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ABSTRACT: A subset S of V of a non-trivial graph G is said to be complementary
perfect dominating set, if S is a dominating set and <V — S> has a perfect matching.
The minimum cardinality taken over all complementary perfect dominating sets is
called complementary perfect domination number and is denoted by Ve The minimum
number of colours required to colour all the vertices of G in such a Way that adjacent
vertices do not receive the same colour is the chromatic number y, of G. In this paper,
we find an upper bound for sum of these two parameters and characterize the
corresponding extremal graphs of order upto 2n-5.
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1. INTRODUCTION

Let G = (V, E) be a simple undirected graph. The degree of any vertex u in G is the
number of edges incident with u and is denoted by d(x). The maximum degree of a
vertex is denoted by A(G). The path on n vertices is denoted by P . The vertex connectivity
k(G) of a graph G is the minimum number of vertices whose removal results in a
disconnected graph.

A subset S of Vis called a dominating set in G if every vertex in V— S is adjacent to
at least one vertex in S. The minimum cardinality taken over all dominating sets in G is
called the domination number of G and is denoted by y. The dominating set is called
total if the induced subgraph < § > has no isolated vertices and connected if < § > is
connected. The minimum cardinality taken over all total (connected) dominating sets
in G is called total (connected) domination number of G and is denoted by y (y ). The
concept of complementary perfect domination number with applications was introduced
by Paulraj Joseph J., Mahadevan G. and Selvam A. [5]

A subset S of V of a non-trivial graph G is said to be complementary perfect
dominating set, if S is a dominating set and < V — S > has a perfect matching. The
minimum cardinality taken over all complementary perfect dominating sets is called
complementary perfect domination number and is denoted by Vep.
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Several authors have studied the problem of obtaining an upper bound for the sum
of a domination parameter and a graph theoretic parameter and characterized the
corresponding extremal graphs. In [7], Paulraj Joseph and Arumugam proved that y + «
< p. In [8], Paulraj Joseph and Arumugam proved that y_+ y < p + 1. They also
characterized the class of graphs for which the upper bound is attained. They also proved
similar results for y and y,.In [6], Paulraj Joseph J. and Mahadevan G. proved thaty +
% < 2n — 1 and characterized the corresponding extremal graphs.

Previous Results
Theorem 1.1[5]: For any graph G, ycp(G) <n-2.
Theorem 1.2[5]: For any graph G, yL_p(G) =n if and only if G is a star.
Theorem 1.3[1]: For any graph G, y(G) = A(G) or A(G) + 1.
Theorem 1.4[1]: If G is k-critical, then 6(G) > k — 1.

2. MAIN RESULTS
Theorem 2.1: For any connected graph G, Vo TAS 2n, and equality holds if and only
if G is isomorphic to K.

Proof: Clearly for any graph G, Y, <7 Also for any graph G, y <A+ 1. Hence Ve
+x<n+(A+1)=n+mn-1+1)=2n. Now assume that Vo T A= 2n. This is possible
only if YV, =1 and x = n. Since ¥, =1 by theorem [1.2] G is a Star. Since y =n, Gis K.
Converse is obvious.

Theorem 2.2: For any connected graph G, Vp ¥ A= 2n — 1 if and only if G is
isomorphic to P..

Proof: Assume that Vo ¥ A= 2n — 1. This is possible only if Y, =N andy=n-1 (or)
ch=”_1 and y = n.

Casel:y =nandy=n-1.

Since V=1 by theorem [1.2] G is a star. Since y =n— 1,2 =n—1 so that n = 3.
Hence G=K, ,=P,.

Case2:y =n-1landy=n.

Since Vo, =N— 1, there exists a complementary perfect dominating set S with n — 1

elements. Hence < V —§ > has isolate, which is a contradiction. Hence no graph exists.
Converse is obvious.

Theorem 2.3: For any connected graph G, Vp ¥ A= 2n — 2 if and only if G is
isomorphic to K, K, K ..
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Proof: Assume that Vo ¥ A= 2n —2. This is possible only if Y, =N and y =n-2 (or)
ch=”_1 andy=n-1 (or)ycp=n—2 and y = n.

The case that Vo, =N— 1 and x = n — 1 is not possible.
Casel:y =nandy=n-2.

Since ¥, =1 by theorem [1.2] G is a star. Since y =n—2,2 =n -2 so that n = 4.
Hence G =K ,

Case2:y =n-2andy=n.

Since y = n, G = K . If G has even number of vertices, then Ve = 2 so that n = 4.
Hence G = K. If G has odd number of vertices then y_ =1 so thatn=3. Hence G =K.

Theorem 2.4: For any connected graph G, Vp ¥ A= 2n — 3 if and only if G is

isomorphic to K, ,, G, or G, given in Figure 2.1.

Proof: Assume that Vo ¥ ¥ =2n — 3. This is possible only if Y, =N and y =n-3 (or)
yL_p=n—1andx=n—2(0r)ycp=n—2 andx=n—1(0r)y8p=n—3 and y = n. The cases
Y,=n—-landy=n-2(or)y, =n-3andy = n are not possible.

Casel:ycp=nandx=n—3.

Since ¥, =1 by theorem [1.2], G is a star. Since y =n—3,2=n-3so thatn = 5.
Hence G=ZK ,

Case2:y =n-2andy=n-1.

Since y =n — 1, G contains a clique K on n — 1 vertices. Let x be a vertex other than
the vertices of K. Since G is connected, x is adjacent to at least one vertex say u, of K .

If the clique K | has even number of vertices, then {x, u, u, } for some u, inK
forms ay, setofG Smcey =n-2,wehaven=>5. HenceK K Letu,u,, u u, be
the Vert1ces of K. Let x be adjacent tou.lfdx)=1,thenG=G,.

If x is adjacent to one more vertex say u, of K, then {u} is ay_-set, whichis a
contradiction.

Uy Uy Uz

Uz us Us Uy
G1 Gz
Figure 2.1
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If the clique K has an odd number of vertices, then {x, u.} is a ¥,,-set of G. Since Ve
=n-2,wehaven=4.Hence K=K, Letu,, u,, u, be the vertices of K. Let x be adjacent
tou,.If d(x) =1, then G = G, . If x is adjacent to one more vertex say u, inK_,then {u}
isaa Y,,-set which is a contradiction.

Theorem 2.5: For any connected graph G, Vp ¥ A= 2n — 4 if and only if G is
isomorphic to K, K,, K1, »» P, C,, or any one of the graphs G, to G given in Figure 2.2.
Proof: Assume that Vo ¥ A= 2n —4. This is possible only if Y, =N and y =n—-4 (or)
ch=”_1 andx=n—3(0r)ycp=n—2 andx=n—2(0r)ycp=n—3 andy=n-1 (or)yL_p
=n—4andX=n.ThecasesforwhichyL_p=n— 1 andx=n—3(0r)ycp=n—3and
x = n — 1 are not possible.
Case l:ycp=nandx=n—4.

Since ¥, =1 by theorem [1.2] G is a star. Since y =n—4,2 =n -4 so that n = 6.
Hence G =K, ..

Case2:y =n-2andy=n-2.

Since x =n—2, G contains a clique K on n— 2 vertices. Let S = {x, y} = V(G) -V(K).
Then<S>=K, or K,.

Subcase 1: <§> =K,

Since G is connected, there exists a vertex say u, in K, which is adjacent to x (or
equivalently y).
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Now, Assume that the clique K has even number of vertices.

Then {y, uj} fori=jin K , forms a ¥,,-set of G. Since V=N - 2, we have n = 4.
Hence K = K, = uv. Let x be adjacent to u. If d(x) =2 and d(y) = 1, then G = P,. If d(x)
= 3, then y = 3, which is a contradiction.

Now let d(x) = d(y) = 2.

Without loss of generality let x be adjacent to u. Then y is adjacent to u or v. If y is
adjacent to u, then = 3, which is a contradiction. If y is adjacent to v, then G = C,.

Now assume that the clique K has odd number of vertices.

Then {y, x, u,} forms a Y,,-set of G. Since VY, =N— 2, we haven=35. Hence K=K..
Let u,, u,, u, be the vertices of K,. Without loss of generality let x be adjacent to u . If
d(x)=2and d(y)=1, then G= G|. Letd(x) = 3 and d(y) = 1. Without loss of generality,
let x be adjacent to both u, and u,. Then G = G,. If d(x) = 4 and d(y) = 1, then y = 4,
which is a contradiction. Let d(x) = d(y) = 2. Let x be adjacent to u . Then y is adjacent
to u, or u, (or equivalently u,). If y is adjacent to u, then {u } is a Y, set which is a
contradiction. If y is adjacent to u,, then G = G,. Let d(x) = 2 and d(y) = 3. Let x be
adjacent to u,. Then y is adjacent to u, and one of {u,, u,} (or) y is adjacent to both u,
and u,. If y is adjacent to u, and u, then {u } is a Y, set which is a contradiction. If y is
adjacent to u, and u,, then G = G,. Let d(x) = 2 and d(y) = 4, then ¢ = 4, which is a
contradiction. Let d(x) = d(y) = 3. Without loss of generality, let x be adjacent to «, and
u,. Then y is adjacent to u, and u, (or) y is adjacent to u, and u (or equivalently u,). If y
is adjacent to u, and u,, then y = 4, which is a contradiction. If y is adjacent to u, and u ,
then {u } is a ¥,,-Set, which is a contradiction.

Subcase 2: <S>= K.

Since G is connected, x and y are adjacent to a common vertex or distinct vertices of
n-2°

Subcase 2(a): Let x and y be adjacent to a common vertex say u, of K .
Now, Assume that the clique K has even number of vertices.

Then {x, y, u, uj} for i # j forms a Y,,-set of G. Since VY, =1— 2, we have n = 6.
Hence K = K. Let u, u,, u,, u, be the vertices of K. Let u, be adjacent to both x and y.
If d(x) =d(y) = 1, then G = G.. Let d(x) =2 and d(y) = 1. then {y, u } forms a Y,,-set of
G, which is a contradiction.

Now assume that the clique K has odd number of vertices. Then {x, y, u } forms a
Y,,-set of G. Since a V,=n— 2,wehaven=>5.Hence K=K,. Letu,, u,, u, be the vertices
of K. Let u, be adjacent to both x and y. If d(x) = d(y) = 1, then G= G . Let d(x) =2 and
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d(y) = 1. Without loss of generality, let x be adjacent to u, and u,, then G = G,. If d(x) =3
and d(y) = 1, then y =4, which is a contradiction. Let d(x) = d(y) = 2. Without loss of
generality, let x be adjacent to u, and u,. Then y is adjacent to u, or u,. If y is adjacent to
u,, then G = G,. If y is adjacent to u,, then {ul} is a ¥,,-set which is a contradiction.

Subcase 2(b): Let x and y are adjacent to distinct vertices of K .
Let x be adjacent to u, and y is adjacent to u, for i #j.
Assume that clique K has even number of vertices.

Then {x, y, u, uj} for i # j forms a ¥,,-set of G. Since V,=N- 2, we have n = 6.
Hence K=K, Letu , u,, u, u, be the vertices of K y Without loss of generality, let X, be
adjacent to u, and x, be adjacent to u,. If d(x) = d(y) = 1, then G = G,. Let d(x) = 2 and
d(y) = 1.Then x is adjacent to u, or u, (or equivalently to u,). If x is adjacent to u,, then
{y,u,} forms ay_-setof G, whichis a contradiction. If x is adjacent to u, (or equivalently
u,), then {y, u,} forms a Y,,-set of G. If d(x) = d(y) = 2, then no graph exists.

Now assume that the clique K has odd number of vertices. Then {x, y, .} forms a
Y,,-set of G. Since VY, =N— 2,we have n=35. Hence K =K,. Letu,, u,, u, be the vertices
of K,. Without loss of generality, let x be adjacent to u and y be adjacent to u,. If d(x) =
d(y)=1, then G= G, Let d(x) =2 and d(y) = 1. Then x is adjacent to u, or u,. If x is
adjacent to u,, then G = G ; If x is adjacent to u,, then G = G.. If d(x) =3 and d(y) = 1,
then 3 = 4, which is a contradiction. If d(x) = d(y) = 2, let x be adjacent to u, and u,.
Then y is adjacent to u or u,. If yis adjacent to u , then G = G; If y is adjacent to u, then
{u,} forms a ¥,,-set of G, which is a contradiction. Let x be adjacent to u, and u,. Then

y is adjacent to u, Or u,.

If y is adjacent to u, then {u, } forms a ¥,,-set of G, which is a contradiction; If y is
adjacent to u,, then {u,} forms a ¥,,-set of G, which is a contradiction.

Case3:y =n-4andy=n.

Since x =n, Gis K . If K _has even number of vertices, then Vo= 2 and hence n = 6.
Hence G = K. If K has odd number of vertices then Vo = 1 and hence n = 5. Hence G
=K..

5

Theorem 2.4: For any connected graph G, Vp ¥ X = 2n — 5 if and only if G is
isomorphic to K, K, K|  or any one of the graphs G to G, given in Figure 2.3.

Proof: If G is any of the graphs given in figure 6.5, then clearly Vo, + A= 2n - 5.
Conversely, assume that Vo T A= 2n — 5. This is possible only if Y, =N andy=n-35
(or)ycpzn—l andx=n—4(0r)ycp=n—2andx=n—3(or)ycp=n—3andx=n—2(or)
V,=N— 4 and y =n-1 (or) Y 5 and x = n. The cases for which V,=N- land y =
n—4 (or) V,=N- 3 and y = n — 2 are not possible.
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Casel:ycp=nandx=n—5.

Since ¥, =1 by theorem [1.2] G is a star. Since y =n—5,2=n-5sothatn="7.
Hence G =K

Case2:ycp=n—2andx=n—3.

Then G contains a clique K, , or G contains no K,

Let G contains a clique K,

LetS={x,y,z} = V(G) - V(K). Then<§>=K,or K, or P,or K, UK,.
Subcase: 1 <§>=K..

Since G is connected, x is adjacent to some u, in K.

If K_.has even number of vertices, then {x, u, uj} fori#jin K _, forms a Y,,-set of
G. Since Ve =N— 2, we have n = 5. But y =n — 3 = 2, which is a contradiction. Hence
no graph exists in this case.

If K, has odd number of vertices, then {x, u.} is a Y,,-set of G. Since a Vp=N- 2,
we have n =4. But y =n—3 =1, which is a contradiction. Hence no graph exists in this
case.

Subcase 2: < S>=Ks.

Since G is connected, one of the vertices of K is adjacent to all the vertices of S or
two vertices of S or one vertex of S.

Subcase 2(a): Let u, for some i in K be adjacent to all the vertices of S.
Now assume that the clique K . has even number of vertices.

Then {x, y, z, u, uj} isa ycp—set of G. Since Vo, =N— 2,we have n="7. Hence K = K,.
Let u,, u,, u,, u, be the vertices of K,. Let u, be adjacent to all of S. If d(x) = d(y) = d(z)
=1,thenGis G=G,

Let d(x) = 2, d(y) = d(z) = 1. Let x be adjacent to u,. Then {y, z, u,} forms a Y,,-set
of G, which is a contradiction.

Now assume that K. has odd number of vertices.

Then {x, y, z, u.} forms a ¥,,-set of G. Since V,=N— 2, wehaven=6.Hence K=K..
Let u,, u,, u, be the vertices of K. Let u, be adjacent to all the vertices of S.

If d(x)=d(y)=d(z) = 1, then G = G,.
Ifd(x)=2,d(y)=d(z) =1, then G= G.,.
If d(x) = 3, d(y) = d(z) = 1, then y = 4, which is a contradiction.
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Letd(x) =d(y) =2 and d(z) = 1.

Now, let x be adjacent to u, and u,. Then y is adjacent to u, or u.. If y is adjacent to
u,, then G = G,. If y is adjacent to u,, then {z, u }forms a Y,,-set of G, which is a
contradiction.

Now, let d(x) = d(y) = d(z) = 2.

If d(x) = d(y) =2 and d(z) = 1, then the graph is G,. Now in G, z is adjacent to u, or
u,. If 7 is adjacent to u,, then {y, u } forms a ¥,,-Set, which is a contradiction. If z is
adjacent to u,, then G = G..

Subcase 2(b): Let u, for some i in K| ,is adjacent to x and y, and u; for some i # j in
K .is adjacent to z.

Now assume that K . has even number of vertices.

Then {x, y, z, u, uj} forms a Y,,-set of Gsothatn="7. Hence K=K,. Letu,, u,, u,
u, be the vertices of K. Let u, be adjacent to x and y and let u, be adjacent to z. If d(x)
=d(y)=d(z)=1,then G=G,.

Letd(x)=2,d(y) =d(z) = 1.

If d(x) = d(y) = d(z) = 1, then the graph is G,. In G, x is adjacent to u, or u, (or
equivalently u,). If x is adjacent to u, then {y, z, u, } forms a ¥,,-set of G, which is a
contradiction; if x is adjacent to u,, then {y, z, u,} forms a ¥,,-Set of G which is a
contradiction.

Letd(x) =d(y) =1 and d(z) = 2.

If d(x) = d(y) = d(z) = 1, then the graph is G. In G, z is adjacent to u, or u, (or
equivalently u,). If z is adjacent to u  then {x, y, u, } forms a ¥,,-set of G, which is a
contradiction; if z is adjacent to u,, then {x, y, u,} forms a ¥,,-Set of G which is a
contradiction.

Now assume that K. has odd number of vertices.

Then {x, y,z, u} forms ay_-setof G and hence n=6. Hence K=K.. Letu,, u,, u, be
the vertices of K. Let u, be adjacent to both x and y and let u, be adjacent to z. If d(x) =
dy)=d(2)=1,then G= G,

Letd(x) =2, and d(y) = d(z) = 1.

Now, if d(x) = d(y) = d(z) = 1, then the graphis G.. In G_, x is adjacent to u, or u,. If
x is adjacent to u,, then G = G; if x is adjacent to u,, then G = G,

If d(x) =3 and d(y) = d(z) = 1. Then y = 4, which is a contradiction.
Now Let d(x) =d(y) =2 and d(z) = 1.
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If d(x) =2, and d(y) = d(z) = 1, then the graphs are G, or G,. Now in G, y is adjacent
to u, or u,. If y is adjacent to u,, then G = G,; If y is adjacent to u_, then {z, u } forms a
v,,-setof G, which is a contradiction. In G, y is adjacent to u, or u. If y is adjacent to u,,
then {z, u } forms a ¥,,Set of G, which is a contradiction; If y is adjacent to u,, then
G=G,,.

Now Let d(x) = d(y) = d(z) = 2.

If d(x) = d(y) =2 and d(z) = 1, then the graph is G, or G, . Now in G, z is adjacent
to u, or u,. If z is adjacent to u,, then G = G; If z is adjacent to u,, then {y, u,} forms a
v, set of G, whichis a contradiction. In G, z is adjacent to u, or u,. If zis adjacentto u ,

then {u, y} forms a Y, set of G, which is a contradiction. If z is adjacent to u,, then {x,
u,} forms a Y, set of G, which is a contradiction.

Now let d(x) = d(y) = 1 and d(z) = 2.

If d(x) = d(y) = d(z) = 1, then the graph is G.. In G, z is adjacent to u, or u,. If z is
adjacent to u , then G = G; If z is adjacent to u,, then G = G .

Now Let d(x) =2, d(y) =1 and d(z) = 2.

Now if d(x) = 2, d(y) = d(z) = 1, then the graphs are G, or G,. In G,, z is adjacent to
u oru, If zis adjacent to u , then G = G; If z is adjacent to u,, then {y, u,} forms a Ve
set of G, which is a contradiction. In G,, z is adjacent to u, or u,. If z is adjacent to u,,
then {y, u } forms a Y, set of G, which is a contradiction. If z is adjacent to u,, then {y,
u,} forms a Y, set of G, which is a contradiction.

If let d(x) = d(y) = 1 and d(z) = 3. Then y = 4, which is a contradiction.

Subcase 2(c): Let u, be adjacent to x and u, for i # j be adjacent to y and u, for i # j
# k be adjacent to z.

Assume that the Clique K . has even number of vertices.

Then {x, y, z, u, uj} forms a Y,,-set of Gsothatn="7. Hence K=K,. Letu,, u,, u,
u, be the vertices of K,. Let u, be adjacent to x and u, be adjacent to y and u, be adjacent
to z.

Ifdx)=d(y)=d(z)=1,thenG=G,,.
Let d(x) =2 and d(y) = d(z) = 1. Then clearly no graph exists satisfying the hypothesis.
Assume that the Clique K, has odd number of vertices.

Then {x, y,z, u} forms ay_-setof G and hence n=6. Hence K=K.. Letu,, u,, u, be
the vertices of K. Let u, be adjacent to x and u, be adjacent to y and u, be adjacent to z.
Ifdx)=d(y)=d(z)=1,then G=G,..
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Ifdx)=2andd(y)=d(z)=1,then G= G,

If d(x) = 3 and d(y) = d(z) = 1, then y = 4, which is a contradiction.
Ifdix)=d(y)=2andd(z) =1,then G= G,

If d(x) = d(y) = d(z) = 2, then no graph exists satisfying the hypothesis.
Subcase 3: <S>=P,=(xy 2).

Assume that the clique K= K, have even number of vertices.

Since G is connected, atleast one of the vertices say u, of K, is adjacent to x (or
equivalently z) or y.

If u, is adjacent to x, then {z, u,, u, } for i #j forms a Y, Set of G. Since V,=N— 2,we
have n=35. Hence K=K, =uv. Let x be adjacent to u. If d(x) = d(y) =2 and d(z) = 1, then
G = P_. If d(x) = 3, then y = 3, which is a contradiction. If d(x) = d(y) = d(z) = 2, then
G=G,..

If u, is adjacent to y, then {x, z, uj} for i # j forms a Ve set of G. Since V=1 - 2,
n=>35. Hence K = K, = uv. Let u be adjacent to y. If d(x) = d(z) = 1 and d(y) = 3, then
G = G .. In all other cases on the degrees of the vertices of x, y and z, no new graph
exists satisfying the hypothesis.

Assume that the clique K, have odd number of vertices.

Since G is connected, at least one of the vertices say u, of K, is adjacent to x (or
equivalently z) or y.

If u, is adjacent to x, then {z, u } forms ay_-set of G. Since y, =n — 2, we have
n=4. Hence K = K, which is a contradiction.

If u, is adjacent to y, then {x, z U u } forms a ¥,,-set of G and hence n = 6. Hence
K=K, Letu, u,, u, be the vertices of K..

Let u, be adjacent to y.
Let d(y) = 3.

If d(x) =d(z) = 1, then G = G, . In all other cases on the degrees of x and z, no new
graph exists satisfying the hypothesis.

Let d(y) = 4.

If d(x) = d(z) = 1, then G = G,,. In all other cases on the degrees of x and z, no new
graph exists satisfying the hypothesis.

Let d(y) = 5. Then y = 5, which is a contradiction.
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Subcase4: <S>=K UK.
Let xy be the edge in < § >.
Assume that the clique K, have even number of vertices.

Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices
say u of K .. Without loss of generality let x be adjacent to u. Then z is adjacent to the
same u, or i, fori#j.

If z is adjacent to u, then {y, z, uj} for i # j forms a Y, set of G and hence n = 5.
Hence K= K, = uv. Let u be adjacent to both x and z. If d(x) = 2 and d(y) = d(z) = 1, then
G=G;Ifdx)=dly)=2and d(z) =1, then G = G .. Let d(x) = d(y) = d(z) = 2. Then
¥, = 3, which is a contradiction.

If z is adjacent to u, for i # j, then {y, z, u.} forms a y_ set of G and hence n = 5.
Hence K = K, = uv. Let x be adjacent to « and z be adjacent to v. If d(x) = 2 and d(y) =
d(z) = 1, then G = P_. All other cases on the degrees of x, y and z no new graph exists
satisfying the hypothesis.

Assume that the clique K, has odd number of vertices.

Since G is connected x (or equivalently y) is adjacent to atleast one of the vertices
say u of K .. Without loss of generality let x be adjacent to u. Then z is adjacent to the
same u, or i, fori#j.

If z is adjacent to u, then {y, z, u, u} fori#j+ kformsa ¥,,-Set of G and hence n =
6. Hence K=K,. Letu,, u,, u, be the vertices of K. Let u, be adjacent to both x and z. If
dix)=2andd(y)=d(z)=1,then G= G,,.

Letd(x) =d(y) =2 and d(z) = 1.

If d(x) =2 and d(y) = d(z) = 1, then the graphis G . In G ,, y is adjacent to u, or u,
(or equivalently u,). If y is adjacent to u , then {z, u } forms a ¥,,-set of G, which is a
contradiction; If y is adjacent to u, then G = G .

Let d(x) = d(y) = d(z) = 2.

Now if d(x) = d(y) =2 and d(z) = 1, then the graphis G ,. In G ,, z is adjacent to u,
or u,. If zis adjacent to u, then G = G, if z is adjacent to u, then {x, ”1} forms a Ve -set
of G, which is a contradiction.

If d(x) = d(y) =2 and d(z) = 3, then y = 4, which is a contradiction.
If d(x) = 3 and d(y) = d(z) = 1, then G = G,,.
Now let d(x) =3, d(y) =2 and d(z) = 1.
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Now, if d(x) = d(y) =2, d(z) = 1, then the graph is G ,. In G, x is adjacent to u, or
u,. If x is adjacent to u,, then {z, u,} forms a Y,,-set of G, which is a contradiction; If x
is adjacent to u, then G= G,,.

If d(x) = 3, d(y) = 2 and d(z) = 2, then no new graph exists.
If d(x) = 3, d(y) = 3 and d(z) = 1, then no new graph exits.
Ifd(x)=2,d(y)=3and d(z) = 1, then G= G,,.

If d(x) = 2, d(y) = 3 and d(z) = 2, then no new graph exits.

If z is adjacent to W then {y, z, U, u} fori=j# kforms a Y, Set of G and hence n
=6. Hence K= K. Let u, u,, u, be the vertices of K. Let u, be adjacent to x and u, be
adjacent to z.

Ifdx)=2and d(y)=d(z) =1, then G= G,..
Now let d(x) = d(y) =2 and d(z) = 1.

Now if d(x) =2 and d(y) = d(z) = 1, then the graphis G ,. In G,, y is adjacent to u,
or u, or u,. If y is adjacent to u , then {u, z} is a Y, set of G which is a contradiction; if

y is adjacent to u,, then G = G ; If y is adjacent to u,, then G= G,,.

If d(x) = d(y) = d(z) = 2, then no new graph exists satisfying the hypothesis.
Letd(x) =3 and d(y) = d(z) = 1.

Now, if d(x) =2 and d(y) = d(z) = 1, the graph is G,.. In G,,, x is adjacent to u,, or u,.

If x is adjacent to u,, then G = G ; If x is adjacent to u,, then G = G,.

Letd(x)=3,dy)=2and d(z) = 1.

Now, if d(x) = 3 and d(y) = d(z) = 1, then the graphs are G or G,.. In G, y is
adjacent to u , or u,, or u,. If y is adjacent to u , then {u , z} forms a Y, set of G, which
is a contradiction; If y is adjacent to u, then {z, u,} forms a Y,,-set of G, which is a
contradiction; If y is adjacent to u,, the {z, u,} forms a Y, set of G, which is a contradiction.
In G,, yis adjacent to u, or u, or u,. If y is adjacent to u, then {u , z} forms a Y, set of
G, which is a contradiction. If y is adjacent to u,, then {x, z} forms a Y,,-Set of G, which
is a contradiction; if y is adjacent to u,, then {z, u,} forms a ¥,,-set of G, which is a
contradiction.

If d(x) = 3, d(y) =2 and d(z) = 2, then no new graph exists.
Now let G contains no K.

Then clearly n > 6.
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If n=6, then Vo= 4, and y, = 3 and G contains no K. Therefore G contains G, since
%, = 3. Let v vertex of C, which is not in C.. Since G is connected and since G contains
no K, v cannot be adjacent to two adjacent vertices of C..i.e., d(v) = 1 or 2 and hence
the only possible graphs are isomorphic to G,, or G,,.

If n>8, then V,=N— 2 and y 25 and G contains no K.. In this case, if Sis a ¥,,-Set
of G, then < § > cannot contain K, or P, (otherwise yL_p(G) <n-2). Therefore < § > is
acyclic and hence y (< § >) = 2. This implies that (G) < 4, which is a contradiction.

If n="7, then Vo = 5 and y =4, G contains no K.

IfSisa Y,,-set of G, then < S > is any one of the following graphs given in Figure
2.4,

If <S§>=H_, then x(G) <3, which is a contradiction.

If <§>=H, to H, then y(< §>) =2, and since 3(G) =4, G contains K, which is a
contradiction.

Case3:y =n-4andy=n-1.

Since x = n — 1, G contains a clique K on n — 1 vertices. Let x be the vertex other
than the vertices of K . Since, G is connected, x is adjacent to at least one of the
vertices say u, of K.

Now assume that the clique K has even number of vertices.

Then {x, u, uj} for i # j forms a Y, set of G. Since V,=N— 4, we have n =7. Hence
K=K, Letu,u,, u, u, u, u be the vertices of K. Let x be adjacent to u . If d(x) =1,
then G = G,,. If d(x) = 2, then {u,} forms a Y, set of G, which is a contradiction.

Now assume that the clique K| has odd number of vertices.

Then {x, u } forms a Y,,-set of G. Since V,=N— 4, we have n=6. Hence K = K. Let
u, Uy, u, u, u, be the vertices of K, . If d(x) = 1, then G = G, . If d(x) =2, then G= G,
If d(x) =3, then G = G,,. If d(x) = 4, then G = G,

Lo AT

Figure 2.4
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Case4:ycp=n—5andx=n.

Since y =n, G is K. If K has even number of vertices, then Vo= 2 and hencen="7.
Hence G = K. If K has odd number of vertices then Vo = 1 and hence n = 6. Hence
G=K,.

The authors are working similar results for the induced complementary perfect
domination number and chromatic number of a graph, which will be reported later.
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