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Abstract: Soil plays a very crucial role in supporting ecosystems and human civilization. Besides being a non-renewable
and valuable resource, it has high variability in its properties and behaviour all over the World.Soil survey helps to prepare
inventory of different kinds of soils and extent of distribution for the prediction of their characteristics and potentialities.
Such knowledge is required for making better utilization of soils in a sustainable way. Traditional soil survey techniques
are time consuming, labour intensive and costly. Recent advancements in computer and information technology have
brought new techniques of soil resource mapping. Remote sensing (RS), Geographical Information System (GIS)and
Global Positioning System (GPS) are such techniques for analysis the different features of soils over space and time.
Present paper describes the role of RS, GIS and GPS technologies for mapping and characterizing soils at various scales.
The spectral behaviour of soil and its components, which is fundamental to deriving information from RS data is also
discussed.
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INTRODUCTION

Soil plays a very crucial role in supporting
ecosystems and human civilization. Besides being
a non-renewable and valuable resource, it has high
variability in its properties and behaviour all over
the World. Non-judicious exploitation of resources
by mankind has not only resulted in the depletion
of finite land resources but also deteriorated their
performance. All the production systems have their
base in soil, so it is very much important for us to
know its properties, extent and spatial distribution.
Sustenance of ecosystem depends on soil (Gessler,
1996). Thus, characterization and mapping of soils
and their interpretation is of great significance. For
this, one has to evaluate the quantity as well as
quality of resources based on accurate baseline
information and methods (Laake, 2000). Soil survey
helps to prepare inventory of different kinds of soils
and extent of distribution for the prediction of their
characteristics and potentialities (Mandal and
Sharma, 2005). Such knowledge is required for

making better utilization of soils in a sustainable
way. Traditional soil survey techniques are time
consuming, labour intensive and costly. Recent
advancements in computer and information
technology have brought new techniques of soil
resource mapping. RS, GIS and GPS are such
techniques for analysis the different features of soils
over space and time (Yeung and Lo, 2002; Shrestha,
2006).

These geospatial tools are very valuable for
preparation of soil resource inventory at local to
global scales. RS provides spatially explicit, digital
data representing the surface features of earth that
can be pooled with digitized maps in GIS for
efficient characterization and analysis of vast
amounts of data. In natural resource management,
satellite RS along with GIS can be very much useful.
According to Karla et al. (2010), RS integrated with
GIS database can enhance data collection and
interpretation for soil survey in much lesser time
and with lesser expenses as compared to
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conventional methods. The high precision and
synoptic coverage of RS data and GIS analysis
protocols have made soil mapping very effective
tool in managing the soil resource and environment
(Srinivasan, 1988).

RS FOR SOIL STUDIES

RS is a process by which one can draw inference
about the surface properties of soils from
measurements of electromagnetic (EM) radiation
emitted or reflected from the land surface. The
nature of this radiation emitted or reflected from
the surface varies with the physical and chemical
characteristics of the soil matrix (Anderson and
Croft, 2009; Mulder et al., 2011). For this reason, it is
possible to study soil properties and processes and
differentiate between various soils using the
measured radiation (Dewitte et al., 2012).

RS systems can be divided into passive and
active based on the light source used. In passive RS,
such as in imaging spectrometers and multispectral
instruments visible, near-infrared (VNIR),
shortwave infrared (SWIR), thermal infrared (TIR),
and microwave portions of EM spectrum are used.
On the other hand, most of the active sensors use
the microwave portion. There are four types of
sensors for passive remote sensing. These are optical
multispectral sensors (land use and mineralogical
studies), optical imaging spectroscopy sensors
(retrieving soil properties like mineralogical
composition, Fe-oxides, organic matter), optical TIR
sensors (soil temperature estimation), and passive
microwave sensors (soil moisture estimation). In
active remote sensors, there are synthetic aperture
radar (SAR) sensors (soil moisture, texture and
salinity estimations), radar scatter meter sensors
(soil moisture estimation), and LiDAR sensors
(terrain analysis).

Based on the platform, RS could be ground
based, air-borne or space-borne. Air- and space-
borne sensors provide greater area coverage as
compared to the ground-based sensors. RADAR
and passive microwave systems mainly provide soil
related data at regional- or catchment-scale.
Airborne systems (LiDAR, multi-spectral and
hyperspectral) can monitor at finer spatial
resolutions. They can also identify variables like

mineralogy, moisture, elevation etc. Proximal
sensing (PS) like laboratory laser profiling works at
the finest spatial scale in assessing soil parameters
(Jester and Klik, 2005).

Interpretation of RS data is very important if
proper inference regarding soil properties has to be
drawn. During interpreting the RS data, one should
keep in mind the general limitations of RS
techniques. There are some issues regarding the
spatial and temporal resolution of air- and space-
borne observations. Generally, polar orbiting
satellites have revisiting times varying from days
to weeks based on their observation geometry,
orbital and energy constraints and downlink
capacity. Intensity of the acquired radiation and
measuring distance affect the spatial resolution.
Spatial resolutions of passive microwave sensors are
in tens of km, whereas that of optical airborne
sensors ranges from cm to m. Remotely sensed data
require many corrections due to geometric,
topographic, atmospheric and radiometric effects.
In case of soils, vegetation coverage and presence
of lichens can hamper investigations by optical
sensors. Spectral signatures of these items should
be masked before interpreting the data. But, such
masking leads to incomplete coverage of the study
area. Majority of the RS data only denote the surface
properties or of shallow soil depths, which may not
represent the deeper layers.

In optical and microwave remote sensing
techniques, much advancement has emerged
recently. This advancement made possible the study
of many soil parameters like mineralogical
composition of soils, soil texture, soil moisture, soil
organic C, soil salinity, Fe content, carbonates,
erosion and finally digital soil mapping (DSM). For
land use planning at different levels, soil maps at
various scales are needed. With increase in scale,
availability of information increases. For soil maps
on 1:250,000 or smaller scale, coarse resolution data
obtained from IRS LISS-I, AWiFs and LANDSAT-
MSS sensors can be used. For 1:50,000 scale soil
maps medium resolution data collected by
LANDSATTM, IRS LISS-II and SPOT-MLA are
useful. Detailed characterization of soil resources
on 1:10,000 or larger scale can be done from IRS-P6
(LISS-IV sensor), Cartosat-1 and Cartosat- 2 and
IKONOS data (Dwivedi, 2001).



Vol. 34, No. 6, 2016 1483

Applications of  Remote Sensing and GIS in Soil Science

GIS FOR SOIL STUDIES

GIS can be defined as a collection of tools for
gathering, storing, retrieving at will, transforming
and displaying spatial data from real world for
predetermined purposes (Burrough, 1986). It
consists of four software function, viz. input,
storage, manipulation and output of spatial
information. The GIS system is so designed that
huge amount of spatially distributed data from
different sources can be fed to it. GIS can store
information obtained from satellite data and
topographical maps. GIS enables efficient and
effective manipulation of non-spatial and spatial
data for mapping and characterization of soils (Star
et al., 1997). Using GIS, one can avoid problems
related to data integration caused by various
geographic units from diverse data sets.

The primary objective of GIS is to transform
raw data into new information through overlay or
other operations to support decision-making. Use
of GIS has increased widely in recent years. Its
applications have expanded very fast in accordance
with developments in RS to provide infrastructure
for the study of complex spatial problems in better
ways (Asadi et al., 2012). Various authors have
reported the applications of GIS in soil resource
inventory (Dwivedi 2001,), soil suitability
assessment (Velmurugan and Carlos, 2009), land
capability classification (Panhalkar, 2011), land
productivity assessment (Patil et al., 2010) and
quantification of soil loss (Reddy et al., 2004).

APPLICATIONS OF REMOTE SENSING AND
GIS IN SOIL RELATED STUDIES

Soil Survey

Enhancement in GPS capability and its bonding
with GIS has increased the aptitude of collecting
more accurate spatial and temporal data for soil
survey, thus has revolutionized the entire process.
Panhalkar (2011) reported the use of GPS for
collection of training site data and ground trothing
of classified datasets. The geographic coordinates
link the information from the field to the
corresponding area on the satellite image, which in
turn leads to classification and interpretation. In
combination with metadata, coordinates are saved
which can be examined with the help of GIS and
image processing tools (Reddy et al., 2012).

The surface features on satellite imagery
provide sufficient information for correct
delineation of boundaries. This can be effectively
achieved by systematic interpretation of satellite
data (Velmurugan and Carlos, 2009). Preliminary
traversing of the study area can be done with the
help of topo-sheets and satellite images prior to
actual fieldwork (Natarajan et al., 2009). Information
gathered from various satellite data when
referenced with that of GPS can be used to suggest
management strategies (Liaghat and Balasundram,
2010). Combination of GPS and GIS has made
possible site-specific farming to be developed and
implemented. Such techniques enable the linking
of real-time data collection with accurate position
information, resulting better manipulation and
analysis of large volume of geo-spatial data (Barnes
et al., 1998). Hand held GPS can be used to locate
representative soil profiles and examination of
morphological properties. Details of the location can
then be transferred to GIS for creating thematic
maps. Soil spatial variations can be easily depicted
in GIS maps with the help of point marking based
on overall uniformity of soil properties. Huge
volume of spatial information can be well managed
with the surface and overlay analysis abilities of GIS
(Ekanayaki and Dayawansa, 2003). Based on land
use, soil texture, slope, land capability classification
(Ali, 2008), soil resource mapping (Velmurugan and
Carlos, 2009), land degradation maps (Wang et al.,
2006) have been done in the past.

Soil Suitability Mapping

Optimal use of land resources for stable and
sustainable agricultural production requires prior
knowledge about the suitability of soils for various
activities (Ekanayake and Dayawansa, 2003). Due
to the development of fine resolution satellite
imagery and GIS techniques, soil suitability
mapping has become less expensive and more
efficient. This approach assumes that climate, land
use, topography and soil attributes continuously
vary with space (Lagacherie and McBratney, 2007).
Such approach gives spatial information that can
be easily analysed and represented using GIS. Land
suitability maps have been prepared using IRS-P6
LISS III (Mustafa et al., 2011) and soil suitability
maps using Multi criteria evaluation, Quick Bird
(60cm) and LISS-IV data (Ceballos- Silva and Lopez-
Blanco, 2003).
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Soil Erosion and Conservation

Soil erosion severely affects many parts of the world
in terms of land degradation and deterioration of
environment. It affects soil fertility, water quality,
agriculture productivity, and also reservoir capacity
(Demirci and Karaburun, 2011; Xu et al., 2013).
Appropriate information is necessary for selection
of suitable, technically sound, and economically
effective measures for conservation of soil and
water. Formulation of holistic measures for soil
conservation and water harvesting requires accurate
and timely information on the natural resources
(Renard et al., 1997). Some reports suggested
conservation measures viz. contour bunding,
contour trenching, levelling of gullies etc. using LISS
IV satellite data for conservation of resources at the
parcel level (Chandrashekhar and Govindappa,
2009; Kumaraswami et al., 2011). To conserve soil
moisture and avert soil erosion, vegetation walls
were suggested after using combined high
resolution satellite data of LISS III and PAN. In a
similar way, percolation tanks and check-dams have
been advocated at different areas across farm ponds
and streams to preserve water (Singh and Singh
2009, Sankar et al., 2012). Some workers reported
the use of contour trenching, contour bunding, gully
levelling etc. as conservation measures employing
LISS IV satellite data (Chandrashekhar and
Govindappa 2009; Kumaraswami et al., 2011).

Mineralogy

Spectral images of bare in-situ soils and rocks can
be used to determine the mineralogical composition
of the surface. Different minerals can be distinguished
from the differences in the spectral signatures in
VNIR to TIR range. Such estimations require fine
spectral resolution of airborne or space-borne data.
High spatial resolution is also helpful in minimizing
the mixing effects of different spectra from land
covers. Due to high spectral and spatial resolution,
images from air-borne sensors (e.g. AVIRIS,
HyMAP) are very much appropriate for such task
(Green et al., 1998). For estimation of weathering
stage of soil, SiO2 and Al2O3 have been mapped from
AVIRIS data (Galvao, 2008; Bedini et al., 2009).
Combinations of multispectral satellite data have
also been employed to estimate mineral
compositions. For instance, Landsat TM data and
ASTER data have been used in synergy to

differentiate mineral types based on ASTER and
lithological variation based on Landsat TM. ASTER
Geoscience Products have also revealed similar
results (Cudahy, 2012). Spectra in TIR region can
discern minerals like quartzites, silicates, carbonates
in rocks. Spectral libraries having signatures of
many minerals are available in several institutes.

The ASTER spectral library version 2.0 is one
of such libraries that has over 2400 spectra of
minerals, rocks, vegetation and manmade materials
in the range of 0.4 to 15.4 �m (Baldridge et al., 2008).
Another such library is USGS Spectral Library that
has a large variety of mineral spectra (Clark et al.,
2007). Algorithm based expert systems like PRISM
and Tetracorder tool can be used for soil and terrain
mapping. These systems compare spectra of
unknown materials with reference spectra of
materials with known composition. From all over
the world, spectral properties of soil minerals and
land cover types are listed in the USGS library,
which allows the identification and characterization
of unknown materials through spectroscopic studies
(Kokaly, 2011).

Soil Texture

Soil texture, in routine analysis, is determined from
relative proportions of sand, silt and clay estimated
by tedious and time consuming procedures, while
in RS, specific absorption characteristics are used
to differentiate quartz-rich soils from clay-rich ones
(Figure 1).

Hydroxyl groups of clay minerals typically
absorb radiation at 2.2 µm; ASTER bands 5 and 6
can capture this feature and give SWIR Clay Index
(Chabrillat, 2002). Thermal bands from 8 to 9.5 µm
can be used to detect quartz due to the occurrence
of reflectance peak of silica in this EM range; this
correspond to ASTER bands 10 and 14. Thermal IR
bands 10 and 14 along with ASTER SWIR bands 5
and 6 have been used to separate bright sandy soils
and dark clayey soils from non-photosynthetic
vegetation on a limited scale, but presence of organic
matter affects the accuracy (Breunig et al., 2008).
Multispectral imagery from ASTER can also be used
for determination of broad textural classes with the
help of principal components analysis (PCA) (Apan
et al., 2002). However, in most of the cases,
multispectral sensors are not suitable to gather
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necessary information for soil texture estimation.
Multiple linear regression (MLR) or partial least-
square regression (PLSR) can be used to retrieve soil
texture from PS data. Though these methods
showed promising results in soil texture prediction,
they cannot give accurate results beyond the extent
of calibration (Minasny et al., 2008; Mulder et al.,
2011). Radar data have also been used to retrieve
soil texture, though in a much lesser extent than
optical imagery. From dielectric constant obtained
from backscatter data of ERS-2 SAR, Singh and
Kathpalia (2007) retrieved soil texture along with
moisture and roughness using Genetic Algorithm
based empirical modelling.

Soil Moisture

Soil moisture is a crucial component in land-
atmosphere interactions (Pielke, 2001). It plays an
important role in hydrology, environmental
sciences and agriculture. In earlier days, watershed
studies have used soil moisture data retrieved from
microwave observations like Special Sensor
Microwave Imager (SSM/I) (Lakshmi, 1998).
Wagner et al., (2013) retrieved soil moisture from
Advanced Scatter meter (ASCAT) and reported its
main features and applicability. Dielectric constant
of dry soil differs from that of water. Based on this,
soil moisture content can be determined from the
backscatter data obtained from microwave RS.

There is an index called Soil Water Index (SWI)
that considers ERS/ASAR along with METOP data
to get temporal resolution of one day for each 1 km
space (Figure 2) (Wagner et al., 2007).

The index is mainly useful to detect temporal
changes in soil moisture content, but not suitable
for quantification of soil moisture content (Wagner
et al., 2007). Paulik et al., (2014) reported poor
correlation between in situ soil moisture data and
SWI data. The passive microwave Soil Moisture and
Ocean Salinity satellite gives a global coverage at 1
km spatial resolution and 3 to 5 days’ temporal
resolution. The predicted surface soil moisture (0-3
cm) is expected to be precise to within 4% soil
moisture content on volume basis (Panciera, et al.,
2009).

Based on reflectance data in SWIR portion of
EMS, soil water have been estimated by imaging
spectroscopy indices (Haubrock et al., 2008).
Nonetheless, presence of vegetation has limited the
retrieval accuracy of most algorithms. Spengler et
al,. (2013) could remove this problem by taking into
account the vegetation-cover interference of up to
75%. There is another way of estimating soil
moisture that relies on energy balance models.
Studies on such approaches have been conducted
on plots to local scale and generated spatio-temporal
predictions for evapotranspiration in connection
with soil moisture. Among various models of soil
moisture estimation based on RS data, the most
popular are

1. SEBAL (Soil Energy Balance) that aggregates
contributions from soil and vegetation to
estimate ET(Bastiaanssen et al., 2005);

2. TSEB (Two-Source Energy Balance) that
separates soil from vegetation (Aly et al., 2007);
and

Figure 1: Nominal clay content (%) for distinct soil units based on predictions using Bayesian belief networks (Left). Soil texture
based on regression kriging (Right).
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3. SEBs (Surface Energy Balance System) that
estimates surface evaporation and turbulent
atmospheric fluxes using optical and thermal
regions of EMS (Van Der Kwast, 2009).

From the interactions of soil moisture with
vegetation and land surface temperature, soil water
downscaling algorithms have been derived (Mallick
et al., 2009). Other types of algorithms rely on soil
evaporation efficiency model and have been used
to downscale SMOS soil moisture (Merlin et al., 2011;
Merlin et al., 2012) and AMSR-E soil moisture (Fang
and Lakshmi, 2013). Based on Normalized
Difference Vegetation Index, Land Surface
Temperature and brightness temperature, an
algorithm has been developed to differentiate SMOS
soil moisture (Piles et al., 2009), AMSR-E soil
moisture (Kim and Hogue, 2012). A different
category of models chains active radar data with
passive radiometer observations. Earlier works have
also employed L-band microwave radar
observations with passive microwave radiometer

data for disaggregating soil water (Das et al., 2011;
Piles et al., 2011).

Soil Organic C

Soil organic C (SOC) is the key factor indicating
fertility and plant growth and to a negotiable extent,
affects CO2 concentration in atmosphere. It makes
soil healthy and maintains productivity. Faster,
more practical, precise and less expensive methods
are needed to better characterize and monitor SOC
changes (Izaurralde et al., 2013). Proximal soil
sensing gives many tools to build a multi-sensor
system to competently determine the organic C
stock of soil profiles (ViscarraRossel et al., 2011). For
instance, gamma radiometers, electromagnetic
induction sensors, and precise global navigation
systems can produce multivariate secondary
information to design sampling strategies and map
soil C (Miklos et al., 2010). Soil visible–near infrared
(vis–NIR) spectroscopy can be used to measure soil
organic C in the laboratory and in situ in the field.

Figure 2: Surface soil moisture maps of Oklahoma retrieved from ERS scatterometer in a 50 km spatial resolution (left) and
ASAR GM measurements in 1 km spatial resolution for three different dates in spring 2005 (right).
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Before we can start measuring with sensors
however, we need to know where to sample.
Locations can be selected by probability sampling
(random sampling with known inclusion
probabilities) or by non-probability sampling,
giving rise to two widely used philosophies: the
design- and the model-based approaches (Papritz
and Webster, 1995; de Gruijter et al., 2006). In the
design-based approach, the source of randomness
of an observation is the random selection of the
sampling sites. In the model-based approach,
randomness originates from a random term in the
model of the spatial variation, which is added to
the model because our knowledge of the spatial
variation is imperfect. Thus, probability sampling
is a requirement for the design-based approach,
whereas it is not for the model-based. Choosing the
most suitable approach depends, amongst other, on
the motivation (Brus and de Gruijter, 1997). For
example, the design based approach might be more
suitable if the aim is to obtain estimates of the
‘global’ mean or total stock and their accuracies for
an area, whose quality is not dependent on the
correctness of modelling assumptions. The model-
based approach might be preferable if we want to
produce a ‘local’ map of the soil organic C stock in
the area. However, deciding which approach to use
is often more complicated because the design based
approach can also be used for estimation of local
means, and the model-based approach can be used
for global estimation.

Soil Salinity

In arid and semi-arid areas, scarce precipitation
cannot maintain a regular percolation of rainwater
through the soil leading to accumulation of salts at
the surface affecting soil structure and land
suitability. Based on dielectric constant of soil,
microwave RS can sense salinity (Aly et al., 2007).
Soil salinity classes have been successfully derived
on a local scale (< 500 km2) with the C-, P-, and
L-bands of airborne and space borne radar systems;
best results are obtained using L-band data as longer
wavelengths are more effective in penetrating soil
and vegetation than higher frequencies (Lasne et al.,
2008). Salt scalds and severely salinized soils exhibit
additional absorption features at 680, 1180 and 1780

nm. These help in recognizing minerals, such as
bassanite, gypsum, and polyhalite, which can be
used as salinity indicators. At 2200 nm, when
samples are more saline hydroxyl features become
less pronounced. Using RS on a local scale (<104
km), broad salinity classes can be mapped with
ASTER (Melendez-Pastor et al., 2010), HyMAP
(Dehaan and Taylor, 2003), Landsat TM and ALI
imagery - the latter two using the Salinity Index and
the Normalized Salinity Index (NSI) (Odeh and
Onus, 2008). Weng et al., (2008) were able to
discriminate five classes of saline soils with
Hyperion data for an area of about 1200 km2.
Alternative methods for mapping saline areas are
based on detecting the presence of salt scalds and
halophytic vegetation. However, the spectral
resolution must be high in order to detect the
different vegetation types.

Soil Degradation

Imaging spectroscopy enables the assessment of
important soil erosion variables, such as water
content and surface roughness (Haubrock et al.,
2008). Furthermore, spectroscopic data can be used
to map post-fire soils and pin point water repellent
soil areas that tend to be potentially highly erodible
(Lewis et al., 2004). The spectral difference between
severely eroded soils and intact topsoil has
previously been used to map surface erosion
processes. In a study area in southern France,
various soil erosion states have been identified
based on the ratio between developed substrates
and components of the parent material. Their
corresponding end-member spectra were
subsequently used to parameterize a spectral
mixture model to map the spatial extent of soil
erosion. The results highlighted that different
erosion levels could be mapped with an accuracy
of about 80%, which proved superior to applying
the approach of Landsat-TM imagery (Hill et al.,
1995). Another approach to assess soil erosion and
soil degradation status is based on quantitative
estimates of specific soil chemical properties. In a
study area in south-eastern Spain imaging
spectroscopy data have been used to identify SOC
concentrations indicating soil deposition and
erosion states; high SOC concentrations in sediment
sinks provide favourable soil conditions, owing to
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their higher infiltration and water retention
capacity, better aggregation, and increased nutrient

availability; the corresponding source areas
represent active erosion and transport zones with

low organic carbon concentrations (Hill and Schütt,
2000).

In the event of a collapsed dam for mine
tailings in southern Spain in 1999 the heavy metal

contamination of soils was explored using HyMAP
imaging spectroscopy data (Figure 3). Based on

chemical and spectroscopy analysis of soil samples,
prediction of heavy metals (As, Cd, Cu, Fe, Hg, Pb,

S, Sb, and Zn) was achieved by stepwise MLR
analysis and an artificial neural network approach.

It was possible to predict six out of nine elements
with high accuracy, using this approach. The best

coefficients of determination (R2) between the

predicted and chemically analysed concentrations
were As, 0.84; Fe, 0.72; Hg, 0.96; Pb, 0.95; S, 0.87;

and Sb, 0.93, respectively. Results for Cd (0.51), Cu
(0.43), and Zn (0.24) were not significant (Kemper

and Sommer, 2002). In addition to the PS analysis, a
Variable Multiple Endmember Spectral Mixture

Analysis (VMESMA), (García-Haro et al., 2005) was
used to estimate the sludge abundance derived from

the HyMap data. Furthermore, the analysis of
residual pyrite-bearing material could be used to

assess acidification risk and the distribution of
residual heavy metal contamination. This assessment

was based on an artificial mixture experiment and
derived simple stoichiometric relationships. As a

result, the spatial sludge abundance distribution
and associated heavy metals could be used to assess

the acidification potential and to plan counteracting

Figure 3: Sludge abundance map based on HyMap data from 1999 in Aznalcollar, Spain. The sludge affected area (black
background) is superimposed on the HyMap false color image.
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remediation measures (Kemper and Sommer, 2002).
In summary, it can be concluded that the reflectance

properties of soils enable the assessment of various
contaminants in their environment and that imaging

spectroscopy technology proved to be promising for
that purpose.

CONCLUSION

In summary, remote sensing provides data

1. supporting the segmentation of the landscape

into rather homogeneous soil-landscape units
whose soil composition can be determined by

sampling or that can be used as a source of
secondary information,

2. allowing measurement or prediction of soil

properties by means of physically-based and
empirical methods, and

3. supporting spatial interpolation of sparsely
sampled soil property data as a primary or

secondary data source.

Emerging technologies like high resolution
satellite data can be utilized successfully for deriving

the spatial and temporal agricultural information
at micro level. Organizing the satellite derived

spatial data and ground observations and
non-spatial attribute data, in a remote sensing, GPS

and GIS environment, would be highly desirable to
facilitate the sustainable development of the specific

region. The advent of high resolution satellite data
in recent years has considerably contributed for

better management of resources, as it gives mere
real time information and repetitive basis which is

important for monitoring.

The resources particularly soil and land needs

not only protection and reclamation but also a
scientific basis for the management on a sustainable

manner so that the changes proposed to meet the
needs of development are brought without

diminishing the potential for their future use.
Depending on the suitability of agro-ecological areas

for alternative uses based on the detailed
information, optimum way can be suggested taking

into account the socio-economic conditions of the
farming community and political will. The review

on application of high resolution remote sensing
data in conjunction with GPS and GIS shows that

soil resource mapping and their characterization is
cost and time effective for their efficient

management and use on sustainable basis.
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