problem of detecting precision degradation fault to the Steady state reactor temperature 
(Ts) variable is considered.  Towards the end, the fault free output variable Ts is corrupted using random 
Gaussian noise from sample 300 till sample 400. On simulation, it can be seen that the T2 and Q indices 
exceed their threshold value after the sample 300 as shown in fi gure 3. 
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Figure 2: T2 and Q statistics in presence of sensor bias fault
Case C: Aging fault
 For checking aging or a drift sensor fault, a ramp signal with a 0.6 slope, is being inserted into the variable Ts 
from sample 300 of the simulation data set. As seen in the fi gure, the Q statistic value gradually increases with 
aging fault increasing, and it begins to exceed the threshold limit as the fault magnitude becomes larger and 
larger. However, the drift fault was not detected by the Hoteling’s T2 statistic as shown in fi gure 4. 



310 K. Ramakrishna Kini and Muddu Madakyaru

0 50 100 150 200 250 300 350 400

Observation Number

0

1

2

3

4

5

6

7

8

9

T
2

T
2

control limitTa
2

Q

Qa control limit

4.5

4

3.5

3

2.5

2

1.5

1

Q

0.5

0
0 50 100 150 200 250 300 350 400

Observation Number

Figure 3: T2 and Q statistics in presence of precision degradation fault

Case D: Sensor outlier fault

 The effect of sensor outlier fault was checked by applying variations to the steady state reactor temperature 
(Ts). The variable is corrupted by applying multiple outlier faults between samples n = 200 to 204 and 
n = 300 to 304, respectively. On simulation, the T2 and Q graphs, as shown in fi gure 5 are obtained, which 
clearly show that the calculated T2 and Q value exceed the control limits: 
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6. CONCLUSION
Fault diagnosis and detection has been a critical issue in the domain of process monitoring since it directly 
effects the safety and fi nancial condition of any industrial process. Process data malfunction detection 
methods have been used for handling complex data in the chemical processes. Principal component analysis 
(PCA) is a popular multivariate strategy, widely used for data compression as well as fault detection. The 
developed PCA model along with its two fault detection indices is illustrated to detect different sensor 
faults through a simulated CSTR data. The simulated results show that the multivariate methods have a 
clear advantage over the univariate methods for monitoring multiple correlated data. The results show that 
the developed algorithm is successfully able to detect different variants of sensor faults.  

0 50 100 150 200 250 300 350 400

Observation Number

4

3.5

3

2.5

2

1.5

1

0.5

0

T
2

T
2

control limitTa
2

0 50 100 150

Observation Number

200 250 300 350 400

Q

Qa control limit

2

1.8

1.6

1.4

1.2

1Q

0.8

0.6

0.4

0.2

0

Figure 4 : T2 and Q statistics in presence of aging fault
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Figure 5 : T2 and Q statistics in presence of sensor outlier fault
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