COMPLEMENTARY PERFECT DOMINATION NUMBER AND CHROMATIC NUMBER OF A GRAPH

G. Mahadevan, J. Paulraj Joseph \& A. Selvam

Abstract

A subset S of V of a non-trivial graph G is said to be complementary perfect dominating set, if S is a dominating set and $\langle V-S\rangle$ has a perfect matching. The minimum cardinality taken over all complementary perfect dominating sets is called complementary perfect domination number and is denoted by $\gamma_{c p}$. The minimum number of colours required to colour all the vertices of G in such a way that adjacent vertices do not receive the same colour is the chromatic number χ of G. In this paper, we find an upper bound for sum of these two parameters and characterize the corresponding extremal graphs of order upto $2 n-5$.

Keywords: Complementary Perfect domination number, Chromatic number.
AMS Subject classification: 05C.

1. INTRODUCTION

Let $G=(V, E)$ be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The maximum degree of a vertex is denoted by $\Delta(G)$. The path on n vertices is denoted by P_{n}. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph.

A subset S of V is called a dominating set in G if every vertex in $V-S$ is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by γ. The dominating set is called total if the induced subgraph $\langle S\rangle$ has no isolated vertices and connected if $\langle S\rangle$ is connected. The minimum cardinality taken over all total (connected) dominating sets in G is called total (connected) domination number of G and is denoted by $\gamma_{t}\left(\gamma_{c}\right)$. The concept of complementary perfect domination number with applications was introduced by Paulraj Joseph J., Mahadevan G. and Selvam A. [5]

A subset S of V of a non-trivial graph G is said to be complementary perfect dominating set, if S is a dominating set and $<\mathrm{V}-\mathrm{S}\rangle$ has a perfect matching. The minimum cardinality taken over all complementary perfect dominating sets is called complementary perfect domination number and is denoted by $\gamma_{c p}$.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [7], Paulraj Joseph and Arumugam proved that $\gamma+\kappa$ $\leq p$. In [8], Paulraj Joseph and Arumugam proved that $\gamma_{c}+\chi \leq p+1$. They also characterized the class of graphs for which the upper bound is attained. They also proved similar results for γ and γ_{t}. In [6], Paulraj Joseph J. and Mahadevan G. proved that $\gamma_{c c}+$ $\chi \leq 2 n-1$ and characterized the corresponding extremal graphs.

Previous Results

Theorem 1.1[5]: For any graph $G, \gamma_{c p}(G) \leq n-2$.
Theorem 1.2[5]: For any graph $G, \gamma_{c p}(G)=n$ if and only if G is a star.
Theorem 1.3[1]: For any graph $G, \chi(G)=\Delta(G)$ or $\Delta(G)+1$.
Theorem 1.4[1]: If G is k-critical, then $\delta(G) \geq k-1$.

2. MAIN RESULTS

Theorem 2.1: For any connected graph $G, \gamma_{c p}+\chi \leq 2 n$, and equality holds if and only if G is isomorphic to K_{2}.

Proof: Clearly for any graph $G, \gamma_{c p} \leq n$. Also for any graph $G, \chi \leq \Delta+1$. Hence $\gamma_{c p}$ $+\chi \leq n+(\Delta+1)=n+(n-1+1)=2 n$. Now assume that $\gamma_{c p}+\chi=2 n$. This is possible only if $\gamma_{c p}=n$ and $\chi=n$. Since $\gamma_{c p}=n$, by theorem [1.2] G is a Star. Since $\chi=n, G$ is K_{2}. Converse is obvious.

Theorem 2.2: For any connected graph $G, \gamma_{c p}+\chi=2 n-1$ if and only if G is isomorphic to P_{3}.

Proof: Assume that $\gamma_{c p}+\chi=2 n-1$. This is possible only if $\gamma_{c p}=n$ and $\chi=n-1$ (or) $\gamma_{c p}=n-1$ and $\chi=n$.

Case 1: $\gamma_{c p}=n$ and $\chi=n-1$.
Since $\gamma_{c p}=n$, by theorem [1.2] G is a star. Since $\chi=n-1,2=n-1$ so that $n=3$. Hence $G \cong K_{1,2}=P_{3}$.

Case 2: $\gamma_{c p}=n-1$ and $\chi=n$.
Since $\gamma_{c p}=n-1$, there exists a complementary perfect dominating set S with $n-1$ elements. Hence $\langle V-S\rangle$ has isolate, which is a contradiction. Hence no graph exists. Converse is obvious.

Theorem 2.3: For any connected graph $G, \gamma_{c p}+\chi=2 n-2$ if and only if G is isomorphic to $K_{3}, K_{4}, K_{1,3}$.

Proof: Assume that $\gamma_{c p}+\chi=2 n-2$. This is possible only if $\gamma_{c p}=n$ and $\chi=n-2$ (or) $\gamma_{c p}=n-1$ and $\chi=n-1$ (or) $\gamma_{c p}=n-2$ and $\chi=n$.

The case that $\gamma_{c p}=n-1$ and $\chi=n-1$ is not possible.
Case 1: $\gamma_{c p}=n$ and $\chi=n-2$.
Since $\gamma_{c p}=n$, by theorem [1.2] G is a star. Since $\chi=n-2,2=n-2$ so that $n=4$. Hence $G \cong K_{1,3}$.

Case 2: $\gamma_{c p}=n-2$ and $\chi=n$.
Since $\chi=n, G \cong K_{n}$. If G has even number of vertices, then $\gamma_{c p}=2$ so that $n=4$. Hence $G \cong K_{4}$. If G has odd number of vertices then $\gamma_{c p}=1$ so that $n=3$. Hence $G \cong K_{3}$.

Theorem 2.4: For any connected graph $G, \gamma_{c p}+\chi=2 n-3$ if and only if G is isomorphic to $K_{1,4}, G_{1}$ or G_{2} given in Figure 2.1.

Proof: Assume that $\gamma_{c p}+\chi=2 n-3$. This is possible only if $\gamma_{c p}=n$ and $\chi=n-3$ (or) $\gamma_{c p}=n-1$ and $\chi=n-2$ (or) $\gamma_{c p}=n-2$ and $\chi=n-1$ (or) $\gamma_{c p}=n-3$ and $\chi=n$. The cases $\gamma_{c p}=n-1$ and $\chi=n-2$ (or) $\gamma_{c p}=n-3$ and $\chi=n$ are not possible.

Case 1: $\gamma_{c p}=n$ and $\chi=n-3$.
Since $\gamma_{c p}=n$, by theorem [1.2], G is a star. Since $\chi=n-3,2=n-3$ so that $n=5$. Hence $G \cong K_{1,4}$.

Case 2: $\gamma_{c p}=n-2$ and $\chi=n-1$.
Since $\chi=n-1, G$ contains a clique K on $n-1$ vertices. Let x be a vertex other than the vertices of K_{n-1}. Since G is connected, x is adjacent to at least one vertex say u_{i} of K_{n-1}.

If the clique K_{n-1} has even number of vertices, then $\left\{x, u_{i}, u_{j}\right\}$ for some u_{j} in K_{n-1} forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=5$. Hence $K=K_{4}$ Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. Let x be adjacent to u_{1}. If $d(x)=1$, then $G \cong G_{1}$.

If x is adjacent to one more vertex say u_{j} of K_{n-1}, then $\left\{u_{j}\right\}$ is a $\gamma_{c p}$-set, which is a contradiction.

Figure 2.1

Figure 2.2

If the clique K has an odd number of vertices, then $\left\{x, u_{i}\right\}$ is a $\gamma_{c p}$-set of G. Since $\gamma_{c p}$ $=n-2$, we have $n=4$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let x be adjacent to u_{1}. If $d(x)=1$, then $G \cong G_{2}$. If x is adjacent to one more vertex say u_{j} in K_{n-1}, then $\left\{u_{i}\right\}$ is a a $\gamma_{c p}$-set which is a contradiction.

Theorem 2.5: For any connected graph $G, \gamma_{c p}+\chi=2 n-4$ if and only if G is isomorphic to $K_{5}, K_{6}, K_{1,5}, P_{4}, C_{4}$, or any one of the graphs G_{1} to G_{10} given in Figure 2.2.

Proof: Assume that $\gamma_{c p}+\chi=2 n-4$. This is possible only if $\gamma_{c p}=n$ and $\chi=n-4$ (or) $\gamma_{c p}=n-1$ and $\chi=n-3$ (or) $\gamma_{c p}=n-2$ and $\chi=n-2$ (or) $\gamma_{c p}=n-3$ and $\chi=n-1$ (or) $\gamma_{c p}$ $=n-4$ and $\chi=n$. The cases for which $\gamma_{c p}=n-1$ and $\chi=n-3$ (or) $\gamma_{c p}=n-3$ and $\chi=\mathrm{n}-1$ are not possible.

Case 1: $\gamma_{c p}=n$ and $\chi=n-4$.
Since $\gamma_{c p}=n$, by theorem [1.2] G is a star. Since $\chi=n-4,2=n-4$ so that $n=6$. Hence $G \cong K_{1,5}$.

Case 2: $\gamma_{c p}=n-2$ and $\chi=n-2$.
Since $\chi=n-2, G$ contains a clique K on $n-2$ vertices. Let $S=\{x, y\}=V(G)-V(K)$. Then $\langle S\rangle=K_{2}$ or K_{2}.

Subcase 1: $\langle S\rangle=K_{2}$
Since G is connected, there exists a vertex say u_{i} in K_{n-2} which is adjacent to x (or equivalently y).

Now, Assume that the clique K_{n-2} has even number of vertices.
Then $\left\{y, u_{j}\right\}$ for $i \neq j$ in K_{n-2} forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=4$. Hence $K=K_{2}=u v$. Let x be adjacent to u. If $d(x)=2$ and $d(y)=1$, then $G \cong P_{4}$. If $d(x)$ $=3$, then $\chi=3$, which is a contradiction.

Now let $d(x)=d(y)=2$.
Without loss of generality let x be adjacent to u. Then y is adjacent to u or v. If y is adjacent to u, then $\chi=3$, which is a contradiction. If y is adjacent to v, then $G \cong C_{4}$.

Now assume that the clique K has odd number of vertices.
Then $\left\{y, x, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=5$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Without loss of generality let x be adjacent to u_{1}. If $d(x)=2$ and $d(y)=1$, then $G \cong G_{1}$. Let $d(x)=3$ and $d(y)=1$. Without loss of generality, let x be adjacent to both u_{1} and u_{3}. Then $G \cong G_{2}$. If $d(x)=4$ and $d(y)=1$, then $\chi=4$, which is a contradiction. Let $d(x)=d(y)=2$. Let x be adjacent to u_{1}. Then y is adjacent to u_{1} or u_{3} (or equivalently u_{2}). If y is adjacent to u_{1}, then $\left\{u_{1}\right\}$ is a $\gamma_{c p}$ set which is a contradiction. If y is adjacent to u_{3}, then $G \cong G_{3}$. Let $d(x)=2$ and $d(y)=3$. Let x be adjacent to u_{1}. Then y is adjacent to u_{1} and one of $\left\{u_{2}, u_{3}\right\}$ (or) y is adjacent to both u_{2} and u_{3}. If y is adjacent to u_{1} and u_{2}, then $\left\{u_{1}\right\}$ is a $\gamma_{c p}$ set which is a contradiction. If y is adjacent to u_{2} and u_{3}, then $G \cong G_{4}$. Let $d(x)=2$ and $d(y)=4$, then $c=4$, which is a contradiction. Let $d(x)=d(y)=3$. Without loss of generality, let x be adjacent to u_{1} and u_{2}. Then y is adjacent to u_{1} and u_{2} (or) y is adjacent to u_{3} and u_{1} (or equivalently u_{2}). If y is adjacent to u_{1} and u_{2}, then $\chi=4$, which is a contradiction. If y is adjacent to u_{3} and u_{1}, then $\left\{u_{1}\right\}$ is a $\gamma_{c p}$-set, which is a contradiction.

Subcase 2: $\langle S\rangle=\bar{K}_{2}$.
Since G is connected, x and y are adjacent to a common vertex or distinct vertices of K_{n-2}.

Subcase 2(a): Let x and y be adjacent to a common vertex say u_{i} of K_{n-2}.
Now, Assume that the clique K_{n-2} has even number of vertices.
Then $\left\{x, y, u_{i}, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=6$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. Let u_{1} be adjacent to both x and y. If $d(x)=d(y)=1$, then $G \cong G_{5}$. Let $d(x)=2$ and $d(y)=1$. then $\left\{y, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

Now assume that the clique K has odd number of vertices. Then $\left\{x, y, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since a $\gamma_{c p}=n-2$, we have $n=5$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to both x and y. If $d(x)=d(y)=1$, then $G \cong G_{6}$. Let $d(x)=2$ and
$d(y)=1$. Without loss of generality, let x be adjacent to u_{1} and u_{2}, then $G \cong G_{7}$. If $d(x)=3$ and $d(y)=1$, then $\chi=4$, which is a contradiction. Let $d(x)=d(y)=2$. Without loss of generality, let x be adjacent to u_{1} and u_{2}. Then y is adjacent to u_{2} or u_{3}. If y is adjacent to u_{2}, then $G \cong G_{8}$. If y is adjacent to u_{3}, then $\{u 1\}$ is a $\gamma_{c p}$-set which is a contradiction.

Subcase 2(b): Let x and y are adjacent to distinct vertices of K_{n-2}.
Let x be adjacent to u_{i} and y is adjacent to u_{j} for $i \neq j$.
Assume that clique K_{n-2} has even number of vertices.
Then $\left\{x, y, u_{i}, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=6$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. Without loss of generality, let x_{1} be adjacent to u_{1} and x_{2} be adjacent to u_{2}. If $d(x)=d(y)=1$, then $G \cong G_{9}$. Let $d(x)=2$ and $d(y)=1$. Then x is adjacent to u_{2} or u_{3} (or equivalently to u_{4}). If x is adjacent to u_{2}, then $\left\{y, u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction. If x is adjacent to u_{3} (or equivalently u_{4}), then $\left\{y, u_{4}\right\}$ forms a $\gamma_{c p}$-set of G. If $d(x)=d(y)=2$, then no graph exists.

Now assume that the clique K has odd number of vertices. Then $\left\{x, y, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=5$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Without loss of generality, let x be adjacent to u_{1} and y be adjacent to u_{2}. If $d(x)=$ $d(y)=1$, then $G \cong G_{10}$. Let $d(x)=2$ and $d(y)=1$. Then x is adjacent to u_{2} or u_{3}. If x is adjacent to u_{3}, then $G \cong G_{12}$; If x is adjacent to u_{2}, then $G \cong G_{7}$. If $d(x)=3$ and $d(y)=1$, then $\chi=4$, which is a contradiction. If $d(x)=d(y)=2$, let x be adjacent to u_{1} and u_{2}. Then y is adjacent to u_{1} or u_{3}. If y is adjacent to u_{1}, then $G \cong G_{8}$; If y is adjacent to u_{3}, then $\left\{u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction. Let x be adjacent to u_{1} and u_{3}. Then y is adjacent to u_{1} or u_{3}.

If y is adjacent to u_{1}, then $\left\{u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; If y is adjacent to u_{3}, then $\left\{u_{3}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

Case 3: $\gamma_{c p}=n-4$ and $\chi=n$.
Since $\chi=n, G$ is K_{n}. If K_{n} has even number of vertices, then $\gamma_{c p}=2$ and hence $n=6$. Hence $G \cong K_{6}$. If K_{n} has odd number of vertices then $\gamma_{c p}=1$ and hence $n=5$. Hence G $\cong K_{5}$.

Theorem 2.4: For any connected graph $G, \gamma_{c p}+\chi=2 n-5$ if and only if G is isomorphic to $K_{6}, K_{7}, K_{1,6}$ or any one of the graphs G_{1} to G_{33} given in Figure 2.3.

Proof: If G is any of the graphs given in figure 6.5, then clearly $\gamma_{c p}+\chi=2 n-5$. Conversely, assume that $\gamma_{c p}+\chi=2 n-5$. This is possible only if $\gamma_{c p}=n$ and $\chi=n-5$ (or) $\gamma_{c p}=n-1$ and $\chi=n-4$ (or) $\gamma_{c p}=n-2$ and $\chi=n-3$ (or) $\gamma_{c p}=n-3$ and $\chi=n-2$ (or) $\gamma_{c p}=n-4$ and $\chi=n-1$ (or) $\gamma_{c p}=n-5$ and $\chi=n$. The cases for which $\gamma_{c p}=n-1$ and $\chi=$ $n-4$ (or) $\gamma_{c p}=n-3$ and $\chi=n-2$ are not possible.

Figure 2.3

Case 1: $\gamma_{c p}=n$ and $\chi=n-5$.
Since $\gamma_{c p}=n$, by theorem [1.2] G is a star. Since $\chi=n-5,2=n-5$ so that $n=7$. Hence $G \cong K_{1,6}$

Case 2: $\gamma_{c p}=n-2$ and $\chi=n-3$.
Then G contains a clique K_{n-3}, or G contains no K_{n-3}.
Let G contains a clique K_{n-3}.
Let $S=\{x, y, z\}=V(G)-V(K)$. Then $\langle S\rangle=K_{3}$ or K_{3} or P_{3} or $K_{2} \cup K_{1}$.
Subcase: $1<S\rangle=K_{3}$.
Since G is connected, x is adjacent to some u_{i} in K_{n-3}.
If K_{n-3} has even number of vertices, then $\left\{x, u_{i}, u_{j}\right\}$ for $i \neq j$ in K_{n-3} forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=5$. But $\chi=n-3=2$, which is a contradiction. Hence no graph exists in this case.

If K_{n-3} has odd number of vertices, then $\left\{x, u_{i}\right\}$ is a $\gamma_{c p}$-set of G. Since a $\gamma_{c p}=n-2$, we have $n=4$. But $\chi=n-3=1$, which is a contradiction. Hence no graph exists in this case.

Subcase 2: $\langle S\rangle=\bar{K}_{3}$.
Since G is connected, one of the vertices of K_{n-3} is adjacent to all the vertices of S or two vertices of S or one vertex of S.

Subcase 2(a): Let u_{i} for some i in K_{n-3} be adjacent to all the vertices of S.
Now assume that the clique K_{n-3} has even number of vertices.
Then $\left\{x, y, z, u_{i}, u_{j}\right\}$ is a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=7$. Hence $K=K_{4}$. Let $u_{1}, u_{2}, u_{3}, u_{4}$ be the vertices of K_{4}. Let u_{1} be adjacent to all of S. If $d(x)=d(y)=d(z)$ $=1$, then G is $G \cong G_{1}$.

Let $d(x)=2, d(y)=d(z)=1$. Let x be adjacent to u_{2}. Then $\left\{y, z, u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

Now assume that K_{n-3} has odd number of vertices.
Then $\left\{x, y, z, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=6$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to all the vertices of S.

If $d(x)=d(y)=d(z)=1$, then $G \cong G_{2}$.
If $d(x)=2, d(y)=d(z)=1$, then $G \cong G_{3}$.
If $d(x)=3, d(y)=d(z)=1$, then $\chi=4$, which is a contradiction.

Let $d(x)=d(y)=2$ and $d(z)=1$.
Now, let x be adjacent to u_{1} and u_{2}. Then y is adjacent to u_{2} or u_{3}. If y is adjacent to u_{2}, then $G \cong G_{4}$. If y is adjacent to u_{3}, then $\left\{z, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

Now, let $d(x)=d(y)=d(z)=2$.
If $d(x)=d(y)=2$ and $d(z)=1$, then the graph is G_{4}. Now in G_{4}, z is adjacent to u_{3} or u_{2}. If z is adjacent to u_{3}, then $\left\{y, u_{1}\right\}$ forms a $\gamma_{c p}$-set, which is a contradiction. If z is adjacent to u_{2}, then $G \cong G_{5}$.

Subcase 2(b): Let u_{i} for some i in K_{n-3} is adjacent to x and y, and u_{j} for some $i \neq j$ in K_{n-3} is adjacent to z.

Now assume that K_{n-3} has even number of vertices.
Then $\left\{x, y, z, u_{i}, u_{j}\right\}$ forms a $\gamma_{c p}$-set of G so that $n=7$. Hence $K=K_{4}$. Let u_{1}, u_{2}, u_{3}, u_{4} be the vertices of K_{4}. Let u_{1} be adjacent to x and y and let u_{2} be adjacent to z. If $d(x)$ $=d(y)=d(z)=1$, then $G \cong G_{6}$.

Let $d(x)=2, d(y)=d(z)=1$.
If $d(x)=d(y)=d(z)=1$, then the graph is G_{6}. In G_{6}, x is adjacent to u_{2} or u_{3} (or equivalently u_{4}). If x is adjacent to u_{2} then $\left\{y, z, u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; if x is adjacent to u_{3}, then $\left\{y, z, u_{3}\right\}$ forms a $\gamma_{c p}$-set of G which is a contradiction.

Let $d(x)=d(y)=1$ and $d(z)=2$.
If $d(x)=d(y)=d(z)=1$, then the graph is G_{6}. In G_{6}, z is adjacent to u_{1} or u_{3} (or equivalently u_{4}). If z is adjacent to u_{1} then $\left\{x, y, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; if z is adjacent to u_{3}, then $\left\{x, y, u_{3}\right\}$ forms a $\gamma_{c p}$-set of G which is a contradiction.

Now assume that K_{n-3} has odd number of vertices.
Then $\left\{x, y, z, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G and hence $n=6$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to both x and y and let u_{2} be adjacent to z. If $d(x)=$ $d(y)=d(z)=1$, then $G \cong G_{7}$.

Let $d(x)=2$, and $d(y)=d(z)=1$.
Now, if $d(x)=d(y)=d(z)=1$, then the graph is G_{7}. In G_{7}, x is adjacent to u_{2} or u_{3}. If x is adjacent to u_{2}, then $G \cong G_{8}$; if x is adjacent to u_{3}, then $G \cong G_{9}$.

If $d(x)=3$ and $d(y)=d(z)=1$. Then $\chi=4$, which is a contradiction.
Now Let $d(x)=d(y)=2$ and $d(z)=1$.

If $d(x)=2$, and $d(y)=d(z)=1$, then the graphs are G_{8} or G_{9}. Now in G_{8}, y is adjacent to u_{2} or u_{3}. If y is adjacent to u_{2}, then $G \cong G_{4}$; If y is adjacent to u_{3}, then $\left\{z, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction. In G_{9}, y is adjacent to u_{2} or u_{3}. If y is adjacent to u_{2}, then $\left\{z, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; If y is adjacent to u_{3}, then $G \cong G_{10}$.

Now Let $d(x)=d(y)=d(z)=2$.
If $d(x)=d(y)=2$ and $d(z)=1$, then the graph is G_{4} or G_{10}. Now in G_{4}, z is adjacent to u_{2} or u_{3}. If z is adjacent to u_{2}, then $G \cong G_{5}$; If z is adjacent to u_{3}, then $\left\{y, u_{1}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. In G_{10}, z is adjacent to u_{1} or u_{3}. If z is adjacent to u_{1}, then $\left\{u_{1}, y\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. If z is adjacent to u_{3}, then $\{x$, $\left.u_{3}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction.

Now let $d(x)=d(y)=1$ and $d(z)=2$.
If $d(x)=d(y)=d(z)=1$, then the graph is G_{7}. In G_{7}, z is adjacent to u_{1} or u_{3}. If z is adjacent to u_{1}, then $G \cong G_{3}$; If z is adjacent to u_{3}, then $G \cong G_{11}$.

Now Let $d(x)=2, d(y)=1$ and $d(z)=2$.
Now if $d(x)=2, d(y)=d(z)=1$, then the graphs are G_{8} or G_{9}. In G_{8}, z is adjacent to u_{1} or u_{3}. If z is adjacent to u_{1}, then $G \cong G_{4}$; If z is adjacent to u_{3}, then $\left\{y, u_{2}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. In G_{9}, z is adjacent to u_{1} or u_{3}. If z is adjacent to u_{1}, then $\left\{y, u_{1}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. If z is adjacent to u_{3}, then $\{y$, $\left.u_{3}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction.

If let $d(x)=d(y)=1$ and $d(z)=3$. Then $\chi=4$, which is a contradiction.
Subcase 2(c): Let u_{i} be adjacent to x and u_{j} for $i \neq j$ be adjacent to y and u_{k} for $i \neq j$ $\neq k$ be adjacent to z.

Assume that the Clique K_{n-3} has even number of vertices.
Then $\left\{x, y, z, u_{i}, u_{j}\right\}$ forms a $\gamma_{c p}$-set of G so that $n=7$. Hence $K=K_{4}$. Let u_{1}, u_{2}, u_{3}, u_{4} be the vertices of K_{4}. Let u_{1} be adjacent to x and u_{2} be adjacent to y and u_{3} be adjacent to z.

If $d(x)=d(y)=d(z)=1$, then $G \cong G_{12}$.
Let $d(x)=2$ and $d(y)=d(z)=1$. Then clearly no graph exists satisfying the hypothesis.
Assume that the Clique K_{n-3} has odd number of vertices.
Then $\left\{x, y, z, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G and hence $n=6$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to x and u_{2} be adjacent to y and u_{3} be adjacent to z. If $d(x)=d(y)=d(z)=1$, then $G \cong G_{13}$.

If $d(x)=2$ and $d(y)=d(z)=1$, then $G \cong G_{14}$
If $d(x)=3$ and $d(y)=d(z)=1$, then $\chi=4$, which is a contradiction.
If $d(x)=d(y)=2$ and $d(z)=1$, then $G \cong G_{10}$.
If $d(x)=d(y)=d(z)=2$, then no graph exists satisfying the hypothesis.
Subcase 3: $\langle S\rangle=P_{3}=\left(\begin{array}{ll}x & y z\end{array}\right)$.
Assume that the clique $K=K_{n-3}$ have even number of vertices.
Since G is connected, atleast one of the vertices say u_{i} of K_{n-3}, is adjacent to x (or equivalently z) or y.

If u_{i} is adjacent to x, then $\left\{z, u_{i}, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$ set of G. Since $\gamma_{c p}=n-2$, we have $n=5$. Hence $K=K_{2}=u v$. Let x be adjacent to u. If $d(x)=d(y)=2$ and $d(z)=1$, then $G \cong P_{5}$. If $d(x)=3$, then $\chi=3$, which is a contradiction. If $d(x)=d(y)=d(z)=2$, then $G \cong G_{15}$.

If u_{i} is adjacent to y, then $\left\{x, z, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$ set of G. Since $\gamma_{c p}=n-2$, $n=5$. Hence $K=K_{2}=u v$. Let u be adjacent to y. If $d(x)=d(z)=1$ and $d(y)=3$, then $G \cong G_{16}$. In all other cases on the degrees of the vertices of x, y and z, no new graph exists satisfying the hypothesis.

Assume that the clique K_{n-3} have odd number of vertices.
Since G is connected, at least one of the vertices say u_{i}, of K_{n-3}, is adjacent to x (or equivalently z) or y.

If u_{i} is adjacent to x, then $\left\{z, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-2$, we have $n=4$. Hence $K=K_{1}$ which is a contradiction.

If u_{i} is adjacent to y, then $\left\{x, z u_{j}, u_{k}\right\}$ forms a $\gamma_{c p}$-set of G and hence $n=6$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}.

Let u_{1} be adjacent to y.
Let $d(y)=3$.
 graph exists satisfying the hypothesis.

Let $d(y)=4$.
If $d(x)=d(z)=1$, then $G \cong G_{11}$. In all other cases on the degrees of x and z, no new graph exists satisfying the hypothesis.

Let $d(y)=5$. Then $\chi=5$, which is a contradiction.

Subcase 4: $\langle S\rangle=K_{2} \cup K_{1}$.
Let $x y$ be the edge in $\langle S\rangle$.
Assume that the clique K_{n-3} have even number of vertices.
Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices say u_{i} of K_{n-3}. Without loss of generality let x be adjacent to u_{i}. Then z is adjacent to the same u_{i} or u_{j} for $i \neq j$.

If z is adjacent to u_{i}, then $\left\{y, z, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$ set of G and hence $n=5$. Hence $K=K_{2}=u v$. Let u be adjacent to both x and z. If $d(x)=2$ and $d(y)=d(z)=1$, then $G \cong G_{16} ;$ If $d(x)=d(y)=2$ and $d(z)=1$, then $G \cong G_{15}$. Let $d(x)=d(y)=d(z)=2$. Then $\chi=3$, which is a contradiction.

If z is adjacent to u_{j}, for $i \neq j$, then $\left\{y, z, u_{j}\right\}$ forms a $\gamma_{c p}$ set of G and hence $n=5$. Hence $K=K_{2}=u v$. Let x be adjacent to u and z be adjacent to v. If $d(x)=2$ and $d(y)=$ $d(z)=1$, then $G \cong P_{5}$. All other cases on the degrees of x, y and z no new graph exists satisfying the hypothesis.

Assume that the clique K_{n-3} has odd number of vertices.
Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices say u_{i} of K_{n-3}. Without loss of generality let x be adjacent to u_{i}. Then z is adjacent to the same u_{i} or u_{j} for $i \neq j$.

If z is adjacent to u_{i}, then $\left\{y, z, u_{j}, u_{k}\right\}$ for $i \neq j \neq k$ forms a $\gamma_{c p}$-set of G and hence $n=$ 6 . Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to both x and z. If $d(x)=2$ and $d(y)=d(z)=1$, then $G \cong G_{18}$.

Let $d(x)=d(y)=2$ and $d(z)=1$.
If $d(x)=2$ and $d(y)=d(z)=1$, then the graph is G_{18}. In G_{18}, y is adjacent to u_{1} or u_{2} (or equivalently u_{3}). If y is adjacent to u_{1}, then $\left\{z, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; If y is adjacent to u_{2}, then $G \cong G_{19}$.

Let $d(x)=d(y)=d(z)=2$.
Now if $d(x)=d(y)=2$ and $d(z)=1$, then the graph is G_{19}. In G_{19}, z is adjacent to u_{2} or u_{3}. If z is adjacent to u_{2}, then $G \cong G_{20}$; if z is adjacent to u_{3}, then $\left\{x, u_{1}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

If $d(x)=d(y)=2$ and $d(z)=3$, then $\chi=4$, which is a contradiction.
If $d(x)=3$ and $d(y)=d(z)=1$, then $G \cong G_{9}$.
Now let $d(x)=3, d(y)=2$ and $d(z)=1$.

Now, if $d(x)=d(y)=2, d(z)=1$, then the graph is G_{19}. In G_{19}, x is adjacent to u_{2} or u_{3}. If x is adjacent to u_{2}, then $\left\{z, u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; If x is adjacent to u_{3}, then $G \cong G_{21}$.

If $d(x)=3, d(y)=2$ and $d(z)=2$, then no new graph exists.
If $d(x)=3, d(y)=3$ and $d(z)=1$, then no new graph exits.
If $d(x)=2, d(y)=3$ and $d(z)=1$, then $G \cong G_{22}$.
If $d(x)=2, d(y)=3$ and $d(z)=2$, then no new graph exits.
If z is adjacent to u_{j}, then $\left\{y, z, u_{j}, u_{k}\right\}$ for $i \neq j \neq k$ forms a $\gamma_{c p}$ set of G and hence n $=6$. Hence $K=K_{3}$. Let u_{1}, u_{2}, u_{3} be the vertices of K_{3}. Let u_{1} be adjacent to x and u_{2} be adjacent to z.

If $d(x)=2$ and $d(y)=d(z)=1$, then $G \cong G_{23}$.
Now let $d(x)=d(y)=2$ and $d(z)=1$.
Now if $d(x)=2$ and $d(y)=d(z)=1$, then the graph is G_{23}. In G_{23}, y is adjacent to u_{1} or u_{2} or u_{3}. If y is adjacent to u_{1}, then $\left\{u_{1}, z\right\}$ is a $\gamma_{c p}$ set of G which is a contradiction; if y is adjacent to u_{2}, then $G \cong G_{19}$; If y is adjacent to u_{3}, then $G \cong G_{24}$.

If $d(x)=d(y)=d(z)=2$, then no new graph exists satisfying the hypothesis.
Let $d(x)=3$ and $d(y)=d(z)=1$.
Now, if $d(x)=2$ and $d(y)=d(z)=1$, the graph is G_{23}. In G_{23}, x is adjacent to u_{2}, or u_{3}. If x is adjacent to u_{2}, then $G \cong G_{25}$; If x is adjacent to u_{3}, then $G \cong G_{26}$.

Let $d(x)=3, d(y)=2$ and $d(z)=1$.
Now, if $d(x)=3$ and $d(y)=d(z)=1$, then the graphs are G_{25} or G_{26}. In G_{25}, y is adjacent to u_{1}, or u_{2}, or u_{3}. If y is adjacent to u_{1}, then $\left\{u_{1}, z\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction; If y is adjacent to u_{2}, then $\left\{z, u_{2}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; If y is adjacent to u_{3}, the $\left\{z, u_{3}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. In G_{26}, y is adjacent to u_{1} or u_{2} or u_{3}. If y is adjacent to u_{1}, then $\left\{u_{1}, z\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction. If y is adjacent to u_{2}, then $\{x, z\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction; if y is adjacent to u_{3}, then $\left\{z, u_{3}\right\}$ forms a $\gamma_{c p}$-set of G, which is a contradiction.

If $d(x)=3, d(y)=2$ and $d(z)=2$, then no new graph exists.
Now let G contains no K_{n-3}.
Then clearly $n \geq 6$.

If $n=6$, then $\gamma_{c p}=4$, and $\chi=3$ and G contains no K_{3}. Therefore G contains G, since $\chi=3$. Let v vertex of C_{5} which is not in C_{5}. Since G is connected and since G contains no K_{3}, v cannot be adjacent to two adjacent vertices of C_{5}. i.e., $d(v)=1$ or 2 and hence the only possible graphs are isomorphic to G_{27} or G_{28}.

If $n \geq 8$, then $\gamma_{c p}=n-2$ and $\chi \geq 5$ and G contains no K_{5}. In this case, if S is a $\gamma_{c p}$-set of G, then $<S>$ cannot contain K_{3} or P_{4} (otherwise $\gamma_{c p}(G) \leq n-2$). Therefore $\langle S\rangle$ is acyclic and hence $\chi(<S>)=2$. This implies that $\chi(G) \leq 4$, which is a contradiction.

If $n=7$, then $\gamma_{c p}=5$ and $\chi=4, G$ contains no K_{4}.
If S is a $\gamma_{c p}$-set of G, then $\langle S\rangle$ is any one of the following graphs given in Figure 2.4.

If $\langle S\rangle \cong H_{7}$, then $\chi(G) \leq 3$, which is a contradiction.
If $\langle S\rangle=H_{1}$ to H_{6}, then $\chi(<S>)=2$, and since $\chi(G)=4, G$ contains K_{4}, which is a contradiction.

Case 3: $\gamma_{c p}=n-4$ and $\chi=n-1$.
Since $\chi=n-1, G$ contains a clique K on $n-1$ vertices. Let x be the vertex other than the vertices of K_{n-1}. Since, G is connected, x is adjacent to at least one of the vertices say u_{i} of K_{n-1}.

Now assume that the clique K_{n-1} has even number of vertices.
Then $\left\{x, u_{i}, u_{j}\right\}$ for $i \neq j$ forms a $\gamma_{c p}$ set of G. Since $\gamma_{c p}=n-4$, we have $n=7$. Hence $K=K_{6}$. Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ be the vertices of K_{6}. Let x be adjacent to u_{1}. If $d(x)=1$, then $G \cong G_{29}$. If $d(x)=2$, then $\left\{u_{1}\right\}$ forms a $\gamma_{c p}$ set of G, which is a contradiction.

Now assume that the clique K_{n-1} has odd number of vertices.
Then $\left\{x, u_{i}\right\}$ forms a $\gamma_{c p}$-set of G. Since $\gamma_{c p}=n-4$, we have $n=6$. Hence $K=K_{5}$. Let $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, be the vertices of K_{5}. If $d(x)=1$, then $G \cong G_{30}$. If $d(x)=2$, then $G \cong G_{31}$. If $d(x)=3$, then $G \cong G_{32}$. If $d(x)=4$, then $G \cong G_{33}$.

Figure 2.4

Case 4: $\gamma_{c p}=n-5$ and $\chi=n$.
Since $\chi=n, G$ is K_{n}. If K_{n} has even number of vertices, then $\gamma_{c p}=2$ and hence $n=7$. Hence $G \cong K_{7}$. If K_{n} has odd number of vertices then $\gamma_{c p}=1$ and hence $n=6$. Hence $G \cong K_{6}$.

The authors are working similar results for the induced complementary perfect domination number and chromatic number of a graph, which will be reported later.

REFERENCES

[1] Harary F. (1972), Graph Theory, Addison Wesley Reading Mass.
[2] Haynes, Teresa W. (2001), Paired Domination in Graphs, Congr. Numer 150.
[3] Haynes, Teresa W., Induced-paired Domination in Graphs, Ars combin. 57, (2000), 111-128.
[4] Kulli V. R. and Janakiram B. The Non-split Domination Number of a Graph, Indian J. Pure. Appl. Math., 31(5), (2000), 545-550.
[5] Mahadevan G. (2005), On Domination theory and related concepts in graphs, Ph. D thesis.
[6] Paulraj Joseph J. and Mahadevan G., Complementary Connected Domination Number and Chromatic Number of a Graph, Proceedings of the Second National conference on Mathematical and Computational Models, editors Arulmozhi and Natarajan, Allied Publications, India. (2003), 342-349.
[7] Paulraj Joseph J. and Arumugam S., Domination and Connectivity in Graphs, International Journal of Management and Systems, 8(3), (1992), 233-236.
[8] Paulraj Joseph J. and Arumugam S., Domination and Colouring in Graphs, International Journal of Management and Systems, 15(1), (1999), 37-44.
[9] Paulraj Joseph J. and Arumugam. S., Domination in Graphs. International Journal of Management Systems, 11, (1995), 177-182.
[10] Paulraj Joseph J. and Mahadevan G. Paired Domination and Chromatic Number of a Graph, International Journal of Management and Systems, Submitted.
[11] Paulraj Joseph J. and Mahadevan G. Induced Paired Domination and Chromatic Number of a Graph, Journal of Discrete Mathematics and Cryptography, Submitted.
[12] Tamizh Chelvam T. and Jaya Prasad B., Complementary Connected Domination Number, International Journal of Management and Systems, 18(22), (2002).
[13] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
[14] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, New York, (1998).

G. Mahadevan

Department of Mathematics
Gandhigram Rural University
Gandhigram, India
E-mail: gmaha2003@yahoo.co.in

J. Paulraj Joseph
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli, India
E-mail: jpaulraj_2003@yahoo.co.in

A. Selvam
Department of Mathematics
VHNSN College
Virudhunagar-626001, India
E-mail: dr_selvam@yahoo.co.in

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

