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Abstract :  To analyze EEG accurately, it is necessary to remove artifacts from EEG, which gets coupled with
signal at the time of recording and can’t be eliminated at preprocessing stage. Ocular artifact is most obvious
artifact in EEG. In this paper, a new method using Stationary Wavelet Enhanced Independent Component
Analysis with a novel thresholding, is proposed for ocular artifact removal from EEG. Proposed method
incorporates strengths of Stationary Wavelet and Independent Component Analysis. Limitations of these method
are minimized by using proposed novel thresholding technique, which is proved by results. Proposed denoising
method with novel thresholding technique is analyzed in terms of correlation coefficient and mutual information.
Superiority of proposed method is also proved by measuring frequency domain coherence between raw EEG
data and noise free EEG data.
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1.  INTRODUCTION

Brain’s spontaneous electrical activity is recorded in form of EEG [1]. Flow of electrical currents across the
membranes is result of information processes by human brain’s neurons [2]. EEG has various advantages over
other techniques to study the brain functions as it has less hardware cost and due to absence of radiations or
injections, it is considered very safe. The correct analysis of EEG and detection of various diseases can sometimes
be difficult due to various artifacts that may be added to pure EEG signals during EEG recording. The main artifacts
can be divided into classes of patient-related (physiological) artifacts and system artifacts [2]. The patient-related
or internal artifacts are body movement-related like Electro-Myogram (EMG), ECG (and pulsation), Electro-
Oculogram (EOG) or Ocular artifact, ballistocardiogram and sweating. The system artifacts are 50/60 Hz power
supply interference, impedance fluctuation, cable defects, electrical noise from the electronic components and
unbalanced impedances of the electrodes. The main cause of EOG artifacts is eye movement and eye blinks during
EEG recording. A significant potential difference occurs between the cornea and the retina due to eye blinking
which affects the EEG recording [2]. Extensive research work is carried out with the aim of artifacts removal from
EEG and at the same time to maintain originality of EEG to preserve important information in the original signal and
to cause minimum distortion [3].

In this paper, a new method using Stationary Wavelet Enhanced Independent Component Analysis, is proposed
for ocular artifact removal from EEG. The main contributions of the paper are as follows:

• Proposed method overcomes the shortcomings of wavelet enhanced ICA and hard thresholding, used for
ocular artifact removal from EEG.

• Proposed method effectively deals with shortcomings of stationary wavelet transform (SWT) and adaptive
thresholding also.

• Proposed novel thresholding technique makes denoising more efficient.
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This paper is divided into five sections, Section-II covers literature survey. Section-III explains proposed
method. Section-IV shows the results obtained and Section-V, follow by reference, is a summary of conclusions.

2. LITERATURE SURVEY

Estreda et al [6] has proposed method for denoising of EEG signal using DWT thresholding technique. Since
ocular artifacts have significant components in 0-16 Hz, thresholding is done only to those sub-bands lying in the
frequency region of 0-16 Hz. In this method, 4 level decomposition of DWT is done with raw EEG signal to obtain
DWT coefficients and then thresholding is applied on these DWT coefficients. In case of ocular noise, hard
thresholding is preferred over soft thresholding because ocular artifact occurs for short time duration and soft
thresholding modifies entire signal. Efficiency of proposed method is restricted due to shift variance and aliasing
issues of DWT [5]. Shift variance is perturbation in wavelet pattern oscillation around a singularity because of small
shift in signal. Due to discrete time decimation at each stage with non-ideal filters aliasing comes into role and
inverse DWT overcomes this issue only when there is no modification in wavelet coefficients, but wavelet coefficients
get modulated whenever thresholding is applied. Shift variance problem can be avoided by using un-decimated
DWT, i.e. stationary wavelet transform [14].

Krishnaveni et al [7] has proposed a method to remove ocular artifacts using stationary wavelet transform
(SWT) and adaptive thresholding. SWT is applied to expanded contaminated signal and optimal threshold is
selected for 3rd to 6th level of decomposition on minimum risk value. Since soft thresholding functions have
discontinuous derivatives, they cannot be used for adaptive thresholding as continuous derivatives are required for
minimum condition criteria calculation. Hence a modified version of soft thresholding, known as soft-like thresholding,
is applied for optimal noise removal. SWT is used because of its time invariance property. Since there is no down
sampling so no time information is lost and it produces smoother results in low frequency bands. SWT produce
smoother results in low frequency bands by ocular artifact suppression but it also suppresses EEG signal, which
result in information loss [4].

In Castellanos et al [8], the method suggested for ocular artifact removal, is blind source separation using
independent component analysis and then zeroing the artifactual components. In proposed method, independent
components and mixing matrix using ICA are estimated then artifactual sources are identified using IC marker.
Column corresponding to artifactual independent components are made zero in estimated mixing matrix and in last
step estimated sources are mixed by multiplying them with modified estimated mixing matrix. To apply ICA on
EEG signals some assumptions are made like cerebral signal and artifact signal are linearly combined and are
statistically independent, number of recording channel must be greater or equal to number of independent sources
and finally delay because of propagation through mixing medium is insignificant. Efficiency of proposed method
depends upon these assumptions and it is very difficult to meet these assumptions for real EEG [15].

In Mahajan et al [10], method for automatic noise removal of ocular artifact using wavelet enhanced ICA
(wICA), is proposed. In proposed method, independent components and mixing matrix are estimated using extended
infomax ICA. Sample entropy and kurtosis are calculated for each independent component and then threshold for
sample entropy and kurtosis is calculated to identify artifactual source. DWT with thresholding is applied on
artifactual source and then mixed signal are estimated by multiplying independent components with estimated
mixing matrix. EEG signal is very random in nature and eye-blinks occur for very small duration hence the entropy
value of ocular signal is very less compared to EEG signal. The entropy can be used as IC marker to identify the
artifactual independent component. In Bose et al [11] it is revealed that multi-scale entropy (mMSE) gives better
information regarding EEG than other existing entropy. In proposed method modified multi-scale entropy (mMSE)
is used and it is calculated by initially coarse graining of each independent component for multiple scales and then
sample entropy of each scale is calculated [12]. Kurtosis is a fourth-order statistical parameter and used for study
of the peaked distribution of any random variables [13]. The signals with peak distribution have higher values of
kurtosis; hence ocular signals also have higher values of kurtosis than EEG signals. With support of these arguments
kurtosis is also used as IC marker in proposed method. Threshold value for mMSE (lower limit) and kurtosis
(upper limit) is calculated as discussed in Mahajan et al [10]. Independent components having mMSE values less
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than lower limit or kurtosis value above upper limit are considered as artifactual components. Proposed wavelet
enhanced ICA method does not affect non artifactual region as it uses hard thresholding for DWT denoising but
results are not optimal due to shift variance issue of DWT and again hard thresholding make zero to all undesired
part of signal, which introduces some discontinuities.

3. PROPOSED METHOD

Block diagram of proposed method is shown in Fig.1.

Fig. 1. Proposed Methodology.

Proposed method has following steps:
1. ICA decomposition of ocular artifact corrupted EEG with mixing matrix.
2. Calculation of modified multi scale entropy (mMSE) and kurtosis.
3. Separation of artifactual independent components (IC) from noise free ICs by comparing calculated

values of mMSE and kurtosis with their threshold values (Lower limit of mMSE and upper limit of kurtosis).
4. Denoising of artifactual ICs using sWT and proposed novel thresholding technique.
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5. Reconstruction of signal using mixing matrix, noise free ICs and denoised artifactual ICs.
6. Comparison of proposed method with other latest proposed methods in terms of correlation coefficient,

mutual information and coherence.

A. Independent Component Analysis (ICA)

ICA is a statistical tool to separate mixed recordings from several channels into independent sources. Suppose
that an array of channels to provide N observed signal

x(k) = [x1(k), x2(k) ... , xN(k)]T (1)
And the actual sources are s(k) = [s1(k), s2(k) ... , sN(k)]T (2)
Here the assumptions are that the sources have non Gaussian distribution and they are mutually statistically

independent. The main purpose of ICA is to estimate a demixing matrix W such that
s = W × x (3)

Where, W defines that the transformed occurred in such a way that the mutual information is minimized among
all independent sources. Mutual information measures the information dependency between two random variables.
Many algorithms are designed to perform ICA. In proposed method, infomax ICA is selected since for sources
having super-Gaussian distribution, this technique is most efficient and approximate model for raw EEG with ocular
artefact is most close to super-Gaussian distribution. It is an unsupervised technique which uses information
maximization in a single layer neural network (feed forward) and gives nonlinear outputs [9].

B. Stationary Wavelet Transform (sWT)

sWT is calculated same as DWT but down-sampling and up-sampling blocks are not present. SWT
decomposition filter bank is shown in Fig.2.

Fig. 2. Stationary wavelet transform decomposition tree.

Stationary wavelet transform is also called un-decimated DWT, i.e. the decimators after filters are not applied.
Since there is no down-sampling, it does not lose any time information and have shift invariance property. Because
of oversampling, it has very good time resolution at low frequencies and hence it produces smoother results in low
frequency bands. It also does not suffer with aliasing because no down-sampling is done at any stage [14]. In
proposed method, SWT with bior-4.4 mother wavelet is used. Decomposition is done up to 6th level and threshold
is applied from 3rd to 6th level of decomposition.

C. Proposed Thresholding Technique

This technique is inspired from hard thresholding and it does not affect the coefficients in the desired range but
modulates the coefficients in undesired range (above a threshold value).Hard thresholding in such cases produces
undesired discontinuities. Steps of proposed thresholding technique are :

1. Calculate the threshold using any standard risk rule.
2. Keep coefficients unfazed below threshold value.
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3. Calculate the maxima for the intervals having values above threshold.
4. Calculate scaling factor for each interval, it can be calculated as follows:

SF(j) =
(ind( ) – 1)

max j

d j
(4)

Where j denotes j th interval, ind(j) denotes starting index of interval and  denotes the maxima in   interval.
5.  Multiply all values of jth interval by SF(j).

4. RESULTS

14 channels (10s) of 32 channel pre-processed EEG signal, taken from www.physionet.org, are used in this
method and are plotted in Fig 3. X-axis shows time in seconds and Y-axis shows channel numbers.

Fig. 3. Raw (Contaminated) EEG.

From Fig.3, it is clearly visible that channel 1 is severely affected by ocular artifact around time instant 4s.
After decomposition of raw signal using Infomax ICA, 14 independent components are obtained as shown in
Fig.4.

Fig. 4. Independent components of raw EEG
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In first stage, using modified multi scale entropy (mMSE) and kurtosis, the ocular artifact related independent
components are identified and then stationary wavelet transform and novel thresholding technique are applied on
artifactual components to suppress noise. The mMSE is calculated by initially coarse graining of each independent
component (IC) for multiple scale, then sample entropy of each scale is calculated. The coarse graining of IC can
be mathematically given as

yj
(T) = = ( – 1) + 1

1
;1 N/j

i j iu�
� � �

�� (5)

Where, y is coarse grained sequence at scale factor �. ‘u’ is the IC time sequence and N is length of each IC.
The mMSE for each grained independent component can be calculated as [12]

mMSE(m, r) =
B

log
A

m
r
m
r

� �
� �
� �

(6)

Where m = 2 and r = 0.2*
Standard deviation of data sequence.
The mMSE plot for each channel is shown in Fig.5. Y-axis shows sample entropy for each channel and X-axis

shows channel number.

Fig. 5. Plot of mMSE.

The ocular signal will have lower values of mMSE than EEG signals. Kurtosis is a fourth-order statistical
parameter to study the peaked distribution of any random variables, it can be mathematically calculated as

k = 2
4 2– 3m m (7)

And mn = E{(x – m1)n] (8)
Where, mn, m1 and E are nth order moments of the random variable, mean and expectation function respectively.
The signals with peak distribution will have higher values of kurtosis, hence ocular signals will have higher

values of kurtosis than EEG signals. The kurtosis is calculated and plotted as shown in Fig.6.
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Fig. 6. Plot of kurtosis

Threshold value for mMSE is given as [12],

Lower limit = N – 1–
N

s
x t� (9)

Threshold value for kurtosis is calculated by [13],

Upper limit = N – 1–
N

s
x t� (10)

Where, �x  is sample mean, s is sample standard deviation, N no. of ICs and  tN– 1 = 2.201.

Threshold value (Lower limit) of mMSE is calculated equal to 1.26 and threshold value (Upper limit) of
kurtosis is calculated equal to 22.7. ICs having mMSE values less than lower limit or kurtosis value above upper
limit are considered as artifactual components. It can be notice from Fig.5 and Fig.6 that channel 2, 5 and 8 are the
components affected by ocular artifact. Stationary wavelet transform and novel thresholding technique are applied
on artifactual components to suppress noise. The final reconstructed noise free signal is shown in Fig.7.

Fig. 7. Reconstructed noise free signal
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It can be observed from Fig.7 that ocular artifact has been efficiently removed from channel 1 while keeping
the rest signal unfazed. Result of proposed novel thresholding technique is compared with result of hard thresholding.
In both cases DWT with bior-4.4 mother wavelet is used. Corresponding results are shown in Fig.8. In this plot X-
axis shows number of samples in signal.

Fig. 8. Comparison of proposed novel thresholding technique

It can be seen that hard thresholding introduce undesired discontinuities, while proposed novel thresholding
technique is not only suppressing the noise part but also maintaining smoothness of the signal. To measure the
performance of proposed method, the results are compared with most recent techniques, proposed by Mahajan et
al [10] using wavelet enhanced ICA (wICA) and zeroing ICA technique, in terms of correlation coefficient, mutual
information and coherence. Correlation is used to measure the linear relationship between two random variables
and it is defined as

�xs =
cov( , )

x s

x x

� � (11)

Where, x is the raw EEG signal, s is the noise free EEG signal, � is the standard deviation and cov is the
covariance of two random variable x and s. Maximum value of correlation coefficient between two signal can
be ‘1’.

Mutual information (MI) is a measure of amount of information, noise free EEG contains, about raw EEG
signal. If two random variables are closely related they will have large number of mutual information. According to
Shannon information theory MI can be calculated by Kullback-Leibler distance between product of the marginal
pdfs of random variable x and y and their joint pdf, which can be given as

I(x, y) = – –

( , )
( , ) log

( ) ( )

f x y
f x y dxdy

f x f y
� �
� �

� �
� �
� �

� � (12)

Comparison among three methods in terms of correlation coefficient and mutual information, are given in
Table 1 and Table 2 respectively.
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Table 1

Channel No
Correlation Coefficient

Zeroing ICA wICA Proposed Method

1. 0.4443 0.5835 0.8606

2. 0.7034 0.7936 0.9751

3. 0.7809 0.8315 0.9753

4. 0.8690 0.8957 0.9866

5. 0.8243 0.8653 0.9870

6. 0.7419 0.8150 0.9768

7. 0.7889 0.8422 0.9790

8. 0.9382 0.9520 0.9906

9 0.8338 0.8565 0.9971

10. 0.7931 0.8487 0.9841

11. 0.8682 0.8857 0.9852

12. 0.8766 0.9015 0.9925

13. 0.8798 0.9106 0.9960

14. 0.9217 0.9371 0.9915

Table 2

Channel No
Mutual Information

Zeroing ICA wICA Proposed Method

1. 0.3043 0.4213 0.6093

2. 0.4967 0.6191 0.8159

3. 0.4991 0.6241 0.9568

4. 0.6915 0.7022 0.9784

5. 0.6407 0.7315 1.0551

6. 0.5815 0.6057 1.1179

7. 0.6008 0.7123 0.9953

8. 0.9769 1.1989 1.6181

9. 0.6134 0.9528 1.5221

10. 0.5712 0.7498 1.0797

11. 0.7344 0.8187 1.7097

12. 0.7245 0.9009 1.6661

13. 0.8090 0.9772 1.6155

14. 0.9765 1.2705 1.5738

To analyse the performance in frequency domain coherence is measured between raw EEG data and noise
free EEG data. It is calculated in magnitude square term. For all three method coherence is plotted in Fig. 9 to
Fig.11.
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Fig. 9. Coherence of zeroing ICA

Fig. 10. Coherence of wICA

Fig. 11. Coherence of proposed method
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5.  CONCLUSION

   In this work, a new approach towards wavelet enhanced ICA is presented by using stationary wavelet
transform in place of DWT and a new method for thresholding has suggested, which does not introduce any
discontinuity like other thresholding methods. Stationary wavelet transform is preferred to DWT because of its
time invariance property. Results of proposed method are compared with two other ICA based methods, zeroing
ICA and wICA, in terms of correlation, mutual information and coherence. Results of proposed method are far
superior to them in all three terms. In terms of correlation, proposed method not only gives better results for
unaffected recording channel but it improves the result from 0.58 to 0.86 for most affected recording channel, it
means that proposed method suppresses the ocular artifact without introducing additional noise. When the results
are compared in terms of mutual information, it improves from 0.42 to 0.60 for most affected recording channel.
The coherence graphs show that the wICA method is affecting those frequencies too, which are not present in
ocular artifacts frequency range but proposed method has only affected the frequency range 0-16 Hz, which is
ocular artifact frequency band.
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