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Abstract. In this paper, we give a discrete time approximations and Monte
Carlo simulations for certain classes of one-dimensional backward stochastic

differential equations driven by one-dimensional Brownian motion, (BSDEs

for short). The key ingredients to prove our results are the well known Gir-
sanov’s theorem concerning the martingale property under a change of the

probability measure on the underlying filtered space, and the result on explicit

solution in the case of linear BSDE.

1. Introduction

The theory of non-linear backward stochastic differential equations, (BSDEs for
short), was pioneered by Pardoux and Peng [8],[9]. It becames now very popular,
and is an important field of research due to its connections with stochastic control,
mathematical finance, and partial differential equations, (PDEs for short). BSDEs
provide a probabilistic representation of nonlinear PDEs, which extends the famous
Feynman-Kac’s formula for linear PDEs. As a consequence, BSDEs can be used
for designing numerical algorithms to nonlinear PDEs.

The case of linear BSDEs was introduced by Bismut [2] as the adjoint equation
associated with stochastic Pontryagin maximum principale in stochastic control
theory. In the paper by El Karoui et al. [4], some additional properties are given
and several applications to option pricing and recursive utilities are studied. Since
then, BSDEs have been studied with great interest. In particular, many efforts
have been made to relax the Lipschitz hypothesis on the generator in BSDEs, for
instance, Kobylanski [6] have proved the existence of a solution for one-dimensional
BSDEs, when the generator is only continuous with linear growth.

In this paper, we consider two types of one-dimensional backward stochastic
differential equations driven by one-dimensional Brownian motion:

Yt = ξ +

∫ T

t

g(s, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ],
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Yt = ξ +

∫ T

t

h(s, Ys)ds−
∫ T

t

ZsdWs, t ∈ [0, T ],

where (Wt)0≤t≤T is a one-dimensional Brownian motion on a filtered probability
space (Ω,F , (Ft)0≤t≤T , P ), T is a fixed finite horizon, (Ft)0≤t≤T is the naturel
Brownian filtration, the random functions g, h : [0, T ] × R → R are respectively
the generators of the BSDEs, and the R-valued FT adapted random variable ξ is
the terminal condition. We give a discrete time approximations and Monte Carlo
simulations for the (Ft)0≤t≤T adapted solutions Y of the BSDEs. The key ingre-
dients to prove our results are the well known Girsanov’s theorem concerning the
martingale property under a change of the probability measure on the underlying
filtered space, and the result on explicit solution in the case of linear BSDE.

The reminder of this paper is organized as follows: in section 2, we collect some
basic facts about BSDEs and Girsanov’s theorem. In section 3, we give the state-
ments and proofs of our main results with examples of simulation of trajectories
obtained by our main R-codes.

2. On the Backward Stochastic Differential Equations
and the Girsanov’s Theorem

2.1. Backward stochastic differential equations. Notice that for an ordinary
differential equation (ODE for short), under certain regularity conditions, both the
initial value and the terminal value problems are well-posed. In fact, for an ODE,
the terminal value problem on [0, T ] is equivalent to an initial value problem on
[0, T ] under the time-reversing transformation: t → T − t. However, things are
fundamentally different for BSDEs when we are looking for a solution that is
adapted to the given filtration. One cannot simply reverse the time to get a
solution for a terminal value problem of stochastic differential equations (SDEs
for short), as it would destroy the adaptiveness. Therefore, the first issue one
should address in the stochastic case is how to correctly formulate a terminal
value problem for SDEs.

We begin this section by briefly recalling some aspects of the theory of BSDEs,
and we refer for example to [4],[6],[8],[9] and [10].

On a complete filtered probability space (Ω,F , (Ft)0≤t≤T , P ), on which is de-
fined a one-dimensional Brownian motion (Wt)0≤t≤T over a finite time interval
[0, T ], and its natural filtration (Ft)0≤t≤T , we denote by:

• P: the σ algebra of (Ft)0≤t≤T predictable subsets of [0, T ]× Ω,
• S2: the set of real-valued cd-lg (Ft)0≤t≤T -adapted processes Y such that:

E
(

sup
0≤t≤T

|Yt|2
)

< +∞,

• L2: the set of real-valued P-measurable processes Z such that:

E

( ∫ T

0

|Zt|2 dt

)
< +∞,

• ξ is the terminal condition which is an FT measurable real-valued random
variable,
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• f = f(t, y, z)0≤t≤T is the generator of BSDE which is an P ⊗ B(R × R)-
measurable real-valued map, where B(R×R) denotes the Borel σ−field of
R× R.

A one-dimensional BSDE in differential form is written as:

dYt = −f(t, Yt, Zt)dt+ ZtdWt, 0 ≤ t ≤ T, YT = ξ,

and a solution to this BSDE is a pair (Y,Z) ∈ S2 × L2 satisfying:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ]. (2.1)

Existence and uniqueness of the adapted solution (Y,Z) of the BSDE (2.1) is
proved under the following Lipschitz and square integrability assumptions (H1):

• f is uniformly Lipschitz in (y, z), i.e., there exists a finite positive constant
Cf , such that for all (y, z, y′, z′):

|f(t, y, z)− f(t, y′, z′)| ≤ Cf (|y − y′|+ |z − z′|).
• ξ and (f(t, 0, 0))t∈[0,T ] satisfies:

E

(
|ξ|2 +

∫ T

0

|f(t, 0, 0)|2 dt

)
< +∞.

Now we deal with the case of linear BSDEs of the form:

Yt = ξ +

∫ T

t

(asYs + bsZs + cs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (2.2)

with the assumptions (H2):

• a, b are bounded progressively measurable processes valued in R,
• ξ and c satisfies:

E

(
|ξ|2 +

∫ T

0

|ct|2 dt

)
< +∞

.

Proposition 2.1. Under the assumptions (H2), the unique adapted solution Y of
the linear BSDE (2.2) is given by:

Yt = Γ−1
t E

(
ξΓT +

∫ T

t

csΓsds

∣∣∣∣Ft),
where Γ is the solution to the linear SDE:

dΓt = Γt(atdt+ btdWt), Γ0 = 1.

Remark 2.2.

• The process Γ is given explicitly by:

Γt = exp

(∫ t

0

bsdWs −
1

2

∫ t

0

b2sds+

∫ t

0

asds

)
.

• The linear BSDE (2.2) was the key ingredient to prove a comparison theo-
rem for the BSDE (2.1). (See for example [4] and [6] for some applications
of this result).
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To end this fact about BSDEs, we give an adapted numerical approximation of the
BSDE (1), and we refer for example to [1],[3] and [5]. Let π be a partition of time
points 0 = t0 < t1 < .... < tn = T of [0, T ], with a fixed time step ∆ti := ti+1 − ti.
We start with the following discrete version of the BSDE (2.1) on the interval
[ti, ti+1], where ∆Wti := Wti+1

−Wti :

Yti = Yti+1 +

∫ ti+1

ti

f(s, Ys, Zs)ds−
∫ ti+1

ti

ZsdWs,

Yti ≈ Yti+1
+ f(ti, Yti , Zti)∆ti − Zti∆Wti . (2.3)

Since Yti and Zti are Fti-adapted and taking expectation conditionally on Fti on
both sides of (2.3) gives us:

Yti ≈ E
(
Yti+1 | Fti

)
+ f(ti, Yti , Zti)∆ti.

Now, multiplying (2.3) by ∆Wti and then taking conditional expectation gives:

0 ' E
(
Yti+1

∆Wti | Fti
)
− Zti∆ti.

Therefore

Zti = E

(
Yti+1

4Wti

4ti

∣∣∣Fti).
Finally, we get a backward implicit Euler scheme (Y π, Zπ) for the BSDE (2.1) of
the form: 

Y πtn = ξ,

Zπti = E
(
Y πti+1

4Wti

4ti

∣∣∣Fti), i < n,

Y πti = E
(
Y πti+1

| Fti
)

+ f(ti, Y
π
ti , Z

π
ti)4 ti, i < n.

(2.4)

Remark 2.3. The practical implementation of the numerical scheme (2.4) requires
the computation of conditional expectations, (see [1],[3] and [5]), but these results
are highly technical in nature which is the reason why BSDEs are not used by
practitioners yet.

2.2. Girsanov’s theorem. Here, we give some basic facts about the well known
Girsanov’s theorem, and we refer for example to [7].

Theorem 2.4. Let (Wt)0≤t≤T , be a Brownian motion on a probability space
(Ω,F , P ). Let (Ft)0≤t≤T , be the accompanying filtration, and let (θt)0≤t≤T be
a process adapted to this filtration. For 0 ≤ t ≤ T , define

Zt = exp

(
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)
,

Q(A) =

∫
A

ZT dP, ∀A ∈ F ,

and

WQ
t =

∫ t

0

θsds+Wt.
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Then, under the Novikov’s condition:

E
(

exp

(
1

2

∫ T

0

θ2
sds

))
<∞,

the process (WQ
t )0≤t≤T is a Brownian motion under the new probability measure

Q.

Remark 2.5.

• Under P , the process (Zt)0≤t≤T is a martingale: dZt = −θtZtdWt.
• Since Z0 = 1 and (Zt)0≤t≤T is a martingale, we have E(ZT ) = 1.

Therefore

Q(Ω) =

∫
Ω

ZT dP = E(ZT ) = 1,

so Q is a probability measure.
• If (θt)0≤t≤T is constant, then

WQ
T = θT +WT and ZT = exp

(
− θWT −

1

2
θ2T

)
.

Under P : WT ∼ N (0, T ) and WQ
T ∼ N (θT, T ). However, under Q: WQ

T ∼
N (0, T ).
• When we use the Girsanov’s theorem to change the probability measure,

means change but variances do not. Quadratic variation is unaffected:

dWQ
t dW

Q
t = (θtdt+ dWt)

2 = dWtdWt = dt.

• Bayes’s rule: If X is Q-integrable and FT -measurable, then

EQ(X|Ft) =
1

Zt
E
(
XZT |Ft

)
.

3. The Main Results

Now, we deal with the first BSDE:

Yt = ξ +

∫ T

t

g(s, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ]. (3.1)

We start with a nominal reference deterministic trajectories denoted (ȳ, z̄), and
obtained as follows:{

z̄t = E(Zt),

ȳt = E(ξ) +
∫ T
t
E
(
g(s, z̄s)

)
ds, t ∈ [0, T ].

(3.2)

Clearly the pair (ȳ, z̄) exists.
We denote the error between Yt and ȳt by:

Ỹt = Yt − ȳt.

Now, combining (3.1) and (3.2), we obtain the following dynamics of Ỹt :

Ỹt = ξ̃ +

∫ T

t

g̃(s, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (3.3)

where ξ̃ = ξ − E(ξ) and g̃(s, Zs) = g(s, Zs)− E
(
g(s, z̄s)

)
.
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To obtain a linear approximation of the BSDE (3.3), we make a Taylor series
expansion of g̃(s, Zs) around z̄s:

g̃(s, Zs) ≈ g̃(s, z̄s) + (Zs − z̄s)
∂g(s, z̄s)

∂z
,

and we obtain the approximate linear model:

Ỹt = ξ̃ +

∫ T

t

(
b̃sZs + c̃s

)
ds−

∫ T

t

ZsdWs, t ∈ [0, T ], (3.4)

where

b̃s =
∂g(s, z̄s)

∂z
and c̃s = g̃(s, z̄s)− z̄s

∂g(s, z̄s)

∂z
.

We suppose that the process b̃ satisfy the Novikov’s condition. Then by the
Girsanov’s theorem, the process:

WQ
t = Wt −

∫ t

0

b̃sds

is a Brownian motion.
We put: ˜̃

Y t = Ỹt −
∫ t

0

c̃sds and
˜̃
ξ = ξ̃ +

∫ T

0

c̃sds.

Therefore, (3.4) becomes ˜̃
Y t =

˜̃
ξ −

∫ T

t

ZsdW
Q
s ,

and ˜̃
Y t = EQ(

˜̃
ξ|Ft).

Finally, we are ready to state the first approximation result of this section.

Theorem 3.1. If the process b̃ satisfy the Novikov’s condition, then we get the
following approximation of the solution Y of BSDE (3.1):

Y testimed = EQ
(
ξ +

∫ T

0

c̃sds

∣∣∣∣Ft)− ∫ t

0

c̃sds+

∫ T

t

E
(
g(s, z̄s)

)
ds.

Remark 3.2.

• If the generator g is deterministic (non random), then g̃(s, z̄s) = 0 and we
have:

Y testimed = EQ(ξ|Ft) +

∫ T

t

(
g(s, z̄s)− z̄s

∂g(s, z̄s)

∂z

)
ds.

• The conditional expectation EQ(ξ|Ft) can be obtained easily under P by
using the Bayes’s rule.

• If ξ has the form: ξ = l1(WQ
T ), then by the Markov property, we have:

Y testimed = l2(Wt) +

∫ T

t

(
g(s, z̄s)− z̄s

∂g(s, z̄s)

∂z

)
ds := J1

t + J2
t ,

and we obtain the discretization scheme for the process Y testimed as fol-

lows:
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(1) Y Testimed = YT = ξ.

(2) The deterministic nominal reference trajectory z̄ is given by (2.4) as:

z̄ti = E
(
Y
ti+1

estimed
4Wti

4ti

)
,

and then, we apply the Monte Carlo simulation.
(3) J1

t is obtained directly from Wt by forward scheme and the Monte
Carlo simulation.

(4) Finally, J2
t is obtained by the the backward Euler scheme:{

J2
ti = J2

ti+1
+
(
g(ti, z̄ti)− z̄ti

∂g(ti, z̄ti)

∂z

)
4 ti, i ≤ n,

J2
T = 0.

We summarize the steps of this algorithm in the following scheme:

Application (with 4ti = T
n ): Consider the classical example of BSDE :

Yt = ξ − 1

2

∫ T

t

Z2
sds+

∫ T

t

ZsdWs, t ∈ [0, T ].

The changes of variables Pt = eYt and Qt = Zte
Yt with the Itô’s formula, leads to

the equation:

Pt = eξ −
∫ T

t

QsdWt,

and the exact solution is

Y treal = lnE(eξ|Ft).
We take ξ = WT , then

Y treal = Wt +
(T − t)

2
.
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In this example, we have:

g(t, z̄t) =
1

2
z̄2
t and g̃(t, z̄t) = 0,

b̃t = z̄t and c̃t = −z̄2
t .

Then

Y testimed = Wt +

∫ T

t

(
z̄sds−

1

2
z̄2
s

)
ds.
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t
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0
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t

B
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Now we deal with the second type of BSDE:

Yt = ξ +

∫ T

t

h(s, Ys)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (3.5)

with {
z̄t = E(Zt),

ȳt = E(ξ) +
∫ T
t
E
(
h(s, ȳs)

)
ds, t ∈ [0, T ].

(3.6)

Clearly (ȳ, z̄) exist by the Lipschitz hypothesis of the generator.

Combining (3.5) and (3.6), we obtain the following dynamics of Ỹt = Yt − ȳt :

Ỹt = ξ̃ +

∫ T

t

h̃(s, Ys)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (3.7)

where ξ̃ = ξ − E(ξ) and h̃(s, Ys) = h(s, Zs)− E
(
h(s, ȳs)

)
.

To obtain a linear approximation of the BSDE (3.7), we make a Taylor series

expansion of h̃(s, Ys) around ȳs:

h̃(s, Ys) ≈ h̃(s, ȳs) + Ỹs
∂h(s, ȳs)

∂y
.

Finally, we obtain the approximate linear model:

Ỹt = ξ̃ +

∫ T

t

(
ãsYs + c̃s

)
ds−

∫ T

t

ZsdWs, t ∈ [0, T ], (3.8)

with

ãs =
∂h(s, ȳs)

∂y
and c̃s = h̃(s, ȳs).

Now, we suppose that the processes ã and c̃ satisfies the assumptions (H2), then
by Proposition 2.1, we have

Γt = exp

(∫ t

0

ãsds

)
and Ỹt = Γ−1

t E

(
ΓT ξ̃ +

∫ T

t

c̃sΓs | Ft

)
.

Finally, the second approximation result of this section reads.

Theorem 3.3. If the processes ã and c̃ satisfies the assumptions (H2), we get the
following approximation of the solution Y of BSDE (3.5):

Y testimed = ȳt + Γ−1
t E

(
ΓT

(
ξ − E(ξ)

)
+

∫ T

t

c̃sΓs

∣∣∣Ft) .
Remark 3.4.

• Y Testimed = YT = ξ.

• If the generator h is deterministic (non random), then h̃(s, z̄s) = 0 and we
have:

Y testimed = ȳt + exp

(∫ T

t

∂h(s, ȳs)

∂y
ds

)(
E(ξ|Ft)− E(ξ)

)
.
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• If ξ has the form: ξ = l1(WQ
T ), then by the Markov property, we have

Y testimed = ȳt + exp

(∫ T

t

∂h(s, ȳs)

∂y
ds

)(
l2(Wt)− E(ξ)

)
:= ȳt + J1

t × J2
t ,

and we obtain the discretization scheme for the process Y testimed as fol-

lows:

(1) The deterministic nominal reference trajectory ȳ is given by the backward
Euler scheme in (3.6):{

ȳti ≈ ȳti+1 + h(ti+1, ȳti+1)4 ti, i < n,
ȳT = E(ξ), (obtained by Monte Carlo simulation).

(2) We put: J1
t = exp(I1

t ), where I1
t is obtained by the backward Euler scheme: I1

ti ≈ I
1
ti+1

+
∂h(ti+1, ȳti+1)

∂y
4 ti, i < n,

I1
T = 0.

(3) Finally, we use easily the Monte Carlo simulation for J2
t .

We summarize the steps of this algorithm in the following scheme:

Application (with 4ti = T
n ): Consider the BSDE :

Yt = ξ +

∫ T

t

Ys
2

(1− Ys)(2Ys − 1)ds−
∫ T

t

ZsdWs,

with the terminal condition :

ξ =
eWT

1 + eWT
.

Clearly the generator h and ξ satisfies the assumptions (H1), and ∂h
∂y is bounded.

Using the Itô’s formula, we have the unique adapted solutions :

Yt =
eWt

1 + eWt
and Zt =

eWt

(1 + eWt)2
.
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Remark 3.5.

• We believe that our result is new and is valid for the multidimensional
case.
• We should point out that in this paper we only study the case where the

generator f depend on one of the two variables y and z. This is enough
for the purpose of this study. We will study the general case in future
work and apply this idea to the Markovian case and the Feynman-Kac’s
formula for PDEs.
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