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Abstract. This paper is concerned with the existence, uniqueness and sta-
bility of mild solutions to impulsive stochastic neutral functional differential
equations with finite delays driven simultaneously by a Rosenblatt process
and Poisson process in a Hilbert space. Sufficient conditions for the existence
of solutions are derived by means of the Banach fixed point principle. Fi-
nally, an illustrative example is given to demonstrate the effectiveness of the
obtained result.

1. Introduction

In this paper, we study the existence, uniqueness and asymptotic behavior of
mild solutions for a class of impulsive stochastic neutral functional differential
equations with delays described in the form




d[x(t) + g(t, x(t− r(t)))] = [Ax(t) + f(t, x(t− ρ(t)))]dt + σ(t)dZH(t)

+
∫
U
h(t, x(t− θ(t)), y)Ñ (dt, dy), t ≥ 0, t 6= tk

∆x(tk) = x(t+k )− x(t−k ) = Ikx(tk), t = tk, k = 1, 2, ....,

x(t) = ϕ(t), −τ ≤ t ≤ 0,

(1.1)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators, (S(t))t≥0, in a Hilbert space X , ZH is a Rosenblatt process on a real
and separable Hilbert space Y , r, ρ, θ : [0,+∞) → [0, τ ] (τ > 0) are continuous
and f, g : [0,+∞) ×X → X, σ : [0,+∞) → L0

2(Y,X), h : [0,+∞) ×X × U →
X are appropriate functions. Here L0

2(Y,X) denotes the space of all Q-Hilbert-
Schmidt operators from Y into X (see section 2 below). Moreover, the fixed
moments of time tk satisfy 0 < t1 < t2 < ... < tk < ... and limk−→∞ tk = ∞,
x(t−k ) and x(t

+
k ) represent the left and right limits of x(t) at time tk, k = 1, 2, ...

respectively. ∆x(tk) denotes the jump in the state x at time tk with Ik(.) : X −→
X determining the size of the jump. The initial data ϕ ∈ D := D([−τ, 0], X) the
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space of càdlàg functions from [−τ, 0] into X equipped with the supremum norm
|ϕ|D = sups∈[−τ,0] ‖ϕ(s)‖X , and ϕ has finite second moment.

Stochastic differential equations arise in many areas of science and engineer-
ing, wherein, quite often the future state of such systems depends not only on
present state but also on its history leading to stochastic functional differential
equations with delays rather than SDEs. However, many stochastic dynamical
systems depend not only on present and past states, but also contain the deriva-
tives with delays. Neutral stochastic differential equations with delays are often
used to describe such systems (see, e.g., [6, 9]). On the other hand, the stability
of impulsive differential equations has been discussed by several authors (see, e.g.
[1, 18, 23, 27]). In addition, the study of neutral SFDEs driven by jumps process
also have begun to gain attention and strong growth in recent years. To be more
precise, we refer [8, 12, 15, 21].

In recent years the stochastic functional differential equations driven by a frac-
tional Brownian motion (fBm) have attracted the attention of many authors and
many valuable results on existence, uniqueness and the stability of the solution
have been established, see [2, 11, 13, 10]. For example, using the Riemann-Stieltjes
integral, Boufoussi et al. [4] proved the existence and uniqueness of a mild solu-
tion and studied the dependence of the solution on the initial condition in infinite
dimensional space. Very recently, Caraballo et al. [5] and Boufoussi and Hajji
[3] have discussed the existence, uniqueness and exponential asymptotic behavior
of mild solutions to stochastic evolution differential equations by using Wiener
integral.

On the other hand, the very large utilization of the fractional Brownian motion
in practice are due to its self-similarity, stationarity of increments and long-range
dependence; one prefers in general fBm before other processes because it is Gauss-
ian and the calculus for it is easier; but in concrete situations when the gaussianity
is not plausible for the model, one can use for example the Rosenblatt process.
Although defined during the 60s and 70s [22, 25] due to their appearance in the
Non-Central Limit Theorem, the systematic analysis of Rosenblatt processes has
only been developed during the last ten years, motivated by their nice properties
(self-similarity, stationarity of the increments, long-range dependence). Since they
are non-Gaussian and self-similar with stationary increments, the Rosenblatt pro-
cesses can also be an input in models where self-similarity is observed in empirical
data which appears to be non-Gaussian. There exists a consistent literature that
focuses on different theoretical aspects of the Rosenblatt processes. Let us recall
some of these works. For example, the rate of convergence to the Rosenblatt pro-
cess in the Non Central Limit Theorem has been given by Leonenko and Ahn [14].
Tudor [26] studied the analysis of the Rosenblatt process. The distribution of the
Rosenblatt process has been given in [17].

On the other hand, to the best of our knowledge, there is no paper which inves-
tigates the study of impulsive stochastic neutral functional differential equations
with delays driven both by Rosenblatt process and by Poisson point processes.
Thus, we will make the first attempt to study such problem in this paper. Our
results are inspired by the one in [3] where the existence and uniqueness of mild
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solutions to model (1.1) is studied, with fractional Brownian motion and h = 0,
as well as some results on the asymptotic behavior.

The rest of this paper is organized as follows, In Section 2, we summarize
several important working tools on Rosenblatt process, Poisson point processes
and we recall some preliminary results about analytic semi-groups and fractional
power associated to its generator that will be used to develop our results. In
section 3, by the Banach fixed point theorem we consider a sufficient condition
for the existence, uniqueness and exponential decay to zero in mean square for
mild solutions of equation (1.1). In Section 4, we give an example to illustrate the
efficiency of the obtained result.

2. Preliminaries

In this section, we collect some definitions and lemmas on Wiener integrals with
respect to an infinite dimensional Rosenblatt process and we recall some basic
results about analytical semi-groups and fractional powers of their infinitesimal
generators, which will be used throughout the whole of this paper. For details of
this section, we refer the reader to [26, 19] and references therein.

Let (U , E , ν(du)) be a σ-finite measurable space. Given a stationary Poisson
point process (pt)t>0, which is defined on a complete probability space (Ω,F , P )
with values in U and with characteristic measure ν (see [7]). We will denote by

N(t, du) be the counting measure of pt such that N̂(t, A) := E(N(t, A)) = tν(A)

for A ∈ E . Define Ñ(t, du) := N(t, du) − tν(du), the Poisson martingale measure
generated by pt.

2.1. Rosenblatt process. Selfsimilar processes are invariant in distribution un-
der suitable scaling. They are of considerable interest in practice since aspects of
the selfsimilarity appear in different phenomena like telecommunications, turbu-
lence, hydrology or economics. A self-similar processes can be defined as limits
that appear in the so-called Non-Central Limit Theorem (see [25]). We briefly
recall the Rosenblatt process as well as the Wiener integral with respect to it.

Let us recall the notion of Hermite rank. Denote by Hj(x) the Hermite poly-

nomial of degree j given by Hj(x) = (−1)je
x2

2
dj

dxj e
−x2

2 and let g be a function on

R such that E[g(ζ0)] = 0 and E[g(ζ0)
2] < ∞. Assume that g has the following

expansion in Hermite polynomials

g(x) =
∑

j≥0

cjHj(x),

where cj =
1
j!E(g(ζ0Hj(ζ0))). The Hermite rank of g is defined by

k = min{j|cj 6= 0}.

Consider (ζn)n∈Z a stationary Gaussian sequence with mean zero and variance
1 which exhibits long range dependence in the sense that the correlation function
satisfies

r(n) = E(ζ0ζn) = n
2H−2

k L(n),
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with H ∈ (12 , 1) and L is a slowly varying function at infinity. Since E[g(ζ0)] = 0,
we have k ≥ 1. Then the following family of stochastic processes

1

nH

[nt]∑

j=1

g(ζj)

converges as n −→ ∞, in the sense of finite dimensional distributions, to the
selfsimilar stochastic process with stationary increments

Zk
H(t) = c(H, k)

∫

Rk



∫ t

0

k∏

j=1

(s− yj)
−( 1

2
+ 1−H

k
)

+ ds


 dB(y1)...dB(yk), (2.1)

where x+ = max(x, 0). The above integral is a Wiener-Itô multiple integral of
order k with respect to the standard Brownian motion (B(y))y∈R and the con-
stant c(H, k) is a normalizing constant that ensures E(Zk

H(1))2 = 1. The process
(Zk

H(t))t≥0 is called the Hermite process. When k = 1 the process given by (2.1)
is nothing else that the fractional Brownian motion (fBm) with Hurst parameter
H ∈ (12 , 1). For k = 2 the process is not Gaussian. If k = 2 then the process
(2.1) is known as the Rosenblatt process. It was introduced by Rosenblatt in [22]
and was given its name by Taqqu in [24]. The Rosenblatt process is of course the
most studied process in the class of Hermite processes due to its significant impor-
tance in modelling. A stochastic calculus with respect to it has been intensively
developed in the last decade. The Rosenblatt process is, after fBm, the most well
known Hermite process.

We also recall the following properties of the Rosenblatt process:

• The process Zk
H is H-selfsimilar in the sense that for any c > 0,

(Zk
H(ct)) =(d) (cHZk

H(t)),

where ” =(d) ” means equivalence of all finite dimensional distributions.
It has stationary increments and all moments are finite.

• From the stationarity of increments and the self-similarity, it follows that,
for any p ≥ 1

E|ZH(t)− ZH(s)|p ≤ |E(ZH(1))|p|t− s|pH .

As a consequence the Rosenblatt process has Hölder continuous paths of
order γ with 0 < γ < H.

Self-similarity and long-range dependence make this process a useful driving
noise in models arising in physics, telecommunication networks, finance and other
fields.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈
[0, T ]} the one-dimensional Rosenblatt process with parameter H ∈ (1/2, 1). By
Tudor [26], it is well known that ZH has the following integral representation:

ZH(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]
dB(y1)dB(y2), (2.2)
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where B = {B(t) : t ∈ [0, T ]} is a Wiener process, H ′ = H+1
2 , d(H) =

1
H+1

√
H

2(2H−1) is a normalizing constant, and KH(t, s) is the kernel given by

KH(t, s) = cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du,

for t > s, where cH =
√

H(2H−1)

β(2−2H,H− 1
2
)
and β(., .) denotes the Beta function. We

put KH(t, s) = 0 if t ≤ s.
The covariance of the Rosenblatt process {ZH(t), t ∈ [0, T ]} satisfies, for every

s, t ≥ 0,

RH(s, t) := E(ZH(t)ZH(s)) =
1

2
(t2H + s2H − |t− s|2H).

The basic observation is the fact that the covariance structure of the Rosenblatt
process is similar to the one of the Rosenblatt process and this allows the use of the
same classes of deterministic integrands as in the Rosenblatt process case whose
properties are known.

Now, we introduce Wiener integrals with respect to the Rosenblatt process. We
refer to [26] for additional details on the Rosenblatt process . By formula (2.2) we
can write

ZH(t) =

∫ t

0

∫ t

0

I(1[0,t])(y1, y2)dB(y1)dB(y2),

where by I we denote the mapping on the set of functions f : [0, T ] −→ R to the
set of functions f : [0, T ]2 −→ R

I(f)(y1, y2) = d(H)

∫ T

y1∨y2

f(u)
∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

Let us denote by E the class of elementary functions on R of the form

f(.) =

n∑

j=1

aj1(tj ,tj+1](.), 0 ≤ tj < tj+1 ≤ T, aj ∈ R, j = 1, ..., n.

For f ∈ E as above, it is natural to define its Wiener integral with respect to the
Rosenblatt process ZH by

∫ T

0

f(s)dZH(s) :=

n∑

j=1

aj [ZH(tj+1)− ZH(tj)] =

∫ T

0

∫ T

0

I(f)(y1, y2)dB(y1)dB(y2).

Let H be the set of functions f such that

H =

{
f : [0, T ] −→ R : ‖f‖H :=

∫ T

0

∫ T

0

(I(f)(y1, y2))
2
dy1dy2 <∞

}
.

It hold that (see Maejima and Tudor [16])

‖f‖H = H(2H − 1)

∫ T

0

∫ T

0

f(u)f(v)|u− v|2H−2dudv,

and, the mapping

f −→
∫ T

0

f(u)dZH(u) (2.3)
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provides an isometry from E to L2(Ω). On the other hand, it has been proved
in [20] that the set of elementary functions E is dense in H. As a consequence
the mapping (2.3) can be extended to an isometry from H to L2(Ω). We call this
extension as the Wiener integral of f ∈ H with respect to ZH .

Let us consider the operator K∗
H from E to L

2([0, T ]) defined by

(K∗
Hϕ)(y1, y2) =

∫ T

y1∨y2

ϕ(r)
∂K

∂r
(r, y1, y2)dr,

where K(., ., .) is the kernel of Rosenblatt process in representation (2.2)

K(r, y1, y2) = 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

We refer to [26] for the proof of the fact that K∗
H is an isometry between H and

L2([0, T ]). It follows from [26] that H contains not only functions but its elements
could be also distributions. In order to obtain a space of functions contained in
H, we consider the linear space |H| generated by the measurable functions ψ such
that

‖ψ‖2|H| := αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||s − t|2H−2dsdt <∞,

where αH = H(2H − 1). The space |H| is a Banach space with the norm ‖ψ‖|H|

and we have the following inclusions (see [26]).

Lemma 2.1.

L
2([0, T ]) ⊆ L

1/H([0, T ]) ⊆ |H| ⊆ H,
and for any ψ ∈ L

2([0, T ]), we have

‖ψ‖2|H| ≤ 2HT 2H−1

∫ T

0

|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the
space of bounded linear operator from Y to X . For the sake of convenience,
we shall use the same notation to denote the norms in X,Y and L(Y,X). Let
Q ∈ L(Y, Y ) be an operator defined by Qen = λnen with finite trace trQ =∑∞

n=1 λn < ∞. where λn ≥ 0 (n = 1, 2...) are non-negative real numbers and
{en} (n = 1, 2...) is a complete orthonormal basis in Y . We define the infinite
dimensional Q−Rosenblatt process on Y as

ZH(t) = ZQ(t) =
∞∑

n=1

√
λnenzn(t), (2.4)

where (zn)n≥0 is a family of real independent Rosenblatt process. Note that the
series (2.4) is convergent in L2(Ω) for every t ∈ [0, T ], since

E|ZQ(t)|2 =

∞∑

n=1

λnE(zn(t))
2 = t2H

∞∑

n=1

λn <∞.

Note also that ZQ has covariance function in the sense that

E〈ZQ(t), x〉〈ZQ(s), y〉 = R(s, t)〈Q(x), y〉 for all x, y ∈ Y and t, s ∈ [0, T ].
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In order to define Wiener integrals with respect to the Q-Rosenblatt process, we
introduce the space L0

2 := L0
2(Y,X) of all Q-Hilbert-Schmidt operators ψ : Y → X .

We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

‖ψ‖2L0
2

:=

∞∑

n=1

‖
√
λnψen‖2 <∞,

and that the space L0
2 equipped with the inner product 〈ϕ, ψ〉L0

2
=

∑∞
n=1〈ϕen, ψen〉

is a separable Hilbert space.
Now, let φ(s); s ∈ [0, T ] be a function with values in L0

2(Y,X), such that∑∞
n=1 ‖K∗φQ

1
2 en‖2L0

2

< ∞. The Wiener integral of φ with respect to ZQ is de-

fined by
∫ t

0
φ(s)dZQ(s) =

∑∞
n=1

∫ t

0

√
λnφ(s)endzn(s)

=
∑∞

n=1

∫ t

0

∫ t

0

√
λnK

∗
H(φen)(y1, y2)dB(y1)dB(y2).

Now, we end this subsection by stating the following result which is fundamental
to prove our result.

Lemma 2.2. If ψ : [0, T ] → L0
2(Y,X) satisfies

∫ T

0 ‖ψ(s)‖2
L0

2

ds <∞ then the above

sum in (2.1) is well defined as a X-valued random variable and we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 ≤ 2Ht2H−1

∫ t

0

‖ψ(s)‖2L0
2

ds.

Proof. By Lemma 2.1, we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 =

∞∑

n=1

E‖
∫ t

0

∫ t

0

√
λnK

∗
H(ψen)(y1, y2)dB(y1)dB(y2)‖2

≤
∞∑

n=1

2Ht2H−1

∫ t

0

λn‖ψ(s)en‖2ds

= 2Ht2H−1

∫ t

0

‖ψ(s)‖2L0
2
ds.

�

Now we turn to state some notations and basic facts about the theory of semi-
groups and fractional power operators. Let A : D(A) → X be the infinitesimal
generator of an analytic semigroup, (S(t))t≥0, of bounded linear operators on X .
For the theory of strongly continuous semigroup, we refer to [19]. We will point
out here some notations and properties that will be used in this work. It is well
known that there existM ≥ 1 and ν ∈ R such that ‖S(t)‖ ≤Meνt for every t ≥ 0.
If (S(t))t≥0 is a uniformly bounded and analytic semigroup such that 0 ∈ ρ(A),
where ρ(A) is the resolvent set of A, then it is possible to define the fractional
power (−A)α for 0 < α ≤ 1, as a closed linear operator on its domain D(−A)α.
Furthermore, the subspace D(−A)α is dense in X , and the expression

‖h‖α = ‖(−A)αh‖
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defines a norm in D(−A)α. If Xα represents the space D(−A)α endowed with the
norm ‖.‖α, then the following properties are well known (cf. [19], p. 74).

Lemma 2.3. Suppose that the preceding conditions are satisfied.
(1) Let 0 < α ≤ 1. Then Xα is a Banach space.
(2) If 0 < β ≤ α then the injection Xα →֒ Xβ is continuous.
(3) For every 0 < α ≤ 1 there exists Mα > 0 such that

‖(−A)αS(t)‖ ≤Mαt
−αe−νt, t > 0, ν > 0.

3. Main Results

In this section, we consider existence, uniqueness and exponential stability of
mild solution to Equation (1.1). Our main method is the Banach fixed point
principle. First we define the space Sϕ of the càdlàg processes x(t) as follows:

Definition 3.1. Let the space Sϕ denote the set of all càdlàg processes x(t) such
that x(t) = ϕ(t) t ∈ [−τ, 0] and there exist some constants N = N(ϕ, a) > 0 and
a > 0

E‖x(t)‖2 ≤ Ne−at, ∀ t ≥ 0.

Definition 3.2. ‖.‖Sϕ
denotes the norm in Sϕ which is defined by

‖x‖Sϕ
:= sup

t≥0
E‖x(t)‖2X for x ∈ Sϕ.

Remark 3.3. It is routine to check that Sϕ is a Banach space endowed with the
norm ‖.‖Sϕ

.

In order to obtain our main result, we assume that the following conditions
hold.

(H.1) A is the infinitesimal generator of an analytic semigroup, (S(t))t≥0, of
bounded linear operators on X . Further, to avoid unnecessary notations,
we suppose that 0 ∈ ρ(A), and that

‖S(t)‖ ≤Me−νt

for some constants M, ν and every t ∈ [0, T ].
(H.2) There exists a positive constant K1 > 0 such that, for all t ∈ [0, T ] and

x, y ∈ X
‖f(t, x)− f(t, y)‖2 ≤ K1‖x− y‖2.

(H.3) There exist constants 0 < β < 1, K2 > 0 such that the function g is
Xβ-valued and satisfies for all t ∈ [0, T ] and x, y ∈ X

‖(−A)βg(t, x)− (−A)βg(t, y)‖2 ≤ K2‖x− y‖2.
(H.4) The function (−A)βg is continuous in the quadratic mean sense:

For all x ∈ D([0, T ],L2(Ω, X)), lim
t→s

E‖(−A)βg(t, x(t)) − (−A)βg(s, x(s))‖2 = 0.

(H.5) There exists some γ > 0 such that the function σ : [0,+∞) → L0
2(Y,X)

satisfies ∫ ∞

0

e2γs‖σ(s)‖2L0
2

ds <∞.
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(H.6) There exists a positive constant K3 > 0 such that, for all t ∈ [0, T ] and
x, y ∈ X

∫

U

‖h(t, x, z)− h(t, y, z)‖2Xν(dz) ≤ K3‖x− y‖2X .

We further assume that g(t, 0) = f(t, 0) = h(t, 0, z) = 0 for all t ≥ 0 and
z ∈ U .

(H.7) Ik ∈ C(X,X) and there exists a positive constant hk such that ‖Ik(x) −
Ik(y)‖ ≤ hk‖x − y‖ and Ik(0) = 0, k=1,2,..., for each x, y ∈ X and∑∞

k=1hk <∞.

Similar to the deterministic situation we give the following definition of mild
solutions for equation (1.1).

Definition 3.4. An X-valued stochastic process {x(t), t ∈ [−τ, T ]}, is called a
mild solution of equation (1.1) if

i) x(.) has càdlàg path, and
∫ T

0 ‖x(t)‖2dt <∞ almost surely;
ii) x(t) = ϕ(t), −τ ≤ t ≤ 0.
iii) For arbitrary t ∈ [0, T ], x(t) satisfies the following integral equation





x(t) = S(t)(ϕ(0) + g(0, ϕ(−r(0))))− g(t, x(t− r(t)))

−
∫ t

0 AS(t− s)g(s, x(s− r(s)))ds +
∫ t

0 S(t− s)f(s, x(s− ρ(s)))ds

+
∫ t

0
S(t− s)σ(s)dZH(s)

+
∫ t

0

∫
U
S(t− s)h(s, x(s − θ(s)), y)Ñ(ds, dy)

+
∑

0<tk<tS(t− tk)Ikx(tk), P− a.s.

The main result of this paper is given in the next theorem.

Theorem 3.5. Suppose that (H.1)− (H.7) hold and that

K2‖(−A)−β‖2 +K2M
2
1−βν

−2βΓ(β)2 +K1M
2
ν
−2 +M

2
K3(2ν)

−1 +M
2(

∞∑

k=1

hk)
2
<

1

5
,

where Γ(.) is the Gamma function, M1−β is the corresponding constant in Lemma
2.3. If the initial value ϕ(t) satisfies

E‖ϕ(t)‖2 ≤M0E|ϕ|2De−at, t ∈ [−τ, 0],
for some M0 > 0, a > 0; then, for all T > 0, the equation (1.1) has a unique mild
solution on [−τ, T ] and is exponential decay to zero in mean square, i.e., there
exists a pair of positive constants a > 0 and N = N(ϕ, a) such that

E‖x(t)‖2 ≤ Ne−at, ∀t ≥ 0.

Proof. Define the mapping Ψ on Sϕ as follows:

Ψ(x)(t) := ϕ(t), t ∈ [−τ, 0],
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and for t ∈ [0, T ]

Ψ(x)(t) = S(t)(ϕ(0) + g(0, ϕ(−r(0))))− g(t, x(t− r(t)))

−
∫ t

0 AS(t− s)g(s, x(s− r(s)))ds +
∫ t

0 S(t− s)f(s, x(s− ρ(s))ds

+
∫ t

0
S(t− s)σ(s)dZH(s) +

∫ t

0

∫
U
S(t− s)h(s, x(s− θ(s)), y)Ñ (ds, dy)

+
∑

0<tk<t S(t− tk)Ikx(tk).

Then it is clear that to prove the existence of mild solutions to equation (1.1) is
equivalent to find a fixed point for the operator Ψ.

We will show by using Banach fixed point theorem that Ψ has a unique fixed
point. First we show that Ψ(Sϕ) ⊂ Sϕ. Let x(t) ∈ Sϕ, then we have

E‖Ψ(x)(t)‖2 ≤ 7E‖S(t)(ϕ(0) + g(0, ϕ(−r(0))))‖2

+7E‖g(t, x(t− r(t)))‖2 + 7E‖
∫ t

0

AS(t− s)g(s, x(s− r(s)))ds‖2

+7E‖
∫ t

0

S(t− s)f(s, x(s− ρ(s))ds‖2 + 7E‖
∫ t

0

S(t− s)σ(s)dZH (s)‖2

+7E‖
∫ t

0

∫

U

S(t− s)h(s, x(s− θ(s)), y)Ñ (ds, dy)‖2

+7E‖
∑

0<tk<t
S(t− tk)Ikx(tk)‖2

:= 7

7∑

i=1

Ii. (3.1)

Now, let us estimate the terms on the right of the inequality (3.1). Let N =
N(ϕ, a) > 0 and a > 0 such that

E‖x(t)‖2 ≤ Ne−at, ∀ t ≥ 0.

Without loss of generality we may assume that 0 < a < ν. Then, by assumption
(H.1) we have

I1 ≤M2
E‖ϕ(0) + g(0, ϕ(−r(0)))‖2e−νt ≤ C1e

−νt, (3.2)

where C1 =M2
E‖ϕ(0) + g(0, ϕ(−r(0)))‖2 < +∞.

By using assumption (H.3) and the fact that the operator (−A)−β is bounded,
we obtain that

I2 ≤ ‖(−A)−β‖2E‖(−A)βg(t, x(t− r(t))) − (−A)βg(t, 0)‖2

≤ K2‖(−A)−β‖2E‖x(t− r(t))‖2

≤ K2‖(−A)−β‖2(Ne−a(t−r(t)) + E‖ϕ(t− r(t))‖2)
≤ K2‖(−A)−β‖2(N +M0E|ϕ|2D)e−a(t−r(t))

≤ K2‖(−A)−β |2(N +M0E|ϕ|2D)e−ateaτ

≤ C2e
−at, (3.3)

where C2 = K2‖(−A)−β‖2(N +M0E|ϕ|2D)eaτ < +∞.
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To estimate I3, we use the trivial identity

c−α =
1

Γ(α)

∫ +∞

0

tα−1e−ct , ∀ c > 0. (3.4)

Using Hölder’s inequality, Lemma 2.3 together with assumption (H.3) and the
identity (3.4), we get

I3 ≤ E‖
∫ t

0

AS(t− s)g(s, x(s− r(s)))ds‖2

≤
∫ t

0

‖(−A)1−βS(t− s)‖ds
∫ t

0

‖(−A)1−βS(t− s)‖

× E‖(−A)βg(s, x(s− r(s)))‖2ds

≤ M2
1−βK2

∫ t

0

(t− s)β−1e−ν(t−s)ds

×
∫ t

0

(t− s)β−1e−ν(t−s)
E‖x(s− r(s))‖2ds

≤ M2
1−βK2ν

−βΓ(β)

∫ t

0

(t− s)β−1e−ν(t−s)(N +M0E|ϕ|2D)e−aseaτds

≤ M2
1−βK2ν

−βΓ(β)(N +M0E|ϕ|2D)e−ateaτ
∫ t

0

(t− s)β−1e(a−ν)(t−s)ds

≤ M2
1−βK2ν

−βΓ2(β)(ν − a)−1(N +M0E|ϕ|2D)eaτe−at

≤ C3e
−at, (3.5)

where C3 =M2
1−βK2ν

−βΓ2(β)(ν − a)−1(N +M0E|ϕ|2D)eaτ < +∞.
Similar computations can be used to estimate the term I4.

I4 ≤ E‖
∫ t

0

S(t− s)f(s, x(s− ρ(s)))ds‖2

≤ M2K1

∫ t

0

e−ν(t−s)ds

∫ t

0

e−ν(t−s)
E‖x(s− ρ(s))‖2ds

≤ M2K1ν
−1

∫ t

0

e−ν(t−s)(N +M0E|ϕ|2D)e−aseaτds

≤ M2K1ν
−1(N +M0E|ϕ|2D)e−ateaτ

∫ t

0

e(a−ν)(t−s)ds

≤ M2K1ν
−1(ν − a)−1(N +M0E|ϕ|2D)e−ateaτ

≤ C4e
−at. (3.6)

where C4 =M2K1ν
−1(ν − a)−1(N +M0E|ϕ|2D)eaτ .

By using Lemma 2.2, we get that

I5 ≤ E‖
∫ t

0

S(t− s)σ(s)dZH(s)‖2

≤ 2M2Ht2H−1

∫ t

0

e−2ν(t−s)‖σ(s)‖2L0
2

ds. (3.7)
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If γ < ν, then the following estimate holds

I5 ≤ 2M2Ht2H−1

∫ t

0

e−2ν(t−s)e−2γ(t−s)e2γ(t−s)‖σ(s)‖2L0
2

ds

≤ 2M2Ht2H−1e−2γt

∫ t

0

e−2(ν−γ)(t−s)e2γs‖σ(s)‖2L0
2

ds

≤ 2M2HT 2H−1e−2γt

∫ T

0

e−2(ν−γ)(t−s)e2γs‖σ(s)‖2L0
2
ds

≤ 2M2HT 2H−1e−2γt

∫ T

0

e2γs‖σ(s)‖2L0
2
ds. (3.8)

If γ > ν, then the following estimate holds

I5 ≤ 2M2HT 2H−1e−2νt

∫ T

0

e2γs‖σ(s)‖2L0
2

ds. (3.9)

In virtue of (3.7), (3.8) and (3.9) we obtain

I5 ≤ C5e
−min(ν,γ)t (3.10)

where C5 = 2M2HT 2H−1
∫ T

0
e2γs‖σ(s)‖2

L0
2

ds < +∞.

On the other hand, by assumptions (H.1) and (H.6), we get

I6 ≤ E‖
∫ t

0

∫

U

S(t− s)h(s, x(s− θ(s)), y)Ñ (ds, dy)‖2

≤ M2
E

∫ t

0

e−2ν(t−s)

∫

U

‖h(s, x(s− θ(s)), y)‖2ν(dy)ds

≤ M2K3

∫ t

0

e−2ν(t−s)
E‖x(s− θ(s))‖2ds

≤ M2K3

∫ t

0

e−2ν(t−s)(N +M0E|ϕ|2D)e−aseaτds

≤ M2K3(N +M0E|ϕ|2D)e−ateaτ
∫ t

0

e(−2ν+a)(t−s)ds

≤ M2K3(N +M0E|ϕ|2D)eaτ (2ν − a)−1e−at

≤ C6e
−at, (3.11)

where C6 =M2K3(N +M0E|ϕ|2D)eaτ (2ν − a)−1 < +∞.
Now, we estimate the impulsive term, by assumption (H.7), we get

J7 ≤ E(
∑

0<tk<t

Me−ν(t−tk)hk‖x(tk)‖)2

≤ M2
E(

∑

0<tk<t

e−2ν(t−tk)‖x(tk)‖)2

≤ M2
∑

0<tk<t

hk
∑

0<tk<t

hke
−2ν(t−tk)E‖x(tk)‖2
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≤ M2
∞∑

k=1

hk
∑

0<tk<t

hke
−2ν(t−tk)Ne−atk

≤ M2Ne−at
∞∑

k=1

hk
∑

0<tk<t

hke
(a−2ν)(t−tk)

≤ M2Ne−at(

∞∑

k=1

hk)
2, (0 < a < ν)

≤ C7e
−at, (3.12)

where C7 =M2N(
∑∞

k=1 hk)
2.

Inequalities (3.2), (3.3), (3.5), (3.6), (3.10), (3.11) and (3.12) together imply that
E‖Ψ(x)(t)‖2 ≤Me−at , t ≥ 0,for some M > 0 and a > 0.

Next we show that Ψ(x)(t) is càdlàg process on Sϕ. Let 0 < t < T and h > 0
be sufficiently small. Then for any fixed x(t) ∈ Sϕ, we have

E‖Ψ(x)(t+ h)−Ψ(x)(t)‖2

≤ 7E‖(S(t+ h)− S(t))(ϕ(0) + g(0, ϕ(−r(0))))‖2

+ 7E‖g(t+ h, x(t+ h− r(t+ h)))− g(t, x(t− r(t)))‖2

+ 7E‖
∫ t+h

0

AS(t+ h− s)g(s, x(s− r(s)))ds

−
∫ t

0

AS(t− s)g(s, x(s− r(s)))ds‖2

+ 7E‖
∫ t+h

0

S(t+ h− s)f(s, x(s− ρ(s)))ds

−
∫ t

0

S(t− s)f(s, x(s− ρ(s)))ds‖2

+ 7E‖
∫ t+h

0

S(t+ h− s)σ(s)dZH(s)−
∫ t

0

S(t− s)σ(s)dZH(s)‖2

+ 7E‖
∫ t+h

0

∫

U

S(t+ h− s)h(s, x(s − θ(s)), y)Ñ(ds, dy)

−
∫ t

0

∫

U

S(t− s)h(s, x(s− θ(s)), y)Ñ (ds, dy)‖2

+ 7E‖
∑

0<tk<t+h

S(t+ h− tk)Ik(x(tk))−
∑

0<tk<t

S(t− tk)Ik(x(tk))‖2

= 7
∑

1≤i≤7

E‖Ii(t+ h)− Ii(t)‖2.

By assumption (H.6), we have

E‖I6(t+ h)− I6(t)‖2

≤ 2E‖
∫ t

0

∫

U

(S(t+ h− s)− S(t− s))h(s, x(s− θ(s)), y)Ñ (ds, dy)‖2
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+ 2E‖
∫ t+h

t

∫

U

S(t+ h− s)h(s, x(s− θ(s)), y)Ñ (ds, dy)‖2

≤ 2M2‖S(h)− I‖E
∫ t

0

∫

U

e−2ν(t−s)‖h(s, x(s− θ(s)), y)‖2ν(dy)ds

+ 2M2
E

∫ t+h

t

∫

U

e−2ν(t+h−s)‖h(s, x(s− θ(s)), y)‖2ν(dy)ds, (3.13)

and

E

∫ t

0

∫

U

e−2ν(t−s)‖h(s, x(s− θ(s)), y)‖2ν(dy)ds

≤ K3

∫ t

0

e−2ν(t−s)
E‖x(s− θ(s))‖2ds

≤ K3

∫ t

0

e−2ν(t−s)(N +M0E|ϕ|2D)e−aseaτds

≤ K3(N +M0E|ϕ|2D)eaτ (2ν − a)−1e−at. (3.14)

Inequality (3.14) implies that there exist a constant B > 0 such that

E

∫ t

0

∫

U

e−2ν(t−s)‖h(s, x(s− θ(s)), y)‖2ν(dy)ds ≤ B. (3.15)

Using the strong continuity of S(t) together with inequalities (3.13) and (3.15) we
obtain that E‖I6(t+ h)− I6(t)‖2 → 0 as h→ 0.

Similarly, we can verify that E‖Ii(t + h)− Ii(t)‖2 → 0 as h → 0, i = 1, ..., 5, 7.
The above arguments show that Ψ(x)(t) is càdlàg process. Then, we conclude that
Ψ(Sϕ) ⊂ Sϕ.

Now, we are going to show that Ψ : Sϕ → Sϕ is a contraction mapping. For
this end, fix x, y ∈ Sϕ, we have

E‖Ψ(x)(t) −Ψ(y)(t)‖2

≤ 5E‖g(t, x(t− r(t))) − g(t, y(t− r(t)))‖2

+5E‖
∫ t

0

AS(t− s)(g(s, x(s− r(s))) − g(s, y(s− r(s))))ds‖2

+5E‖
∫ t

0

S(t− s)(f(s, x(s − ρ(s)))− f(s, y(s− ρ(s))))ds‖2

+5E‖
∫ t

0

S(t− s)

∫

U

h(s, x(s− θ(s)), z)− h(s, y(s− θ(s)), z)Ñ (ds, dz)‖2

+5E‖
∑

0<tk<t

S(t− tk)[Ik(x(tk))− Ik(y(tk))]‖2

:= 5(J1 + J2 + J3 + J4 + J5). (3.16)

We estimate the various terms of the right hand of (3.16) separately.
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For the first term, we have

J1 ≤ E‖g(t, x(t− r(t))) − g(t, y(t− r(t)))‖2

≤ K2‖(−A)−β‖2E‖x(s− r(s)) − y(s− r(s))‖2

≤ K2‖(−A)−β‖2 sup
s≥0

E‖x(s) − y(s)‖2. (3.17)

For the second term, combing Lemma 2.3 and Hölder’s inequality, we get

J2 ≤ E‖
∫ t

0

AS(t− s)(g(s, x(s− r(s))) − g(s, y(s− r(s))))ds‖2

≤ K2M
2
1−β

∫ t

0

(t− s)β−1e−ν(t−s)ds

×
∫ t

0

(t− s)β−1e−ν(t−s)
E‖x(s− r(s)) − y(s− r(s))‖2ds

≤ K2M
2
1−βν

−βΓ(β)

∫ t

0

(t− s)β−1e−ν(t−s)ds(sup
s≥0

E‖x(s)− y(s)‖2)

≤ K2M
2
1−βν

−2βΓ(β)2 sup
s≥0

E‖x(s)− y(s)‖2. (3.18)

For the third term, by assumption (H.2), we get that

J3 ≤ E‖
∫ t

0

S(t− s)(f(s, x(s − ρ(s)))− f(s, y(s− ρ(s))))ds‖2

≤ K1M
2

∫ t

0

e−ν(t−s)ds

∫ t

0

e−ν(t−s)
E‖x(s− ρ(s))− y(s− ρ(s))‖2ds

≤ K1M
2ν−2 sup

s≥0
E‖x(s)− y(s)‖2. (3.19)

For the term J4, by using assumption (H.6), we get

J4 ≤ E‖
∫ t

0

S(t− s)

∫

U

h(s, x(s− θ(s)), z)− h(s, y(s− θ(s)), z)Ñ(ds, dz)‖2

≤ M2
E‖

∫ t

0

e−2ν(t−s)

∫

U

‖h(s, x(s− θ(s)), z)− h(s, y(s− θ(s)), z)‖2ν(dz)ds

≤ M2K3(2ν)
−1 sup

s≥0
E‖x(s) − y(s)‖2. (3.20)

For the last term, we have

J5 ≤ E‖
∑

0<tk<t

S(t− tk)[Ik(x(tk))− Ik(y(tk))]‖2

≤ M2(
∑

0<tk<t

e−ν(t−tk)hkE‖x(t)− y(t)‖)2

≤ M2(
∞∑

k=0

hk)
2(sup

t≥0
E‖x(t)− y(t)‖2). (3.21)
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Thus inequalities (3.17), (3.18), (3.19), (3.20) and (3.21) together imply

sup
t≥0

E‖Ψ(x)(t)−Ψ(y)(t)‖2

≤ 5[K2‖(−A)−β‖2 +K2M
2
1−βν

−2βΓ(β)2 +K1M
2ν−2

+M2K3(2ν)
−1 +M2(

∞∑

k=0

hk)
2](sup

t≥0
E‖x(t) − y(t)‖2).

Therefore by the condition of the theorem it follows that Ψ is a contractive
mapping. Thus by the Banach fixed point theorem Ψ has the fixed point x(t) ∈ Sϕ,
which is a unique mild solution to (1.1) satisfying x(s) = ϕ(s) on [−τ, 0]. By the
definition of the space Sϕ this solution is exponentially stable in mean square.
This completes the proof. �

4. Example

We consider the following impulsive neutral stochastic partial differential equa-
tion with Poisson jumps and finite delays driven by a Rosenblatt process of the
form:




d[x(t, ξ) + α1

M 1
4

‖(−A)
3
4 ‖

x(t− r(t), ξ)] = [ ∂2

∂2ξ
x(t, ξ) + α2x(t− ρ(t), ξ)]dt+ e−tdZH(t)

+
∫
Z
α3yx(t− θ(t), ξ)Ñ(dt, dy), t ≥ 0, t 6= tk, 0 ≤ ξ ≤ π

∆x(tk, ξ) = Ikx(tk, ξ) =
α4

2k
x(tk, ξ)), t = tk, k = 1, 2, ....,

x(t, 0) = x(t, π) = 0, t ≥ 0, αi > 0, i = 1, 2, 3, 4,

x(s, ξ) = ϕ(s, ξ), ϕ(s, .) ∈ L
2([0, π]) ;−τ ≤ s ≤ 0 a.s.,

(4.1)

where M 1
4
is the corresponding constant in Lemma 2.3, zH is a Rosenblatt process

and Z = {z ∈ R : 0 < |z| ≤ c, c > 0}. For the convenience of writing, in the following,
the variable ξ of x(t, ξ) is omitted.

We rewrite (4.1) into abstract form of (1.1). Let X = L2([0, π]). Define the operator

A : D(A) ⊂ X −→ X given by A = ∂2

∂2ξ
with

D(A) = {y ∈ X : y′ is absolutely continuous, y′′ ∈ X, y(0) = y(π) = 0},

then we get

Ax =
∞∑

n=1

n
2
< x, en >X en, x ∈ D(A),

where en :=
√

2
π
sinnx, n = 1, 2, .... is an orthogonal set of eigenvector of −A.

The bounded linear operator (−A)
3
4 is given by

(−A)
3
4 x =

∞∑

n=1

n
3
2 < x, en >X en,
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with domain

D((−A)
3
4 ) = X 3

4
= {x ∈ X,

∞∑

n=1

n
3
2 < x, en >X en ∈ X}.

It is well known that A is the infinitesimal generator of an analytic semigroup {S(t)}t≥0

in X, and is given by (see [19])

S(t)x =
∞∑

n=1

e
−n2t

< x, en > en

for x ∈ X and t ≥ 0, that satisfies ‖S(t)‖ ≤ e−π2t for every t ≥ 0.
Let

g(t, x(t− r(t))) =
α1

M 1
4
‖(−A)

3
4 ‖

x(t− r(t)),

f(t, x(t− ρ(t))) = α2x(t− ρ(t)),

and

h(t, x(t− θ(t), y)) = α3yx(t− θ(t)).

It is obvious that all the assumptions are satisfied with ν = π2, M = 1, K1 = α2
2,

K2 =
α2
1

M2
1
4

, K3 = α2
3

∫
Z
y2ν(dy) , hk = α4

2k
, k ∈ N, ‖(−A)

3
4 ‖ = 1, β = 3

4
, γ = 1

2
and

‖(−A)−
3
4 ‖ ≤ 1

Γ( 3
4
)

∫∞

0
t
−1

4 ‖S(t)‖dt ≤ 1

π
3
2

.

Thus, by Theorem 3.5, if the initial value ϕ(t) satisfies

E‖ϕ(s)‖2 ≤ M0E|ϕ|
2
De

−as
, s ∈ [−τ, 0],

for some M0 > 0, a > 0; then, the equation (4.1) has one unique mild solution and is
exponential stable in mean square provided that the following inequality

α2
1

M2
1
4

π
+

Γ2( 3
4
)α2

1

π
+

α2
2

π2
+

α2
3

∫
Z
y2ν(dy)

2
+

4α2
4

π2
<

π2

5

holds.
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