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Abstract : Graph coloring is an assignment of integers to the vertices of a graph so that no two adjacent 
vertices are assigned the same number. A list coloring of a graph is an assignment of integers to the vertices of 
a graph with the restriction that the integers must come from specifi c lists of available colors at each vertex. 
This paper presents a survey of last three decades of research in the fi eld of colorings. Also, the goal of this 
survey is to show the path to mathematicians to bring new innovative ideas in the subject of list colorings.
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1. INTRODUCTION

One of the most popular and useful area of graph theory is graph colorings. This problem frequently arises 
in scheduling and channel assignment applications. A list coloring of a graph is an assignment of integers 
to the vertices of a graph as before with the restriction that the integers must come from specifi c lists of 
available colors at each vertex. For real life applications of this problem, consider a wireless network. Due 
to hardware restrictions, each radio has a limited set of frequencies through which it can communicate, and 
radios within a certain distance with each other cannot operate on the same frequency without interfering. 
This situation could be converted as graph by representing the wireless radios by vertices and assigning a 
list to each vertex according to its available frequencies. This survey provides an overview of the research 
on list coloring that has been carried out by the researchers for the past three decades. This article begins 
with the introduction of the list coloring problem as defi ned by Erdos, Rubin and Taylor in [3]. Second, 
it continues with the study of various parameters of the problem that includes cases when all the list 
colorings have the same length. Third, it briefl y mentions the list colorings and overview of restricted list 
colors such as partial list colorings, connected list colorings and chromatic polynomial.

2. LIST COLORINGS OF GRAPHS

Let G be a simple graph with vertex set V(G) and edge set E(G). The number of vertices and edges are 
denoted by |V(G)| and |E(G)| respectively. A proper coloring of a graph is a function f : V(G) → Z+ such 
that   u,v  V(G), f(u) ≠  f(v) if u,v  E(G). The chromatic number of G is denoted by χ(G), to be the 
least positive integers r such that G has a proper coloring assigning the integers {1,2,3,…r} to V(G). Let 
C be the set of colors and, for each v  V(G), let  L:V(G) → 2C be a function assigning each vertex v  
V(G), a list of color L(V) C. If there is a function f : V(G) → C such that f(v)  L(v)for all  v  V(G) and  
f(u) ≠ f(v) for u, v  E(G) then G is said to be L-colorable. This is called list coloring of G. If r is a positive 
integer, the function L is such that |L(v)| = r for all  v  V(G), and the graph G has a proper list coloring, 
then G is called r-colorable and it is defi ned the choice number, χL

(G) to be the minimum such r, so that G 
has a proper list coloring. List colorings were introduced in [3] by Erdos, Rubin and Taylor. The objective 
of this review article is introduced to the reader to do the research in the area of list colorings.
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Theorem 2.1.
(Erdos, Rubin, Taylor [3]) There is no bound on how much L

(G) can exceed (G) number of vertices 
increases. 

As noted in [3], since the usual graph colorings are special cases of list colorings, we have L
(G) 

≤ χ(G)for all graphs G. A natural and most common question that could be asked as `Given a graph G, for 
what values of r in G, r – choosable? ‘To answer this question is quite diffi cult but Rubin proved in [3] 
that fi nding a list coloring for a graph is NP-hard. In [16], Zeithlofer and Wess describe using list coloring, 
how to determine register assignments for computing processes .They discussed a situation with multiple 
functional units, some capable  of addition and multiplication, and some capable of only addition. List 
coloring is then used for instruction scheduling. Since, the list coloring problem is NP-hard, Zeithlofer 
and Wess take advantage of certain properties of the graphs emerging from their registry assignment 
problem in order to fi nd a coloring. Ramachandran et.al. discussed in [8], wireless networks near each 
other often interfere. Thus, to limit the interference and satisfy the hardware requirements, one must limit 
the frequencies available to a router. This situation was modeled as list coloring problem. They described 
assigning frequencies to a wireless mesh network built on a mixture of multi-radio and single radio routers.

3. R-CHOOSABILITY OF LIST COLORINGS OF GRAPHS
If G has adjacency vertices u and v such that u and v have more than one edge between them, r-choosable 
means that the list on each vertex has length r, and that from any such set of lists, the graph G may be 
properly colored. The following theorem is due to Rubin and may be found in [3]. It is noted that G is only 
2-choosable.

Theorem 3.1.
If every component of G is 2- choosable. Theorem 3.1 (Rubin [3]) A graph G is 2-choosable if and only 
if the core of G is r, an even cycle, or of the form θ2,2,2r where r is a positive integer. They defi ne core of 
a graph G to be G with all vertices of degree one recursively removed. Also, they defi ne a graph to be a 
graph with two distinct vertices, u and v with three vertex disjoint path between them.

4. LIST COLORINGS OF PLANAR GRAPHS
Planar graphs, especially, the four color problem plays an important part in graph theory. Margit Voigt 
[14] is concerned with the choosability of graphs generalizing the ordinary coloring and again the class of 
planar graphs is very interesting. It is easy to see that every planar graph is 6-choosable and Alon and Tarsi 
[1] showed that every planar bipartite graph is 3-choosable. This result is sharp because there are planar 
bipartite graphs which are 2-choosable [3]. Furthermore, there are two intriguing conjectures from Erdos, 
Rubin and Taylor 1979 [3]. That is,
 • Every planar graph is 5-choosable.
 • There are planar graphs which are not 4-choosable.

In the following way, Margit Voigt proved the second conjecture by constructing a planar graph which 
is not 4-choosable [14]. However, the other conjecture that every planar graph is 

5-choosable remains an open problem [14]. Clearly, Erdos et.al, also conjectured in [3] that is a planar 
graph which is not 4-choosable, meaning that if this graph can be shown to exist, then Thomassen’s bound 
of 5 for χL(G),  for planar graph G is sharp [10].

Theorem 4.1.
(Thomassen [10]) Let G be near-triangulation with outer cycle C = v1,v2,v3...vk, v1 Assume that L(v) is 
a list of at least three colors if v is in C and at least fi ve colors if v is in G ⁄ C without loss of generality, 
choose colors 1 and 2 for v1 and v2, respectively. Then, the coloring of v1 and v2, can be extended to a list 
coloring of G. M.Voigt constructed such a graph in [13]. But the construction involves an elaborate resting 
of triangulated graphs such that the fi nal graph contains 238 vertices.
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5. LIST EDGE COLORING OF GRAPHS

An edge coloring is a function C: E(G) → Z+ such that if any two edges e1, e2, incident with a vertex, then 
C(e1) ≠ C(e2, ). Clearly, note that only loop less graphs are edge colorable, since a loop is self-incident, but 
can only be assigned one color [2]. Edge coloring index of G is denoted by ́ (G).

Conjecture 5.1. (List Edge Coloring Conjecture) 

 Let G be a loop less graph, then ́ L(G) = ́ (G).
Haggkvist and Chetwynd [4] mention that it has been proven for trees, graphs which are 3 - regular 

but not 3 - edge colorable, 2 - regular graphs and the complete bipartite graphs K3,3 , K4,4, K6,6 and  Kr, n with 
7r ≤ 20n. One of the most famous results in edge colorings in Vizing’s theorem which states as follows:

Theorem 5.2. (Vizing, [11; 12].) 

Let G be a simple graph, then χ́ (G) ≤  + 1.
In 1994, Vizing extended his theorem to graphs with parallel edges. Then, the generalization of 

Vizing’s theorem is as follows.

Theorem 5.3. (Vizing, [11; 12].) 

́(G) ≤  + . where  μ is the maximum number of parallel edges between any two vertices of G. Haggkvist 
et.al apply Vizing’s theorem to proposition 1 in [4] to obtain an upper bound on ́L,1,r (G).

Theorem 5.4. (Haggkvist and Chetwynd, [4].)

Let G be a loop less graph on n vertices and let t be the least integer such that n < t!. Then, taking 
r = ́ we have ́ L,1,r ≤ r + t. After that Haggkvist et.al [4] generalize this theorem to prohibiting a set of q 
colors at each as follows.

Theorem 5.5. (Haggkvist and Chetwynd, [4].) 

Let G be a loop less graph nqt < t! on n vertices and let q and t be positive integers such that qt < t!. Then, 
taking r = ́ we have χ́L,q,r ≤ r + t + μ – 1. After that Haggkvist et. al [4] fi nd the upper bound for the 
minimum k necessary to ensure a list coloring from lists of size k taken from the set {1,2,3,…k + q} of 
previous theorem.

Theorem 5.6. (Haggkvist and Chetwynd [4].) 

Let G be a loop less graph on n vertices and let q and t be positive integers with nqt < t! then
́L, q, ≤ ́ + 2t + q – 4.

6. THE CHROMATIC POLYNOMIALS AND LIST COLORING OF GRAPHS

C. Thomassen proved that, if a graph has a list of k – available colors at every vertex, then the number of 
list colorings is at least the chromatic polynomial evaluated at ‘k’, when k is suffi ciently large compared 
to the number of vertices of the graph. The following theorem shows that the largest order terms of 
the chromatic polynomial give a lower bound for the number of k - list colorings provided, some ‘n’ 
neighboring vertices have lists with large symmetric difference.

Theorem 6.1. (C. Thomassen [9])

 Let G be a graph with vertices v1, v2, v3,…vn and let k be a natural number. Let L(vI) be a list of precisely 
k available colors for each i = 1, 2, 3, ... n. If k > n10, then the number of  L – Colorings is at least P (G, K), 
where P (G, K) is the chromatic polynomial of G.
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7. LIST COLORING SQUARES OF PLANAR GRAPHS

Given a graph G, the square of G, denoted G2, is the graph with the same vertex set as G and with an 
edge between any two different vertices that have distance at most two in G. If maximum degree , then a 
vertex coloring of its square will need at least ∆ + 1 colors, but the greedy algorithm shows that it is always 
possible with ∆2 + 1 colors. Regarding the chromatic number of the square of a planar graph, Wegner [15] 
posed the following conjecture, suggesting that for planar graphs far less than ∆2 + 1 colors would suffi ce.

Conjecture 7.1. (Wegner [15]). 

For a planar graph G of maximum degree ∆  8 then  χG2 ≤ 
3 1
2
é ù
ê úD+
ê úë û

.

Wegner also gave bounds for ∆  7. Many upper bounds of χG2 for planar graphs in terms of  ∆ have 
been obtained in the last 15 years. The asymptotically best known upper bound so far has been found by 
Molloy and Salavatipour [7].
Theorem 7.2. (Molloy and Salavatipour [7]

 χG2  
3 1
2
é ù
ê úD+
ê úë û

In this extended result, F. Havet et al. dive the following theorem. 

Theorem 7.3. (F. Havet et al. [5] 

The square of every planar graph G of maximum degree ∆ has list chromatic number at most 

(1 + O(1)) 
1
2

 ∆.

Moreover, given lists of this size, there is a proper coloring in which the colors on every pair of 

adjacent vertices of G differ by atleast ∆ 1
4 . The O(1) term here is as ∆ → ∞. F.Havet et al. [5], easily 

extend these ideas to sets with more than one vertex.

Theorem 7.4. (F.Havet et.al [5]). 

If R is a set of removable vertices of G, then there is a planar graph G1 with vertex set V-R and maximum 
degree ∆ such that G2 – R  G1

2. 
The above theorem shows that there can be no minimal counter example to this theorem that can have 

a removable vertex of low degree in G2. In particular, using a sophisticated argument due to Khan [6], 
F. Havet et.al [5] proved the following theorem.

Theorem 7.5. (F.Havet et.al [5]). 

Suppose R is the core of a removable copy of H* in G, for some multigraph H, such that for any set X of 
vertices of H and corresponding set X* of the vertices of the copy of H* we have sum of the degrees in 

G-R of the vertices in X* exceeds the number of edges of H out of X by at most X
10

| | .Î D

F.Havet et.al [5] follow the approach developed by khan [6] for his proof that the list of chromatic 
index of a multigraph is asymptotically equal to its fractional chromatic number.

8. OPEN QUESTIONS

This study investigated the survey of the past three decades of research in the list colorings. From this 
review, it is observed that still more research could be done in this area. Hence, this article proposes few 
open problems to the young researchers to ponder over.
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 • Can we characterize graphs that are 3-choosable-?
 • Does ́L (G) = L (G) for all loop less graph of G?
 • What is the upper bound for L,2  for the Peterson graph ?
 • Can we determine L,2 for all n-stars?
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