COMPLEMENTARY PERFECT DOMINATION NUMBER AND CHROMATIC NUMBER OF A GRAPH

G. Mahadevan, J. Paulraj Joseph & A. Selvam

ABSTRACT: A subset S of V of a non-trivial graph G is said to be complementary perfect dominating set, if S is a dominating set and $\langle V - S \rangle$ has a perfect matching. The minimum cardinality taken over all complementary perfect dominating sets is called complementary perfect domination number and is denoted by $\gamma_{cp.}$ The minimum number of colours required to colour all the vertices of G in such a way that adjacent vertices do not receive the same colour is the chromatic number χ of G. In this paper, we find an upper bound for sum of these two parameters and characterize the corresponding extremal graphs of order upto 2n-5.

Keywords: Complementary Perfect domination number, Chromatic number.

AMS Subject classification: 05C.

1. INTRODUCTION

Let G = (V, E) be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by d(u). The maximum degree of a vertex is denoted by $\Delta(G)$. The path on n vertices is denoted by P_n . The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph.

A subset *S* of *V* is called a dominating set in *G* if every vertex in V - S is adjacent to at least one vertex in *S*. The minimum cardinality taken over all dominating sets in *G* is called the *domination number* of *G* and is denoted by γ . The dominating set is called *total* if the induced subgraph $\langle S \rangle$ has no isolated vertices and *connected* if $\langle S \rangle$ is connected. The minimum cardinality taken over all total (connected) dominating sets in *G* is called *total* (*connected*) domination number of *G* and is denoted by $\gamma_t(\gamma_c)$. The concept of complementary perfect domination number with applications was introduced by Paulraj Joseph J., Mahadevan G. and Selvam A. [5]

A subset *S* of *V* of a non-trivial graph *G* is said to be complementary perfect dominating set, if *S* is a dominating set and $\langle V - S \rangle$ has a perfect matching. The minimum cardinality taken over all complementary perfect dominating sets is called complementary perfect domination number and is denoted by γ_{cp}

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [7], Paulraj Joseph and Arumugam proved that $\gamma + \kappa \leq p$. In [8], Paulraj Joseph and Arumugam proved that $\gamma_c + \chi \leq p + 1$. They also characterized the class of graphs for which the upper bound is attained. They also proved similar results for γ and γ_t . In [6], Paulraj Joseph J. and Mahadevan G. proved that $\gamma_{cc} + \chi \leq 2n - 1$ and characterized the corresponding extremal graphs.

Previous Results

Theorem 1.1[5]: For any graph G, $\gamma_{cn}(G) \leq n - 2$.

Theorem 1.2[5]: For any graph G, $\gamma_{cn}(G) = n$ if and only if *G* is a star.

Theorem 1.3[1]: For any graph G, $\chi(G) = \Delta(G)$ or $\Delta(G) + 1$.

Theorem 1.4[1]: If *G* is *k*-critical, then $\delta(G) \ge k - 1$.

2. MAIN RESULTS

Theorem 2.1: For any connected graph G, $\gamma_{cp} + \chi \le 2n$, and equality holds if and only if *G* is isomorphic to K_2 .

Proof: Clearly for any graph G, $\gamma_{cp} \le n$. Also for any graph G, $\chi \le \Delta + 1$. Hence $\gamma_{cp} + \chi \le n + (\Delta + 1) = n + (n - 1 + 1) = 2n$. Now assume that $\gamma_{cp} + \chi = 2n$. This is possible only if $\gamma_{cp} = n$ and $\chi = n$. Since $\gamma_{cp} = n$, by theorem [1.2] G is a Star. Since $\chi = n$, G is K_2 . Converse is obvious.

Theorem 2.2: For any connected graph G, $\gamma_{cp} + \chi = 2n - 1$ if and only if G is isomorphic to P_3 .

Proof: Assume that $\gamma_{cp} + \chi = 2n - 1$. This is possible only if $\gamma_{cp} = n$ and $\chi = n - 1$ (or) $\gamma_{cp} = n - 1$ and $\chi = n$.

Case 1: $\gamma_{cn} = n$ and $\chi = n - 1$.

Since $\gamma_{cp} = n$, by theorem [1.2] *G* is a star. Since $\chi = n - 1$, 2 = n - 1 so that n = 3. Hence $G \cong K_{1,2} = P_3$.

Case 2: $\gamma_{cn} = n - 1$ and $\chi = n$.

Since $\gamma_{cp} = n - 1$, there exists a complementary perfect dominating set *S* with n - 1 elements. Hence $\langle V - S \rangle$ has isolate, which is a contradiction. Hence no graph exists. Converse is obvious.

Theorem 2.3: For any connected graph G, $\gamma_{cp} + \chi = 2n - 2$ if and only if G is isomorphic to K_3 , K_4 , $K_{1,3}$.

Proof: Assume that $\gamma_{cp} + \chi = 2n - 2$. This is possible only if $\gamma_{cp} = n$ and $\chi = n - 2$ (or) $\gamma_{cp} = n - 1$ and $\chi = n - 1$ (or) $\gamma_{cp} = n - 2$ and $\chi = n$.

The case that $\gamma_{cn} = n - 1$ and $\chi = n - 1$ is not possible.

Case 1: $\gamma_{cn} = n$ and $\chi = n - 2$.

Since $\gamma_{cp} = n$, by theorem [1.2] *G* is a star. Since $\chi = n - 2$, 2 = n - 2 so that n = 4. Hence $G \cong K_{1,3}$.

Case 2: $\gamma_{cn} = n - 2$ and $\chi = n$.

Since $\chi = n$, $G \cong K_n$. If *G* has even number of vertices, then $\gamma_{cp} = 2$ so that n = 4. Hence $G \cong K_4$. If *G* has odd number of vertices then $\gamma_{cp} = 1$ so that n = 3. Hence $G \cong K_3$.

Theorem 2.4: For any connected graph G, $\gamma_{cp} + \chi = 2n - 3$ if and only if G is isomorphic to $K_{1,4}$, G_1 or G_2 given in Figure 2.1.

Proof: Assume that $\gamma_{cp} + \chi = 2n - 3$. This is possible only if $\gamma_{cp} = n$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 1$ and $\chi = n - 2$ (or) $\gamma_{cp} = n - 2$ and $\chi = n - 1$ (or) $\gamma_{cp} = n - 3$ and $\chi = n$. The cases $\gamma_{cp} = n - 1$ and $\chi = n - 2$ (or) $\gamma_{cp} = n - 3$ and $\chi = n$ are not possible.

Case 1: $\gamma_{cn} = n$ and $\chi = n - 3$.

Since $\gamma_{cp} = n$, by theorem [1.2], *G* is a star. Since $\chi = n - 3$, 2 = n - 3 so that n = 5. Hence $G \cong K_{1,4}$.

Case 2: $\gamma_{cn} = n - 2$ and $\chi = n - 1$.

Since $\chi = n - 1$, G contains a clique K on n - 1 vertices. Let x be a vertex other than the vertices of K_{n-1} . Since G is connected, x is adjacent to at least one vertex say u_i of K_{n-1} .

If the clique K_{n-1} has even number of vertices, then $\{x, u_i, u_j\}$ for some u_j in K_{n-1} forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 5. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let x be adjacent to u_1 . If d(x) = 1, then $G \cong G_1$.

If x is adjacent to one more vertex say u_j of K_{n-1} , then $\{u_j\}$ is a γ_{cp} -set, which is a contradiction.

Figure 2.1

Figure 2.2

If the clique K has an odd number of vertices, then $\{x, u_i\}$ is a γ_{cp} -set of G. Since $\gamma_{cp} = n-2$, we have n = 4. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let x be adjacent to u_1 . If d(x) = 1, then $G \cong G_2$. If x is adjacent to one more vertex say u_j in K_{n-1} , then $\{u_i\}$ is a γ_{cp} -set which is a contradiction.

Theorem 2.5: For any connected graph G, $\gamma_{cp} + \chi = 2n - 4$ if and only if G is isomorphic to K_5 , K_6 , $K_{1.5}$, P_4 , C_4 , or any one of the graphs G_1 to G_{10} given in Figure 2.2.

Proof: Assume that $\gamma_{cp} + \chi = 2n - 4$. This is possible only if $\gamma_{cp} = n$ and $\chi = n - 4$ (or) $\gamma_{cp} = n - 1$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 2$ and $\chi = n - 2$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 1$ (or) $\gamma_{cp} = n - 4$ and $\chi = n$. The cases for which $\gamma_{cp} = n - 1$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ (

Case 1: $\gamma_{cp} = n$ and $\chi = n - 4$.

Since $\gamma_{cp} = n$, by theorem [1.2] *G* is a star. Since $\chi = n - 4$, 2 = n - 4 so that n = 6. Hence $G \cong K_{1,5}$.

Case 2: $\gamma_{cn} = n - 2$ and $\chi = n - 2$.

Since $\chi = n - 2$, *G* contains a clique *K* on n - 2 vertices. Let $S = \{x, y\} = V(G) - V(K)$. Then $\langle S \rangle = K_2$ or K_2 .

Subcase 1: $< S > = K_2$

Since G is connected, there exists a vertex say u_i in K_{n-2} which is adjacent to x (or equivalently y).

Now, Assume that the clique K_{n-2} has even number of vertices.

Then $\{y, u_j\}$ for $i \neq j$ in K_{n-2} forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 4. Hence $K = K_2 = uv$. Let x be adjacent to u. If d(x) = 2 and d(y) = 1, then $G \cong P_4$. If d(x) = 3, then $\chi = 3$, which is a contradiction.

Now let d(x) = d(y) = 2.

Without loss of generality let x be adjacent to u. Then y is adjacent to u or v. If y is adjacent to u, then $\chi = 3$, which is a contradiction. If y is adjacent to v, then $G \cong C_4$.

Now assume that the clique K has odd number of vertices.

Then { y, x, u_i } forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 5. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Without loss of generality let x be adjacent to u_1 . If d(x) = 2 and d(y) = 1, then $G \cong G_1$. Let d(x) = 3 and d(y) = 1. Without loss of generality, let x be adjacent to both u_1 and u_3 . Then $G \cong G_2$. If d(x) = 4 and d(y) = 1, then $\chi = 4$, which is a contradiction. Let d(x) = d(y) = 2. Let x be adjacent to u_1 . Then y is adjacent to u_1 or u_3 (or equivalently u_2). If y is adjacent to u_1 , then { u_1 } is a γ_{cp} set which is a contradiction. If y is adjacent to u_3 , then $G \cong G_3$. Let d(x) = 2 and d(y) = 3. Let x be adjacent to u_1 . Then y is adjacent to u_1 and one of { u_2, u_3 } (or) y is adjacent to both u_2 and u_3 . If y is adjacent to u_1 and u_2 , then { u_1 } is a γ_{cp} set which is a contradiction. If y is adjacent to u_1 and u_2 . Then y is adjacent to u_1 and u_2 . Then y = 3. Without loss of generality, let x be adjacent to u_1 and u_2 . Then y = 3. Without loss of generality. If y is adjacent to u_1 and u_2 , then u_1 is a y_{cp} set which is a contradiction. If y is adjacent to u_1 and u_2 , then u_1 and u_2 (or) y is adjacent to u_3 and u_1 (or equivalently u_2). If y is adjacent to u_1 and u_2 (or) y is adjacent to u_3 and u_1 (or equivalently u_2). If y is adjacent to u_1 and u_2 (or) y is adjacent to u_3 and u_1 (or equivalently u_2). If y is adjacent to u_1 and u_2 , then $\chi = 4$, which is a contradiction. If y is adjacent to u_3 and u_1 , then { u_1 } is a γ_{cp} -set, which is a contradiction. If y is adjacent to u_3 and u_1 , then { u_1 } is a γ_{cp} -set, which is a contradiction.

Subcase 2: $\langle S \rangle = \overline{K}_2$.

Since G is connected, x and y are adjacent to a common vertex or distinct vertices of K_{n-2} .

Subcase 2(a): Let x and y be adjacent to a common vertex say u_i of K_{n-2} .

Now, Assume that the clique K_{n-2} has even number of vertices.

Then {x, y, u_i , u_j } for $i \neq j$ forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 6. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let u_1 be adjacent to both x and y. If d(x) = d(y) = 1, then $G \cong G_5$. Let d(x) = 2 and d(y) = 1. then {y, u_i } forms a γ_{cp} -set of G, which is a contradiction.

Now assume that the clique *K* has odd number of vertices. Then $\{x, y, u_i\}$ forms a γ_{cp} -set of *G*. Since a $\gamma_{cp} = n - 2$, we have n = 5. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to both *x* and *y*. If d(x) = d(y) = 1, then $G \cong G_6$. Let d(x) = 2 and

d(y) = 1. Without loss of generality, let x be adjacent to u_1 and u_2 , then $G \cong G_7$. If d(x) = 3 and d(y) = 1, then $\chi = 4$, which is a contradiction. Let d(x) = d(y) = 2. Without loss of generality, let x be adjacent to u_1 and u_2 . Then y is adjacent to u_2 or u_3 . If y is adjacent to u_2 , then $G \cong G_8$. If y is adjacent to u_3 , then $\{u1\}$ is a γ_{cp} -set which is a contradiction.

Subcase 2(b): Let x and y are adjacent to distinct vertices of K_{n-2} .

Let *x* be adjacent to u_i and *y* is adjacent to u_i for $i \neq j$.

Assume that clique K_{n-2} has even number of vertices.

Then { x, y, u_i, u_j } for $i \neq j$ forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 6. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Without loss of generality, let x_1 be adjacent to u_1 and x_2 be adjacent to u_2 . If d(x) = d(y) = 1, then $G \cong G_9$. Let d(x) = 2 and d(y) = 1. Then x is adjacent to u_2 or u_3 (or equivalently to u_4). If x is adjacent to u_2 , then { y, u_2 } forms a γ_{cp} -set of G, which is a contradiction. If x is adjacent to u_3 (or equivalently u_4), then { y, u_4 } forms a γ_{cp} -set of G. If d(x) = d(y) = 2, then no graph exists.

Now assume that the clique K has odd number of vertices. Then $\{x, y, u_i\}$ forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 5. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Without loss of generality, let x be adjacent to u_1 and y be adjacent to u_2 . If d(x) = d(y) = 1, then $G \cong G_{10}$. Let d(x) = 2 and d(y) = 1. Then x is adjacent to u_2 or u_3 . If x is adjacent to u_3 , then $G \cong G_{12}$; If x is adjacent to u_2 , then $G \cong G_7$. If d(x) = 3 and d(y) = 1, then $\chi = 4$, which is a contradiction. If d(x) = d(y) = 2, let x be adjacent to u_1 and u_2 . Then y is adjacent to u_1 or u_3 . If y is adjacent to u_1 , then $G \cong G_8$; If y is adjacent to u_3 , then $\{u_2\}$ forms a γ_{cp} -set of G, which is a contradiction. Let x be adjacent to u_1 and u_3 . Then y is adjacent to u_1 or u_3 .

If y is adjacent to u_1 , then $\{u_1\}$ forms a γ_{cp} -set of G, which is a contradiction; If y is adjacent to u_3 , then $\{u_3\}$ forms a γ_{cp} -set of G, which is a contradiction.

Case 3: $\gamma_{cn} = n - 4$ and $\chi = n$.

Since $\chi = n$, G is K_n . If K_n has even number of vertices, then $\gamma_{cp} = 2$ and hence n = 6. Hence $G \cong K_6$. If K_n has odd number of vertices then $\gamma_{cp} = 1$ and hence n = 5. Hence $G \cong K_5$.

Theorem 2.4: For any connected graph G, $\gamma_{cp} + \chi = 2n - 5$ if and only if G is isomorphic to K_6 , K_7 , $K_{1,6}$ or any one of the graphs G_1 to G_{33} given in Figure 2.3.

Proof: If *G* is any of the graphs given in figure 6.5, then clearly $\gamma_{cp} + \chi = 2n - 5$. Conversely, assume that $\gamma_{cp} + \chi = 2n - 5$. This is possible only if $\gamma_{cp} = n$ and $\chi = n - 5$ (or) $\gamma_{cp} = n - 1$ and $\chi = n - 4$ (or) $\gamma_{cp} = n - 2$ and $\chi = n - 3$ (or) $\gamma_{cp} = n - 3$ and $\chi = n - 2$ (or) $\gamma_{cp} = n - 4$ and $\chi = n - 1$ (or) $\gamma_{cp} = n - 5$ and $\chi = n$. The cases for which $\gamma_{cp} = n - 1$ and $\chi = n - 2$ (or) n - 4 (or) $\gamma_{cp} = n - 3$ and $\chi = n - 2$ are not possible.

Case 1: $\gamma_{cp} = n$ and $\chi = n - 5$.

Since $\gamma_{cp} = n$, by theorem [1.2] *G* is a star. Since $\chi = n - 5$, 2 = n - 5 so that n = 7. Hence $G \cong K_{1,6}$

Case 2: $\gamma_{cn} = n - 2$ and $\chi = n - 3$.

Then G contains a clique K_{n-3} or G contains no K_{n-3} .

Let G contains a clique K_{n-3}

Let $S = \{x, y, z\} = V(G) - V(K)$. Then $\langle S \rangle = K_3$ or K_3 or P_3 or $K_2 \cup K_1$.

Subcase: $1 < S > = K_3$.

Since G is connected, x is adjacent to some u_i in K_{n-3} .

If K_{n-3} has even number of vertices, then $\{x, u_i, u_j\}$ for $i \neq j$ in K_{n-3} forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 5. But $\chi = n - 3 = 2$, which is a contradiction. Hence no graph exists in this case.

If K_{n-3} has odd number of vertices, then $\{x, u_i\}$ is a γ_{cp} -set of G. Since a $\gamma_{cp} = n - 2$, we have n = 4. But $\chi = n - 3 = 1$, which is a contradiction. Hence no graph exists in this case.

Subcase 2: $\langle S \rangle = \overline{K}_3$.

Since G is connected, one of the vertices of K_{n-3} is adjacent to all the vertices of S or two vertices of S or one vertex of S.

Subcase 2(a): Let u_i for some *i* in K_{n-3} be adjacent to all the vertices of *S*.

Now assume that the clique K_{n-3} has even number of vertices.

Then $\{x, y, z, u_i, u_j\}$ is a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 7. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let u_1 be adjacent to all of S. If d(x) = d(y) = d(z)= 1, then G is $G \cong G_1$

Let d(x) = 2, d(y) = d(z) = 1. Let x be adjacent to u_2 . Then $\{y, z, u_2\}$ forms a γ_{cp} -set of G, which is a contradiction.

Now assume that K_{n-3} has odd number of vertices.

Then { x, y, z, u_i } forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to all the vertices of S.

If d(x) = d(y) = d(z) = 1, then $G \cong G_2$.

If d(x) = 2, d(y) = d(z) = 1, then $G \cong G_3$.

If d(x) = 3, d(y) = d(z) = 1, then $\chi = 4$, which is a contradiction.

Let d(x) = d(y) = 2 and d(z) = 1.

Now, let x be adjacent to u_1 and u_2 . Then y is adjacent to u_2 or u_3 . If y is adjacent to u_2 , then $G \cong G_4$. If y is adjacent to u_3 , then $\{z, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction.

Now, let d(x) = d(y) = d(z) = 2.

If d(x) = d(y) = 2 and d(z) = 1, then the graph is G_4 . Now in G_4 , z is adjacent to u_3 or u_2 . If z is adjacent to u_3 , then $\{y, u_1\}$ forms a γ_{cp} -set, which is a contradiction. If z is adjacent to u_2 , then $G \cong G_5$.

Subcase 2(b): Let u_i for some *i* in K_{n-3} is adjacent to *x* and *y*, and u_j for some $i \neq j$ in K_{n-3} is adjacent to *z*.

Now assume that K_{n-3} has even number of vertices.

Then $\{x, y, z, u_i, u_j\}$ forms a γ_{cp} -set of G so that n = 7. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let u_1 be adjacent to x and y and let u_2 be adjacent to z. If d(x) = d(y) = d(z) = 1, then $G \cong G_6$.

Let d(x) = 2, d(y) = d(z) = 1.

If d(x) = d(y) = d(z) = 1, then the graph is G_6 . In G_6 , x is adjacent to u_2 or u_3 (or equivalently u_4). If x is adjacent to u_2 then $\{y, z, u_2\}$ forms a γ_{cp} -set of G, which is a contradiction; if x is adjacent to u_3 , then $\{y, z, u_3\}$ forms a γ_{cp} -set of G which is a contradiction.

Let d(x) = d(y) = 1 and d(z) = 2.

If d(x) = d(y) = d(z) = 1, then the graph is G_6 . In G_6 , z is adjacent to u_1 or u_3 (or equivalently u_4). If z is adjacent to u_1 then $\{x, y, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction; if z is adjacent to u_3 , then $\{x, y, u_3\}$ forms a γ_{cp} -set of G which is a contradiction.

Now assume that K_{n-3} has odd number of vertices.

Then { x, y, z, u_i } forms a γ_{cp} -set of G and hence n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to both x and y and let u_2 be adjacent to z. If d(x) = d(y) = d(z) = 1, then $G \cong G_7$

Let d(x) = 2, and d(y) = d(z) = 1.

Now, if d(x) = d(y) = d(z) = 1, then the graph is G_7 . In G_7 , x is adjacent to u_2 or u_3 . If x is adjacent to u_2 , then $G \cong G_8$; if x is adjacent to u_3 , then $G \cong G_9$.

If d(x) = 3 and d(y) = d(z) = 1. Then $\chi = 4$, which is a contradiction.

Now Let d(x) = d(y) = 2 and d(z) = 1.

If d(x) = 2, and d(y) = d(z) = 1, then the graphs are G_8 or G_9 . Now in G_8 , y is adjacent to u_2 or u_3 . If y is adjacent to u_2 , then $G \cong G_4$; If y is adjacent to u_3 , then $\{z, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction. In G_9 , y is adjacent to u_2 or u_3 . If y is adjacent to u_2 , then $\{z, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction; If y is adjacent to u_3 , then $G \cong G_{10}$.

Now Let d(x) = d(y) = d(z) = 2.

If d(x) = d(y) = 2 and d(z) = 1, then the graph is G_4 or G_{10} . Now in G_4 , z is adjacent to u_2 or u_3 . If z is adjacent to u_2 , then $G \cong G_5$; If z is adjacent to u_3 , then $\{y, u_1\}$ forms a γ_{cp} set of G, which is a contradiction. In G_{10} , z is adjacent to u_1 or u_3 . If z is adjacent to u_1 , then $\{u_1, y\}$ forms a γ_{cp} set of G, which is a contradiction. If z is adjacent to u_3 , then $\{x, u_3\}$ forms a γ_{cp} set of G, which is a contradiction.

Now let d(x) = d(y) = 1 and d(z) = 2.

If d(x) = d(y) = d(z) = 1, then the graph is G_7 . In G_7 , z is adjacent to u_1 or u_3 . If z is adjacent to u_1 , then $G \cong G_3$; If z is adjacent to u_3 , then $G \cong G_{11}$.

Now Let d(x) = 2, d(y) = 1 and d(z) = 2.

Now if d(x) = 2, d(y) = d(z) = 1, then the graphs are G_8 or G_9 . In G_8 , z is adjacent to u_1 or u_3 . If z is adjacent to u_1 , then $G \cong G_4$; If z is adjacent to u_3 , then $\{y, u_2\}$ forms a γ_{cp} set of G, which is a contradiction. In G_9 , z is adjacent to u_1 or u_3 . If z is adjacent to u_1 , then $\{y, u_1\}$ forms a γ_{cp} set of G, which is a contradiction. If z is adjacent to u_3 , then $\{y, u_3\}$ forms a γ_{cp} set of G, which is a contradiction.

If let d(x) = d(y) = 1 and d(z) = 3. Then $\chi = 4$, which is a contradiction.

Subcase 2(c): Let u_i be adjacent to x and u_j for $i \neq j$ be adjacent to y and u_k for $i \neq j \neq k$ be adjacent to z.

Assume that the Clique K_{n-3} has even number of vertices.

Then $\{x, y, z, u_i, u_j\}$ forms a γ_{cp} -set of G so that n = 7. Hence $K = K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4 . Let u_1 be adjacent to x and u_2 be adjacent to y and u_3 be adjacent to z.

If d(x) = d(y) = d(z) = 1, then $G \cong G_{12}$.

Let d(x) = 2 and d(y) = d(z) = 1. Then clearly no graph exists satisfying the hypothesis.

Assume that the Clique K_{n-3} has odd number of vertices.

Then $\{x, y, z, u_i\}$ forms a γ_{cp} -set of *G* and hence n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to *x* and u_2 be adjacent to *y* and u_3 be adjacent to *z*. If d(x) = d(y) = d(z) = 1, then $G \cong G_{13}$.

If d(x) = 2 and d(y) = d(z) = 1, then $G \cong G_{14}$

If d(x) = 3 and d(y) = d(z) = 1, then $\chi = 4$, which is a contradiction.

If d(x) = d(y) = 2 and d(z) = 1, then $G \cong G_{10}$.

If d(x) = d(y) = d(z) = 2, then no graph exists satisfying the hypothesis.

Subcase 3: $< S > = P_3 = (x \ y \ z).$

Assume that the clique $K = K_{n-3}$ have even number of vertices.

Since G is connected, atleast one of the vertices say u_i of K_{n-3} , is adjacent to x (or equivalently z) or y.

If u_i is adjacent to x, then $\{z, u_i, u_j\}$ for $i \neq j$ forms a γ_{cp} set of G. Since $\gamma_{cp} = n - 2$, we have n = 5. Hence $K = K_2 = uv$. Let x be adjacent to u. If d(x) = d(y) = 2 and d(z) = 1, then $G \cong P_5$. If d(x) = 3, then $\chi = 3$, which is a contradiction. If d(x) = d(y) = d(z) = 2, then $G \cong G_{15}$.

If u_i is adjacent to y, then $\{x, z, u_j\}$ for $i \neq j$ forms a γ_{cp} set of G. Since $\gamma_{cp} = n - 2$, n = 5. Hence $K = K_2 = uv$. Let u be adjacent to y. If d(x) = d(z) = 1 and d(y) = 3, then $G \cong G_{16}$. In all other cases on the degrees of the vertices of x, y and z, no new graph exists satisfying the hypothesis.

Assume that the clique K_{n-3} have odd number of vertices.

Since G is connected, at least one of the vertices say u_i , of K_{n-3} , is adjacent to x (or equivalently z) or y.

If u_i is adjacent to x, then $\{z, u_i\}$ forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 2$, we have n = 4. Hence $K = K_1$ which is a contradiction.

If u_i is adjacent to y, then $\{x, z \, u_j, u_k\}$ forms a γ_{cp} -set of G and hence n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 .

Let u_1 be adjacent to y.

Let d(y) = 3.

If d(x) = d(z) = 1, then $G \cong G_{17}$. In all other cases on the degrees of x and z, no new graph exists satisfying the hypothesis.

Let d(y) = 4.

If d(x) = d(z) = 1, then $G \cong G_{11}$. In all other cases on the degrees of x and z, no new graph exists satisfying the hypothesis.

Let d(y) = 5. Then $\chi = 5$, which is a contradiction.

Subcase 4: $\langle S \rangle = K_2 \cup K_1$.

Let *xy* be the edge in $\langle S \rangle$.

Assume that the clique K_{n-3} have even number of vertices.

Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices say u_i of K_{n-3} . Without loss of generality let x be adjacent to u_i . Then z is adjacent to the same u_i or u_i for $i \neq j$.

If z is adjacent to u_i , then $\{y, z, u_j\}$ for $i \neq j$ forms a γ_{cp} set of G and hence n = 5. Hence $K = K_2 = uv$. Let u be adjacent to both x and z. If d(x) = 2 and d(y) = d(z) = 1, then $G \cong G_{16}$; If d(x) = d(y) = 2 and d(z) = 1, then $G \cong G_{15}$. Let d(x) = d(y) = d(z) = 2. Then $\chi = 3$, which is a contradiction.

If z is adjacent to u_j , for $i \neq j$, then $\{y, z, u_j\}$ forms a γ_{cp} set of G and hence n = 5. Hence $K = K_2 = uv$. Let x be adjacent to u and z be adjacent to v. If d(x) = 2 and d(y) = d(z) = 1, then $G \cong P_5$. All other cases on the degrees of x, y and z no new graph exists satisfying the hypothesis.

Assume that the clique K_{n-3} has odd number of vertices.

Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices say u_i of K_{n-3} . Without loss of generality let x be adjacent to u_i . Then z is adjacent to the same u_i or u_i for $i \neq j$.

If z is adjacent to u_i , then $\{y, z, u_j, u_k\}$ for $i \neq j \neq k$ forms a γ_{cp} -set of G and hence n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to both x and z. If d(x) = 2 and d(y) = d(z) = 1, then $G \cong G_{18}$.

Let d(x) = d(y) = 2 and d(z) = 1.

If d(x) = 2 and d(y) = d(z) = 1, then the graph is G_{18} . In G_{18} , y is adjacent to u_1 or u_2 (or equivalently u_3). If y is adjacent to u_1 , then $\{z, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction; If y is adjacent to u_2 , then $G \cong G_{19}$.

Let d(x) = d(y) = d(z) = 2.

Now if d(x) = d(y) = 2 and d(z) = 1, then the graph is G_{19} . In G_{19} , z is adjacent to u_2 or u_3 . If z is adjacent to u_2 , then $G \cong G_{20}$; if z is adjacent to u_3 , then $\{x, u_1\}$ forms a γ_{cp} -set of G, which is a contradiction.

If d(x) = d(y) = 2 and d(z) = 3, then $\chi = 4$, which is a contradiction.

If d(x) = 3 and d(y) = d(z) = 1, then $G \cong G_0$.

Now let d(x) = 3, d(y) = 2 and d(z) = 1.

Now, if d(x) = d(y) = 2, d(z) = 1, then the graph is G_{19} . In G_{19} , x is adjacent to u_2 or u_3 . If x is adjacent to u_2 , then $\{z, u_2\}$ forms a γ_{cp} -set of G, which is a contradiction; If x is adjacent to u_3 then $G \cong G_{21}$.

If d(x) = 3, d(y) = 2 and d(z) = 2, then no new graph exists.

If d(x) = 3, d(y) = 3 and d(z) = 1, then no new graph exits.

If d(x) = 2, d(y) = 3 and d(z) = 1, then $G \cong G_{22}$.

If d(x) = 2, d(y) = 3 and d(z) = 2, then no new graph exits.

If z is adjacent to u_j , then $\{y, z, u_j, u_k\}$ for $i \neq j \neq k$ forms a γ_{cp} set of G and hence n = 6. Hence $K = K_3$. Let u_1, u_2, u_3 be the vertices of K_3 . Let u_1 be adjacent to x and u_2 be adjacent to z.

If d(x) = 2 and d(y) = d(z) = 1, then $G \cong G_{23}$.

Now let d(x) = d(y) = 2 and d(z) = 1.

Now if d(x) = 2 and d(y) = d(z) = 1, then the graph is G_{23} . In G_{23} , y is adjacent to u_1 or u_2 or u_3 . If y is adjacent to u_1 , then $\{u_1, z\}$ is a γ_{cp} set of G which is a contradiction; if y is adjacent to u_2 , then $G \cong G_{10}$; If y is adjacent to u_3 , then $G \cong G_{24}$.

If d(x) = d(y) = d(z) = 2, then no new graph exists satisfying the hypothesis.

Let d(x) = 3 and d(y) = d(z) = 1.

Now, if d(x) = 2 and d(y) = d(z) = 1, the graph is G_{23} . In G_{23} , x is adjacent to u_2 , or u_3 . If x is adjacent to u_2 , then $G \cong G_{25}$; If x is adjacent to u_3 , then $G \cong G_{26}$.

Let d(x) = 3, d(y) = 2 and d(z) = 1.

Now, if d(x) = 3 and d(y) = d(z) = 1, then the graphs are G_{25} or G_{26} . In G_{25} , y is adjacent to u_1 , or u_2 , or u_3 . If y is adjacent to u_1 , then $\{u_1, z\}$ forms a γ_{cp} set of G, which is a contradiction; If y is adjacent to u_2 , then $\{z, u_2\}$ forms a γ_{cp} -set of G, which is a contradiction; If y is adjacent to u_3 , the $\{z, u_3\}$ forms a γ_{cp} set of G, which is a contradiction. In G_{26} , y is adjacent to u_1 or u_2 or u_3 . If y is adjacent to u_1 , then $\{u_1, z\}$ forms a γ_{cp} -set of G, which is a contradiction. If y is adjacent to u_3 or u_3 . If y is adjacent to u_1 , then $\{u_1, z\}$ forms a γ_{cp} -set of G, which is a contradiction. If y is adjacent to u_2 , then $\{x, z\}$ forms a γ_{cp} -set of G, which is a contradiction; if y is adjacent to u_3 , then $\{z, u_3\}$ forms a γ_{cp} -set of G, which is a contradiction.

If d(x) = 3, d(y) = 2 and d(z) = 2, then no new graph exists.

Now let G contains no K_{n-3} .

Then clearly $n \ge 6$.

If n = 6, then $\gamma_{cp} = 4$, and $\chi = 3$ and G contains no K_3 . Therefore G contains G, since $\chi = 3$. Let v vertex of C_5 which is not in C_5 . Since G is connected and since G contains no K_3 , v cannot be adjacent to two adjacent vertices of C_5 . i.e., d(v) = 1 or 2 and hence the only possible graphs are isomorphic to G_{27} or G_{28} .

If $n \ge 8$, then $\gamma_{cp} = n - 2$ and $\chi \ge 5$ and *G* contains no K_5 . In this case, if *S* is a γ_{cp} -set of *G*, then $\langle S \rangle$ cannot contain K_3 or P_4 (otherwise $\gamma_{cp}(G) \le n - 2$). Therefore $\langle S \rangle$ is acyclic and hence $\chi(\langle S \rangle) = 2$. This implies that $\chi(G) \le 4$, which is a contradiction.

If n = 7, then $\gamma_{cn} = 5$ and $\chi = 4$, G contains no K_4 .

If *S* is a γ_{cp} -set of *G*, then $\langle S \rangle$ is any one of the following graphs given in Figure 2.4.

If $\langle S \rangle \cong H_{\gamma}$, then $\chi(G) \leq 3$, which is a contradiction.

If $\langle S \rangle = H_1$ to H_6 , then $\chi(\langle S \rangle) = 2$, and since $\chi(G) = 4$, G contains K_4 , which is a contradiction.

Case 3: $\gamma_{cn} = n - 4$ and $\chi = n - 1$.

Since $\chi = n - 1$, G contains a clique K on n - 1 vertices. Let x be the vertex other than the vertices of K_{n-1} . Since, G is connected, x is adjacent to at least one of the vertices say u_i of K_{n-1} .

Now assume that the clique K_{n-1} has even number of vertices.

Then $\{x, u_i, u_j\}$ for $i \neq j$ forms a γ_{cp} set of G. Since $\gamma_{cp} = n - 4$, we have n = 7. Hence $K = K_6$. Let $u_1, u_2, u_3, u_4, u_5, u_6$ be the vertices of K_6 . Let x be adjacent to u_1 . If d(x) = 1, then $G \cong G_{29}$. If d(x) = 2, then $\{u_1\}$ forms a γ_{cp} set of G, which is a contradiction.

Now assume that the clique K_{n-1} has odd number of vertices.

Then $\{x, u_i\}$ forms a γ_{cp} -set of G. Since $\gamma_{cp} = n - 4$, we have n = 6. Hence $K = K_5$. Let u_1, u_2, u_3, u_4, u_5 , be the vertices of K_5 . If d(x) = 1, then $G \cong G_{30}$. If d(x) = 2, then $G \cong G_{31}$. If d(x) = 3, then $G \cong G_{32}$. If d(x) = 4, then $G \cong G_{33}$.

Case 4: $\gamma_{cn} = n - 5$ and $\chi = n$.

Since $\chi = n$, *G* is K_n . If K_n has even number of vertices, then $\gamma_{cp} = 2$ and hence n = 7. Hence $G \cong K_7$. If K_n has odd number of vertices then $\gamma_{cp} = 1$ and hence n = 6. Hence $G \cong K_6$.

The authors are working similar results for the induced complementary perfect domination number and chromatic number of a graph, which will be reported later.

REFERENCES

- [1] Harary F. (1972), Graph Theory, Addison Wesley Reading Mass.
- [2] Haynes, Teresa W. (2001), Paired Domination in Graphs, Congr. Numer 150.
- [3] Haynes, Teresa W., Induced-paired Domination in Graphs, Ars combin. 57, (2000), 111–128.
- [4] Kulli V. R. and Janakiram B. The Non-split Domination Number of a Graph, *Indian J. Pure. Appl. Math.*, **31**(5), (2000), 545–550.
- [5] Mahadevan G. (2005), On Domination theory and related concepts in graphs, Ph. D thesis.
- [6] Paulraj Joseph J. and Mahadevan G., Complementary Connected Domination Number and Chromatic Number of a Graph, Proceedings of the Second National conference on Mathematical and Computational Models, editors Arulmozhi and Natarajan, Allied Publications, India. (2003), 342–349.
- [7] Paulraj Joseph J. and Arumugam S., Domination and Connectivity in Graphs, *International Journal of Management and Systems*, **8**(3), (1992), 233–236.
- [8] Paulraj Joseph J. and Arumugam S., Domination and Colouring in Graphs, *International Journal* of Management and Systems, **15**(1), (1999), 37–44.
- [9] Paulraj Joseph J. and Arumugam. S., Domination in Graphs. International Journal of Management Systems, 11, (1995), 177–182.
- [10] Paulraj Joseph J. and Mahadevan G. Paired Domination and Chromatic Number of a Graph, International Journal of Management and Systems, Submitted.
- [11] Paulraj Joseph J. and Mahadevan G. Induced Paired Domination and Chromatic Number of a Graph, *Journal of Discrete Mathematics and Cryptography*, Submitted.
- [12] Tamizh Chelvam T. and Jaya Prasad B., Complementary Connected Domination Number, International Journal of Management and Systems, 18(22), (2002).
- [13] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).

[14] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, New York, (1998).

G. Mahadevan

Department of Mathematics Gandhigram Rural University Gandhigram, India *E-mail: gmaha2003@yahoo.co.in*

J. Paulraj Joseph

Department of Mathematics Manonmaniam Sundaranar University Tirunelveli, India *E-mail: jpaulraj_2003@yahoo.co.in*

A. Selvam Department of Mathematics VHNSN College Virudhunagar-626 001, India *E-mail: dr_selvam@yahoo.co.in*

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/