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Abstract. A Lieb-Thirring bound for Schrödinger operators with Bernstein
functions of the Laplacian is shown by functional integration techniques. Sev-
eral specific cases are discussed in detail.

1. Introduction

In mathematical physics there is much interest in an inequality due originally
to Lieb and Thirring giving an upper bound on the number of bound states for
a Schrödinger operator − 1

2∆+ V . With N0 denoting the number of non-positive
eigenvalues of the Schrödinger operator, in a semi-classical description it is ex-
pected that

N0(V ) =
1

(2π)d

∫

Rd×Rd

1l{(p,x): |p|2+V (x)≤0}dpdx. (1.1)

The right hand side above is computed as

1

(2π)d

∫

Rd

dx

∫

Rd

1l{
|ξ|≤

√
V
−
(x)

}dξ =
1

(2π)d
σ(Sd−1)

d

∫

Rd

|V−(x)|d/2dx, (1.2)

where σ(Sd−1) = 2πd/2

Γ(d/2) and V− is the negative part of V . The Lieb-Thirring

inequality then says that

N0(V ) ≤ Cd

∫

Rd

|V−(x)|d/2dx, (1.3)

see [9, 10], where Cd is a constant dependent on d alone. Various extensions have
been further studied by many authors, see [12] and references therein.

Following our work [5] in which we defined generalized Schrödinger operators
of the form

H = Ψ

(

−1

2
∆

)

+ V, (1.4)

where Ψ denotes a Bernstein function (see below), it is a natural question if a
similar Lieb-Thirring bound can be established and how does this depend on the
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choice of the Bernstein function. We will actually derive under some conditions
that for a negative potential V

N0(V ) ≤ A

∫

Rd

(

Ψ−1(|V (x)|)
)d/2

dx (1.5)

(Theorem 3.23 and Corollary 3.9) by making use of estimates of the diagonal part
of the heat kernel of subordinate Brownian motion generated by Ψ

(

− 1
2∆

)

. This

extension includes beside usual Schrödinger operators − 1
2∆ + V also fractional

Schrödinger operators of the form (−∆)α/2 + V and relativistic Schrödinger op-
erators (−∆ + m2)1/2 − m + V . General Bernstein functions receive increasing
attention in the study of stochastic processes with jump discontinuities and their
potential theory [14].

A Lieb-Thirring bound for generalized kinetic energy terms was first obtained
in [3]. Although the author mentions that similar bounds can be derived for
generalizations using (1.4), the focus of that paper is primarily on the relativis-
tic Schrödinger operators above with or without mass. Lieb-Thirring inequalities
for fractional Schrödinger operators compensated by the Hardy weight have been
obtained more recently in [4] by using methods of Sobolev inequalities. A refer-
ence considering the same problem for relativistic Schrödinger operators including
magnetic fields is [7].

The remainder of this paper is organized as follows. In Section 2 we recall the
definition of the class of Schrödinger operators we consider and briefly describe
the stochastic processes related to them. In the main Section 3 we state and prove
the Lieb-Thirring inequality for these operators, and obtain some more explicit
variants. In Section 4 we discuss some cases of special interest.

2. Schrödinger Operators with Bernstein Bunctions of the Laplacian

Consider the function space

B =

{

Ψ ∈ C∞(R+) : Ψ(x) ≥ 0, (−1)n
(

dnΨ

dxn

)

(x) ≤ 0, x ∈ R
+, n = 1, 2, ...

}

.

An element of B is called a Bernstein function. We also define the subclass B0 =
{Ψ ∈ B : limx→0+Ψ(x) = 0}.

Bernstein functions in B0 have the following integral representation. Let L be
the set of Borel measures λ on R\{0} with the properties that λ((−∞, 0)) = 0 and
∫

R\{0}

(y∧1)λ(dy) < ∞. Note that every λ ∈ L is a Lévy measure. Then it can be

shown [14] that for every Bernstein function Ψ ∈ B0 there exists (b, λ) ∈ [0,∞)×L
such that

Ψ(x) = bx+

∫ ∞

0

(1− e−xy)λ(dy). (2.1)

Conversely, the right hand side of (2.1) is in B0 for each pair (b, λ) ∈ [0,∞) × L.
It is known that the map B0 → [0,∞)× L, Ψ 7→ (b, λ) is bijective.

Next consider a probability space (Ων ,Fν , ν) and a stochastic process (Tt)t≥0

on it. Recall that (Tt)t≥0 is called a subordinator whenever it is a Lévy process
starting at 0, and t 7→ Tt is almost surely a non-decreasing function. Let S
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denote the set of subordinators on (Ων ,Fν, ν). Also, let Ψ ∈ B0 or, equivalently,
a pair (b, λ) ∈ [0,∞)× L be given. Then by the above bijection there is a unique
(Tt)t≥0 ∈ S such that

E
0
ν [e

−uTt ] = e−tΨ(u). (2.2)

Conversely, for every (Tt)t≥0 ∈ S there exists a unique Ψ ∈ B0, i.e., a pair (b, λ) ∈
[0,∞)×L such that (2.2) is satisfied. In particular, (2.1) coincides with the Lévy-
Khintchine formula for Laplace exponents of subordinators. Using the bijection
between B0 and S, we denote by (TΨ

t )t≥0 the subordinator uniquely associated
with Ψ ∈ B0.

It is known that the composition of a Brownian motion and a subordinator
yields a Lévy process. This process is Xt : ΩP ×Ων ∋ (ω1, ω2) 7→ BTt(ω2)(ω1) ∈ R

d,
called d-dimensional subordinate Brownian motion with respect to the subordi-

nator (Tt)t≥0. Its properties are determined by E
0
P×ν [e

iξ·Xt ] = e−tΨ(|ξ|2/2). The
function

PΨ
t (x) =

1

(2π)d

∫

Rd

e−ix·ξe−tΨ(|ξ|2/2)dξ (2.3)

gives the distribution of Xt in R
d.

Let h = −∆ be the Laplacian in L2(Rd). We assume throughout this paper that
d ≥ 3. Define the operator Ψ(h/2) on L2(Rd) with Bernstein function Ψ ∈ B0. Let
V = V+ − V−, where V+ = max{V, 0}, V− = min{−V, 0}, and assume that V− is
form-bounded with respect to Ψ(h/2) with a relative bound strictly smaller than
1, and V+ ∈ L1

loc(R
d). Then we define the Schrödinger operator with Bernstein

function Ψ of the Laplacian by

HΨ = Ψ(h/2) +̇ V+ −̇ V−. (2.4)

(The dots indicate quadratic form sum.) In what follows we simply write HΨ =
Ψ(h/2) + V instead of (2.4).

Proposition 2.1. With f, g ∈ L2(Rd), we have the functional integral represen-

tation for the semigroup e−tHΨ

, t ≥ 0, given by

(f, e−tHΨ

g) =

∫

Rd

dxEx
P×ν

[

f(X0)g(Xt)e
−

∫

t
0
V (Xs)ds

]

. (2.5)

Proof. This is obtained by subordination and an application of the Trotter product
formula combined with a limiting argument. For a detailed proof we refer to
[5, 13]. �

In view of applications (quantum theory, anomalous transport theory, financial
mathematics etc) some particular choices of Bernstein functions are of special
interest involving the following stochastic processes:

(1) symmetric α-stable processes: Ψ(u) = (2u)α/2, 0 < α ≤ 2
(2) sums of independent symmetric stable processes of different index: Ψ(u) =

(2u)α/2 + (2u)β/2, 0 < α, β ≤ 2, α 6= β
(3) jump-diffusion processes: Ψ(u) = au+ buα/2, with a, b ∈ R

(4) relativistic α-stable processes: Ψ(u) = (2u+m2/α)α/2, with m > 0.
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3. Lieb-Thirring Bound

The following are standing assumptions throughout the paper.

Assumption 3.1.

(1) V is a continuous and non-positive function
(2) there exists λ∗ > 0 such that ‖(Ψ(h/2) + λ)−1/2|V |1/2‖ < 1 for all λ ≥ λ∗

(3) the operator (Ψ(h/2) + λ)−1/2|V |1/2 is compact for all λ ≥ 0
(4) there exists n0 > 0 such that Tr(|V |1/2(Ψ(h/2) + λ)−1|V |1/2)n < ∞ for

all n ≥ n0 and λ > 0.

Part (2) of Assumption 3.1 implies that V is relatively form bounded with respect
to Ψ(h/2) with relative bound strictly smaller than 1. Part (3) ensures that the
Birman-Schwinger principle (3.3) holds, and (4) is used in the proof of Lemma 3.6.

Example 3.2. Let L∞,0(Rd) be the set of functions f ∈ L∞(Rd) such that
lim|x|→∞ |f(x)| = 0. It is well known that if P,Q ∈ L∞,0(Rd), then P (−i∇)Q(x)

is a compact operator [15]. Thus (Ψ(h/2)+λ)−1/2|V |1/2 is compact for V ∈ L∞,0,
since Ψ is increasing. Moreover, if Ψ(h/2) = −∆ and V ∈ Ld/2(Rd), (4) of As-
sumption 3.1 is satisfied with n0 = d/2.

Consider the number

NE(V ) = dim1l(−∞,−E](H
Ψ). (3.1)

In the original context of quantum theory this expression has the relevance of
counting the number of bound states of energy up to −E < 0. Recall [16] that the
Birman-Schwinger kernel is defined by

KE = |V |1/2(Ψ(h/2) + E)−1|V |1/2 (3.2)

and the Birman-Schwinger principle says that

NE(V ) = dim1l[1,∞)(KE), −E < 0,

N0(V ) ≤ dim1l[1,∞)(K0), E = 0.
(3.3)

Example 3.3. Let V = V+−V− be such that V− ∈ L∞(Rd). Since Ψ(h/2)−V− ≤
HΨ, the number of negative eigenvalues of HΨ is smaller than that of HΨ

− =

Ψ(h/2) − V−. Therefore instead of HΨ we may consider HΨ
− . Since |V−| ∈ L∞,

we have that the operator (Ψ(h/2) + λ)−1/2|V−|1/2 is compact, thus the Birman-
Schwinger principle applies to HΨ

− .

Let Fλ(x) = x(1 + λx)−1 = x
∫∞

0
e−y(1+λx)dy and gλ(x) = e−λx. The two

functions are related by

Fλ(x) = x

∫ ∞

0

e−ygλ(xy)dy. (3.4)

By a direct computation we obtain

Fλ(KE) = |V |1/2(Ψ(h/2) + λ|V |+ E)−1|V |1/2 (3.5)

and by Laplace transform

(Fλ(KE)f) (x) = |V (x)|1/2
(
∫ ∞

0

dte−tEe−t(Ψ(h/2)+λ|V |)|V |1/2f
)

(x), (3.6)
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f ∈ L2(Rd), follows. By (3.3) we have

NE(V ) = #{Fλ(µ)|Fλ(µ) is an eigenvalue of Fλ(KE) and µ ≥ 1}, E > 0,

N0(V ) ≤ #{Fλ(µ)|Fλ(µ) is an eigenvalue of Fλ(K0) and µ ≥ 1}, E = 0.

Since Fλ is monotone increasing, it follows that

NE(V ) ≤ 1

Fλ(1)

∑

µ∈Spec(KE),µ≥1

Fλ(µ). (3.7)

Using this we will estimate the trace of Fλ(KE). From Proposition 2.1 we obtain

(Fλ(KE)f) (x) = |V (x)|1/2
∫ ∞

0

dte−tE
E
x
P×ν

[

e−λ
∫ t
0
|V (Xs)|ds|V (Xt)|1/2f(Xt)

]

.

(3.8)
In order to express the kernel of e−t(Ψ(h/2)+λ|V |) in terms of a conditional expec-
tation we use the following notation. Let E0

P×ν [Y |Xt] be conditional expectation

with respect to the σ-field σ(Xt), i.e., E
0
P×ν [Y |Xt] is measurable with respect to

σ(Xt). Generally, a function f measurable with respect to σ(Xt) can be written as
f = g(Xt) with a suitable function g. We write E

0
P×ν [Y |Xt] = g(Xt), and use the

notation g(x) = E
0
P×ν [Y |Xt = x], i.e., E0

P×ν [Y |Xt] =
∫

E
0
P×ν [Y |Xt = x]PΨ

t (x)dx.
In these terms we then have

e−t(Ψ(h/2)+λ|V |)(x, y) = E
0
P×ν

[

e−λ
∫

t
0
|V (Xs+x)|ds

∣

∣

∣
Xt + x = y

]

PΨ
t (x− y), (3.9)

where PΨ
t is the distribution of Xt given by (2.3).

Lemma 3.4. The map (x, y) 7→ e−t(Ψ(h/2)+|V |)(x, y) is continuous.

Proof. Let P x,y
[0,T ] denote Brownian bridge measure starting from x at t = 0 and

ending in y at t = T . Then by the Feynman-Kac-like formula (2.5) and using that
Xs = BTs we see that for f, g ∈ L2(Rd),

(f, e−t(Ψ(h/2)+|V |)g) (3.10)

=

∫

Rd×Rd

f̄(x)g(y)Eν

[

ΠTt(x− y)EPx,y
[0,Tt]

[e−
∫ t
0
|V (BTs )|ds]

]

dxdy,

where Πt(x) is the Gaussian heat kernel. Note that the measure P x,y
[0,Tt]

= P x,y
[0,Tt(ω2)]

is defined for every ω2 ∈ Ων . For every ω2 ∈ Ων we also define the Brownian bridge
(Zt)t≥0 by

Zt =

(

1− t

Tt

)

x+
t

Tt
y − t

Tt
BTt +Bt,

where Tt depends on ω2. Thus (3.10) is equal to

(f, e−t(Ψ(h/2)+|V |)g) =

∫

Rd×Rd

f̄(x)g(y)Eν

[

ΠTt(x− y)E0
P [e

−
∫ t
0
|V (Zs)|ds]

]

dxdy.

(3.11)
Hence the integral kernel is given by

e−t(Ψ(h/2)+|V |)(x, y) = Eν

[

ΠTt(x− y)E0
P [e

−
∫ t
0
|V (Zs)|ds]

]

and implies joint continuity with respect to (x, y). �
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From Lemma 3.4 it follows that the kernel of Fλ(KE),

Fλ(KE)(x, y) = |V (x)|1/2|V (y)|1/2 (3.12)

×
∫ ∞

0

dte−tE
E
0
P×ν

[

gλ

(
∫ t

0

|V (Xs + x)|ds
)∣

∣

∣

∣

Xt + x = y

]

PΨ
t (x − y)

is also jointly continuous in (x, y). Here we used that g(x) = e−λx. By setting
x = y in (3.12) it is seen that TrFλ(KE) =

∫

Rd Fλ(KE)(x, x)dx. This gives the
expression

TrFλ(KE) (3.13)

=

∫

Rd

dx|V (x)|
∫ ∞

0

dte−tE
E
0
P×ν

[

gλ

(
∫ t

0

|V (Xs + x)|ds
)
∣

∣

∣

∣

Xt = 0

]

PΨ
t (0).

Lemma 3.5. It follows that

TrFλ(KE) =

∫

Rd

dx

∫ ∞

0

dt

t
e−tE

E
0
P×ν

[

Gλ

(
∫ t

0

|V (Xs + x)|ds
)∣

∣

∣

∣

Xt = 0

]

PΨ
t (0),

(3.14)
where Gλ(x) = xgλ(x) = xe−λx.

Proof. It suffices to show that

1

t

∫

Rd

dxE0
P×ν

[

e−
∫

t
0
|V (Xs+x)|ds

∫ t

0

|V (Xr + x)|dr
∣

∣

∣

∣

Xt = 0

]

PΨ
t (0) (3.15)

=

∫

Rd

dx|V (x)|E0
P×ν

[

e−
∫

t
0
|V (Xs+x)|ds

∣

∣

∣
Xt = 0

]

PΨ
t (0).

Let Ur = e−r(Ψ(h/2)+|V |)|V |e−(t−r)(Ψ(h/2)+|V |) for 0 ≤ r ≤ t. Note that Ur is
compact and thus TrUr = TrU0. By the Markov property of (Xt)t≥0 it follows
that for f ∈ L2(Rd)

(Urf) (x) = E
x
P×ν

[

e−
∫

r
0
|V (Xs)|ds|V (Xr)|EXr

P×ν

[

e−
∫

t−r
0

|V (Xs)|dsf(Xt−r)
]]

= E
x
P×ν

[

e−
∫ t
0
|V (Xs)|ds|V (Xr)|f(Xt)

]

.

Thus the right hand side above is expressed as

=

∫

Rd

PΨ
t (x− y)E0

P×ν

[

e−
∫ t
0
|V (Xs+x)|ds|V (Xr + x)|

∣

∣

∣
Xt + x = y

]

f(y)dy.

This furthermore gives

TrUr =

∫ t

0

dr

t
TrUr (3.16)

=
1

t

∫

Rd

dxPΨ
t (0)E

0
P×ν

[

e−
∫

t
0
|V (Xs+x)|ds

∫ t

0

|V (Xr + x)|dr
∣

∣

∣

∣

Xt = 0

]

,

where we interchanged dr and dP 0. Equality
∫ t

0
dr
t TrUr = TrU0 together with

(3.16) yield (3.15). Hence the lemma follows. �
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We may vary Fλ and gλ while keeping relationship (3.4) unchanged. Let F :
[0,∞) → [0,∞) be a strictly increasing function such that

F (x) = x

∫ ∞

0

e−yg(xy)dy, (3.17)

where g is a non-negative function on R. Write

G(x) = xg(x). (3.18)

Lemma 3.6. Let Assumption 3.1 hold and take any F , G and g satisfying (3.17).
Suppose that G is non-negative and lower semi-continuous. Then it follows that

TrF (KE) =

∫

Rd

dx

∫ ∞

0

dt
e−tE

t
E
0
P×ν

[

G

(
∫ t

0

|V (Xs + x)|ds
)∣

∣

∣

∣

Xt = 0

]

PΨ
t (0).

(3.19)

Proof. The proof is obtained by a slight modification of [15, Theorem 8.2] and [13,
Lemma 3.51]. �

Theorem 3.7. (Lieb-Thirring bound) Let Assumption 3.1 hold, F , G be any
functions satisfying (3.17) and (3.18), and G furthermore be convex. Then

N0(V ) ≤ 1

F (1)

∫ ∞

0

ds

s
G(s)

∫

Rd

PΨ
s/|V (x)|(0)1l{|V (x)|>0}dx, (3.20)

where

PΨ
s/|V (x)|(0) = (2π)−d

∫

Rd

e−sΨ(|ξ|2/2)/|V (x)|dξ.

We note that the right hand side of (3.20) may not be finite, this depends on
the choice of the convex function G.

Proof. Since F is a monotone increasing function, we have

N0(V ) ≤ 1

F (1)
Tr(F (K0))

=
1

F (1)

∫ ∞

0

dt

t

∫

Rd

dxE0
P×ν

[

G

(
∫ t

0

t|V (Xs + x)|ds
t

)∣

∣

∣

∣

Xt = 0

]

PΨ
t (0).

Then by the Jensen inequality

N0(V ) ≤ 1

F (1)

∫ ∞

0

dt

t

∫

Rd

dxE0
P×ν

[
∫ t

0

ds

t
G (t|V (Xs + x)|)

∣

∣

∣

∣

Xt = 0

]

PΨ
t (0).

Using that
∫ t

0
ds
t = 1 and swapping dx and dP 0 × dν, we obtain

N0(V ) ≤ 1

F (1)

∫ ∞

0

PΨ
t (0)

dt

t

∫

Rd

G(t|V (x)|)dx.

When V (x) = 0, also G(tV (x)) = 0. This implies that the right hand side above
equals

1

F (1)

∫ ∞

0

PΨ
t (0)

dt

t

∫

Rd

G(t|V (x)|)1l{|V (x)|>0}dx.

83



FUMIO HIROSHIMA AND JÓZSEF LŐRINCZI

Changing the variable from t|V (x)| to s and integrating with respect to s, we
obtain (3.20). �

Next we are interested to see how the Lieb-Thirring bound (3.20) in fact depends
on the Bernstein function Ψ. To make this expression more explicit we note that
the diagonal part of the heat kernel has the representation [8]

PΨ
t (0) = (2π)−d

∫ ∞

0

e−r

(
∫

Rd

1l{√
Ψ(ξ2/2)≤

√
r/t

}dξ

)

dr. (3.21)

Denote by B
Ψ(x, r) a ball of radius r centered in x in the topology of the metric

dΨ(ξ, η) =
√

Ψ(|η − ξ|2/2).
Notice that dΨ(ξ, η) = 0 if and only if ξ = η, since Ψ is concave and a C∞-

function. Then the integral
∫

Rd 1l{√Ψ(ξ2/2)≤
√

r/t
}dξ is the volume of BΨ(0,

√

r/t)

in this metric. If dΨ satisfies the condition
∫

Rd

1lBΨ(x,2r)dy ≤ c

∫

Rd

1lBΨ(x,r)dy, x ∈ R
d, r > 0

with a constant c > 0 independent of x and r, then dΨ is said to have the volume
doubling property. When dΨ has this property, then furthermore it follows that

c1

∫

Rd

1l{√
Ψ(ξ2/2)≤

√
r/t

}dξ ≤ PΨ
t (0) ≤ c2

∫

Rd

1l{√
Ψ(ξ2/2)≤

√
r/t

}dξ (3.22)

with some constants c1 and c2. A necessary and sufficient condition for Ψ ∈ B0 to
give rise to a volume doubling dΨ is

lim inf
u→0

Ψ(Cu)

Ψ(u)
> 1 and lim inf

u→∞

Ψ(Cu)

Ψ(u)
> 1

for some C > 1. In particular, this implies that Ψ increases at infinity as a
(possibly fractional) power. For details, we refer to [8].

Theorem 3.8. Suppose that Ψ ∈ B0 is strictly monotone increasing. Then under
the assumptions of Theorem 3.7 we have

N0(V ) ≤ 2
3d
2 +1π

d
2

dΓ(d2 )F (1)

∫ ∞

0

ds

s
G(s)

∫

Rd

dx

∫ ∞

0

(

Ψ−1

(

r|V (x)|
s

))d/2

e−rdr.

(3.23)
Furthermore, if dΨ has the volume doubling property, then

N0(V ) ≤ c2
2

3d
2 +1π

d
2

dΓ(d2 )F (1)

∫ ∞

0

ds

s
G(s)

∫

Rd

(

Ψ−1

( |V (x)|
s

))d/2

dx. (3.24)

Proof. Since under the assumption the function Ψ ∈ B0 is invertible and its inverse
is increasing, the proof is straightforward using KerΨ = {0}, (3.21) and (3.22). �

In the case when Ψ ∈ B0 has a scaling property, we can derive a more explicit
formula.
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Corollary 3.9. Suppose that Ψ ∈ B0 is strictly monotone increasing and the
assumptions of Theorem 3.7 hold. In addition, assume that there exists γ > 0
such that Ψ(au) = aγΨ(u) for all a, u ≥ 0. Then

N0(V ) ≤ A

∫

Rd

(

Ψ−1 (|V (x)|)
)d/2

dx, (3.25)

where A =
2

3d
2 +1π

d
2 Γ( d

2γ + 1)

dΓ(d2 )F (1)

∫ ∞

0

G(s)s−1− d
2γ ds.

Proof. The inverse function Ψ−1 has the scaling property Ψ−1(av) = a1/γΨ−1(v).
Thus the corollary follows. �

Instead of the scaling property suppose now that there exists λ > 0 such that
Ψ(u) ≥ Cuλ with a constant C > 0. This inequality holds for at least large enough
u if dΨ has the volume doubling property. Then we have a similar formula to that
in Corollary 3.9.

Corollary 3.10. Suppose that Ψ ∈ B0 is strictly monotone increasing and the
assumptions of Theorem 3.7 hold. If Ψ(u) ≥ Cuλ, then

N0(V ) ≤ A

∫

Rd

|V (x)|d/2λdx, (3.26)

where A =
2

3d
2 +1π

d
2 C−1/λ

dΓ(d2 )F (1)

∫ ∞

0

G(s)s−1− d
2λ ds.

Proof. Ψ(u) ≥ Cuλ gives Ψ−1(u) ≤ C−1/λu1/λ. Then the corollary follows. �

In some special cases of Bernstein functions Ψ we can derive more explicit forms
of the Lieb-Thirring inequality.

4. Specific Cases

4.1. Fractional Schrödinger operators (symmetric α-stable processes).
Let Ψ(u) = (2u)α/2 and HΨ = (−∆)α/2. Throughout this section we suppose that
0 < α ≤ 2. For suitable f, g define the quadratic form

Q(f, g) = ((−∆)α/4f, (−∆)α/4g)− (|V |1/2f, |V |1/2g). (4.1)

Boundedness from below of the cases α = 1 and α = 2 is proven in [11].

Lemma 4.1. Let V ∈ Ld/α(Rd) +L∞(Rd). Then V is form bounded with respect
to (−∆)α/2 with a relative bound strictly smaller than 1. In particular, we have
that inf

f∈D((−∆)α/4)
Q(f, f) > −∞.

Proof. Let Iα = (−∆)−α/2 be the operator of the Riesz potential. Recall the

Sobolev inequality ‖Iαf‖q ≤ C‖f‖p for q =
pd

d− αp
and d > αp. From this we

obtain

‖f‖q ≤ C‖(−∆)α/2f‖p (4.2)
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with some constant C. Hence it follows that

‖(−∆)α/4f‖22 ≥
1

C
‖f‖2 2d

d−2α
≥ 1

C
(|V |1/2f, |V |1/2f)‖V ‖−1

d/α. (4.3)

The estimate gives Q(f, f) ≥ 0 when ‖V ‖d/α < 1/C. Let V (x) = v(x) + w(x)

be such that v ∈ Ld/α(Rd) and w ∈ L∞(Rd). Then there is a bounded function
λ(x) such that h = v − λ satisfies that ‖h‖d/α < 1/C. Thus V = h+ (w + λ) and

w + λ ∈ L∞(Rd), and the lemma follows. �

Corollary 4.2. Let Ψ(u) = (2u)α/2 and let Assumption 3.1 hold. If V ∈ Ld/α(Rd)
then there exists a constant Lα,d independent of V such that

N0(V ) ≤ Lα,d

∫

Rd

|V (x)|d/αdx, 0 < α ≤ 2. (4.4)

Proof. We have that

PΨ
t (0) =

1

(2π)d

∫

Rd

e−t|ξ|αdξ =
C(α, d)

td/α
, (4.5)

where C(α, d) =
σ(Sd−1)Γ(d/α)

α(2π)d . Thus the corollary follows from Theorem 3.7 with

the constant prefactor

Lα,d =
C(α, d)

F (1)

∫ ∞

0

s−1−d/αG(s)ds. �

This proof was obtained by hand through direct heat kernel estimates, however,
the result also follows by either of Corollaries 3.9 or 3.10.

4.2. Relativistic Schrödinger operators (relativistic Cauchy processes).

Let Ψ(u) =
√
2u+m2−m and HΨ = (−∆+m2)1/2−m. By using (4.3) we derive

that

‖(−∆+m2)1/4f‖22 ≥ ‖(−∆)1/4f‖22 ≥
1

C
‖f‖22d

d−2
≥ 1

C
(|V |1/2f, |V |1/2f)‖V ‖−1

d .

(4.6)
Hence V ∈ Ld/2(Rd) is relatively form bounded with respect to (−∆+m2)1/2−m
with relative bound strictly smaller than 1.

Corollary 4.3. Let Ψ(u) =
√
2u+m2−m. Let Assumption 3.1 hold, and suppose

that V ∈ Ld(Rd) if m = 0, and V ∈ Ld/2(Rd)∩Ld(Rd) if m 6= 0. Then there exist

L
(1)
1,d,L

(2)
1,d and L

(3)
1,d independent of V such that

N0(V ) ≤ L
(1)
1,d

∫

Rd

|V (x)|ddx, m = 0

N0(V ) ≤ L
(2)
1,d

∫

Rd

|V (x)|ddx+ L
(3)
1,d

∫

Rd

|V (x)|d/2dx, m 6= 0.

(4.7)

Proof. The proof for m = 0 can be reduced to Corollary 4.2 witα = 1. Let m > 0.
We have

PΨ
t (0) =

1

(2π)d

∫

Rd

e−t(
√

|ξ|2+m2−m)dξ.
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A computation (see Corollary 4.4 below) gives

PΨ
t (0) ≤

C1(d)

td
+

C2(d)

td/2
(4.8)

with some positive constants C1(d), and C2(d). Hence we have

N0(V ) ≤ 1

F (1)

(

C1(d)

∫

Rd

dx

∫ ∞

0

ds

s1+d
G(s)|V (x)|d

+C2(d)

∫

Rd

dx

∫ ∞

0

ds

s1+d/2
G(s)|V (x)|d/2

)

for m 6= 0. Thus the corollary follows with

L
(1)
1,d =

2(d− 1)!

(4π)d/2Γ(d/2)

1

F (1)

∫ ∞

0

s−1−dG(s)ds,

L
(2)
1,d =

23d/2(d− 1)!

F (1)

∫ ∞

0

s−1−dG(s)ds,

L
(3)
1,d =

2−1+3d/4md/2Γ(d/2)

F (1)

∫ ∞

0

s−1− d
2 G(s)ds.

�

4.3. Fractional relativistic Schrödinger operators (relativistic α-stable
processes). Let Ψ(u) = (2u+m2/α)α/2 − m and HΨ = (−∆+m2/α)α/2 − m.
Using (4.3) we can also derive that

‖(−∆+m2/α)α/4f‖22 ≥ ‖(−∆)α/4f‖22 ≥ 1

C
‖f‖2 2d

d−2α
≥ 1

C
(|V |1/2f, |V |1/2f)‖V ‖−1

d/α.

(4.9)
Hence V ∈ Ld/α(Rd) is relatively form bounded with respect to (−∆+m2/α)α/2−
m with relative bound strictly smaller than 1.

Corollary 4.4. Let Ψ(u) = (2u + m2/α)α/2 −m, α 6= 1, 2. Let Assumption 3.1
hold, and suppose that V ∈ Ld/α(Rd) if m = 0, and V ∈ Ld/α(Rd) ∩ Ld/2(Rd) if

m 6= 0. Then there exist L
(1)
α,d,L

(2)
α,d and L

(3)
α,d, independent of V such that

N0(V ) ≤ L
(1)
α,d

∫

Rd

|V (x)|d/αdx, m = 0

N0(V ) ≤ L
(2)
α,d

∫

Rd

|V (x)|d/αdx+ L
(3)
α,d

∫

Rd

|V (x)|d/2dx, m 6= 0.

(4.10)

Proof. For m = 0, we adopt the proof of Corollary 4.2. Let m > 0, then

PΨ
t (0) =

σ(Sd−1)

(2π)d

∫ ∞

0

e−t((r2+m2/α)α/2−m)rd−1dr. (4.11)

Using the inequality uα/2 − 1 ≤ α
2 (u − 1), 0 ≤ u ≤ 1, for α ∈ (0, 2), and the

substitution u = m2/α/(r2 +m2/α) it follows that
(

r2 +m2/α
)α/2

−m ≥ α

2
r2

(

r2 +m2/α
)(α/2)−1

. (4.12)
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Assuming that r ≤ m1/α, i.e., r2 +m2/α ≤ 2m2/α, it follows from (4.12) that
(

r2 +m2/α
)α/2

−m ≥ α

2

r2

(

2m2/α
)1−α/2

. (4.13)

If r > m1/α, i.e., 2r2 > r2 +m2/α, then it follows that
(

r2 +m2/α
)α/2

−m ≥ α

22−α/2
rα. (4.14)

Therefore, using (4.13) and (4.14) in (4.11), write
∫ ∞

0

e−t((r2+m2/α)α/2−m)rd−1dr

≤
∫

r≤m1/α

e
− αr2

2(2m2/α)1−α/2
t

rd−1dr +

∫

r>m1/α

e
− αrα

22−α/2 t
rd−1dr.

For the first integral set u = αr2

2(2m2/α)1−α/2 t to obtain

∫

r≤m1/α

e
− αr2

2(2m2/α)1−α/2
t

rd−1dr ≤ K
d/2
1

2td/2

∫ ∞

0

e−uu(d/2)−1du =
C2(α, d)

td/2
, (4.15)

where C2(α, d) =
K

d/2
1 Γ(d/2)

2 , and K1 = 2
α

(

2m2/α
)1−α/2

. For the second integral
we obtain similarly

∫

r>m1/α

e
− αrα

22−α/2
t
rd−1dr ≤ 1

α

Kd
2

td/α

∫ ∞

0

e−uu(d/α)−1du =
C3(α, d)

td/α
, (4.16)

where C3(α, d) =
Kd

2Γ(d/α)
α , and K2 =

(

22−α/2

α

)1/α

. Thus, using the results of

(3.20) and (4.11) together with (4.15) and (4.16), we find the positive constants

L
(2)
α,d =

C2(α, d)

F (1)

∫ ∞

0

s−1−d/2G(s)ds,

L
(3)
α,d =

C3(α, d)

F (1)

∫ ∞

0

s−1−d/αG(s)ds

such that (4.10) holds for m 6= 0. Thus the corollary follows. �

4.4. Sums of different stable generators. Let Ψ(u) = (2u)α/2 + (2u)β/2,
0 < α, β < 2, α 6= β, and HΨ = (−∆)α/2 + (−∆)β/2 + V , acting in L2(Rd).
Relative boundedness of V follows similarly as in Lemma 4.1, whenever V ∈
Ld/α(Rd) ∩ Ld/β(Rd). This is an example in which Corollary 3.9 does not apply,
however, we have the following result.

Corollary 4.5. Suppose that Assumption 3.1 holds and V ∈ Ld/α(Rd)∩Ld/β(Rd).
Then

N0(V ) ≤ Lα

∫

Rd

|V (x)|d/αdx+ Lβ

∫

Rd

|V (x)|d/βdx, (4.17)

where

Lα =
c

F (1)

∫ ∞

0

s−1−d/αG(s)ds, Lβ =
c

F (1)

∫ ∞

0

s−1−d/βG(s)ds.
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Proof. It is known [2] that

PΨ
t (0) ≤ c

(

t−
d
α ∧ t−

d
β

)

, t > 0 (4.18)

with some constant c > 0. Then by (3.20) we obtain the claim. �

4.5. Jump-diffusion operators. Let Ψ(u) = u+buα/2, α ∈ (0, 2), and b ∈ (0, 1].
Then we have HΨ = −∆ + b(−∆)α/2 + V . By (4.3) we see that when V ∈
Ld/2(Rd)∩Ld/α(Rd), V is relatively form bounded with respect to −∆+b(−∆)α/2

with relative bound strictly smaller than 1.

Corollary 4.6. If Assumption 3.1 holds and V ∈ Ld/2(Rd) ∩ Ld/α(Rd), then

N0(V ) ≤ L

∫

Rd

|V (x)|d/2dx+ Lα

∫

Rd

|V (x)|d/αdx, (4.19)

where

L =
c

F (1)

∫ ∞

0

s−1−d/2G(s)ds, Lα =
c

F (1)

∫ ∞

0

s−1−d/αG(s)ds.

Proof. In this case it is known [1] that with some c > 0

pbt(x− y) ≤
(

t−d/2 ∧ (bt)−d/α
)

∧
(

t−d/2e−|x−y|2/ct + (bt)−d/α ∧ bt

|x− y|d+α

)

,

and in the same way as in the previous examples the result follows. �
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