IJCTA, 9(19) 2016, pp. 9191-9197
© International SciencePress

Image Processing using FPGAs:
A Framework

M. V. Ganeswara Rao, Rajesh K Panakala and A. Mallikarjuna Prasad

ABSTRACT

In technologically advanced world, automation of various processesisvery essential in many applications such as
security, production, medical, remote sensing etc. In past, computing power and algorithm computational complexity
is became barrier to use image processing as a solution in many applications. Recently, many researchers have
proposed complex image processi ng a gorithms, which are computationally efficient and s milarly high performance
computational platforms such asDSPand FPGAS, are also developed. Theflexibleand concurrency support hardware
architecture of FPGAs encour agei mplementation of image processing al gorithmson FPGAs. Thispaper presents
aframework toimplement image processing algorithm on FPGAsand digital image colour modd conversion using
FPGA as a case study. Two sets of images are applied to hardware architecture and results are compared with
softwareimplementation.

Keywords: Image Processing, Field Programmabl e GateArray (FPGA), Digital Signal processor (DSP)

. INTRODUCTION

In recent times, image processing has become central tool for many applicationsincluding high performance
and large dataprocessing applications such asface detection, face recognition etc. under numerous conditions
(lighting variations, orientation, expression etc). Until FPGAs were introduced, Digital Signal Processors
are the only computational platforms to implement high performance image processing. Some of the
advantages are lager flexibility and less time to prototype make the FPGAs alternate for DSPs [1-3]. The
key deference between DSPs and FPGA istheir hardware architecture, FPGA does not have fixed hardware
architecture and it can be configured according to user requirements using hardware descriptive languages
such asVHDL, Verilog HDL etc., In contrast, DSPs have fixed architecture with memory, controller, data
path and instructions executed sequentially according software program [4-5].

Image processing algorithms has to process huge amount of pixel dataat high speed and for this type of
applications FPGAs are exceedingly suitable, because of their parallel processing capability. However, this
is not possible with DSPs because of their processing power and data transfer with fixed width data bus
such as 8hit, 16hit, 32bit, 64bit etc. Many researchers also reported that the pipeline techniques and more
chip area make FPGAs power efficient than DSPs in image processing applications. There are many
approaches to implement image processing applications on FPGAs. This paper presents asimple approach,
which uses MATLAB and Xilinx core generator to implement image processing algorithms on FPGA

[6-7].
This paper has 5 sections, section 2 introduces overall framework for image processing using FPGAS,
which includes conversion of .jpg image into .coe file, generation of Block RAM (BRAM) using Xilinx

Department of Electronics and Communication Engineering, Shri Vishnu Engineering College for women, Bhimavaram, India, E-mail:
mgr_ganesh@svecw.edu.in

" Department of Electronics and Communication Engineering, PV P Siddhartha Institute of Technology, Vijayawada, India, E-mail:
rkpanakala@gmail.com

™ Department of Electronics and Communication Engineering, INTU College of Engineering, Kakinada, India, E-mail: a_malli65@yahoo.com

9192 M. V. Ganeswara Rao, Rajesh K. Panakala and A. Mallikarjuna Prasad

core generator, loading .coeinto BRAM, interfacing BRAM to processing blocks, writing processed image
into .dat file and finally converting .date file to 2D image. In the section 3, colour model conversion from
RGB to YCrCb is presented. Results and conclusions are discussed in section 4 and 5 respectively.

II. FRAMEWORK

Images processing with FPGA provide solutions in many applications. A proposed framework to process
images using FPGAs is presented in Figure 1. In stage | mage acquired by the image acquisition hardware
is converted into *.coefileto load into BRAM in next stage. The Xilinx core generator is used to generate
BRAM and loadsthe previously generated *.coe fileisinto BRAM in stage |1. After adding BRAM coreto
project, application hardware can interface with BRAM and pixel data can accessed as illustrated stage I11.
In this stage, a free running counter acts as address generator for BRAM, and processed pixel data are
stored in *.data file. In the final stage IV, *.data file created can be accessed in MATLAB environment to
convert back two dimensional image. More details are provided in next sub sections.

1

B U

1 1

P

[

P BRAM Specifications
1

L

Lo

Iy

L1 N
*.coe file ———1| BRAM Generation
ro
: I | I
! 3 >i1: ~
Stage I: MATLAR Environment : ! Stagell | Xilinx ISE
g o
e [S J t _______________
| By B 1
1 \ / 1
i ‘\/ i
1 - ~ 1
' Free Runming Counter BRAM H
1 (Address Generator) Address 7 :
v
| iL i
I]
1 1
1 1
1 1
1 1
1]
i Image Processing Hardware Architecture :
| i
1 1
I]
1 1
I]

i
]
L

*.data to Image
Conversion

Stage IV: MATLAB Environment

Figure 1: Overview of image loading in BRAM

Image Processing using FPGAs: A Framework 9193

2.1. Conversion of .jpgimageto coefile

In many applications, image(s) must be loaded in memory to be accessed by the rest of theimage processing
hardware. |n any memory, data stored isstored in one dimensional, but imageto be processed is2 dimensional.
S0 it isneed to convert 2D image data into 1D data and then load them in memory. The pseudo code used
to generate 1D image data form image is shown in Figure 2. This code used to convert a2D RGB image
into 1D hex coefficient *.coe file, which is used to load into BRAM. A sample *.coe file generated in
shown in figure 3., which has an array of 24 hit pixel data (8 bits for each of the RGB).

img = imread(‘ image location');

MAART T

M N P] = size(img)

s=fopen(‘file location of *.coe', ‘w-+');
Fnr;nff-‘fc 0/ c\n" VA Marmary Man ')
fprintl =V

A MICIMOTY Map

fprintf(s, '%s\n',', .COE file with hex coefficients ');
fprinti(s,’; Height: %d, Width: %d\n\n’, M, N);

anm-{-‘rc "% s\n' 'mnmerfy nitialization radi x=16; '\
fprmtf(s Yos\n' memory:mltlallzatlonAvectorJ)
ent = 0; ; VGA Memory Map ; COE file with hex coeflicients ; Height: 106, Width:
forr=1:M 160memory initialization_radix=16;memory initialization_ vector=957C7F,957CTF 977C81
fore= i;f: it 1. STTCB1,977CE3,977C83 987D8,987D82,IAR083 9AB083,IAB083,9C8285,9ATF84,9C81
— img(rc {) 86,9A8083,938184 938285, 9BR285,9C8285,9D8386,9D8487,IBRISS. IC8285 IF8588 98
c = img(r,c,2); 588,95:8588,9F8588,9F8388,9F8689,A0878A, A1878A,A1878A A18788 A28889 A1878A,
B = img(r,c,3); 28888 A48789,A28889.A3898C, AISABD. A6898D. ASS88C AT88SE ATRASE ATBASE,
Rb = dec2bin(R,8); AZQOIGTY AZQMATY AZQMBT AZQMRT ATETYGN ATATIAN ATOTYAN ATQTYGN ATATYN A7QTAN
e — A il Q). ADBLBL,ADBLOL, AL AL ADOLBL,A (DL A TLIALATOLIU A TRLIALATOLU A IO,
Bb = decZbin(B.8): AT8DI0ATBDI0 ABBEGTAABDIL, ...
Outbyte = | RGB

Hnrintfls 9% X' RY-
xyl. INURS, Yo A ,an),

fprintf(s,'%6 X', G); Figure 3: Sample .Coefile

fprintf(s, % X', B);
if(— M) && (c — N))

fprintf{s,'%c",";");

[¢]
3
w

fprintf(s,'%c\n',",");

an A man A man A
€na;enda;ena

fclose(s);

Figure 2: Pseudo code to convert .jpg image into *.coe

2.2. BRAM Generation and I mageloading

A block RAM is generated using Xilinx Core generator (seefigure 4.) with specifications mentioned in the
table 1. This BRAM isloaded with *.coe file created in the previous section.

| Block Memory Generator =

o
x

I Symbol

Py - TPRON IS V PRGipiguiyny plypayuy paym
9gic BDIOCK MISiMoiy Generatoi
Port A Options
Memory Size
Write Width | 24 Range: 1..1152
| Write Depth Range: 2..9011200 Read Depth: 2000
ADDRA(10:0] et b COUTA
e | Operating Mode Enable
Write First
Read First Use ENA Pin

© Mo Change

Figure 4: Configuring BRAM

9194

M. V. Ganeswara Rao, Rajesh K. Panakala and A. Mallikarjuna Prasad

2.3. Interface BRAM

After successfully generating the BRAM with desired specifications, it must be integrated into image
processing architecture. An address generation control block will generate sequential address for BROM to
read the pixel data from memory. Further these pixels are processed by FPGA hardware and produce

processed pixel data. Which will be write into another *.dat file to load the processed image.

2.4. Writing to .dat file

The processed pixel data are written into *.dat file to convert image back to 2D digital image. The Pseudo
code writes the processed data into *.data file is shown in Figure 6. This code writes 8 bit data into one

dimensional array in hex decimal format.

Tablel
Specifications of BRAM
Soecification Value
Memory width 24 hit
Addresslines 10
Memory depth (size) 1IMB
Enable Always
Port Single
entity name is fileID = texiread(*location of *.ixt' %s')
port (clk3 : in .S'Fd_loglc; . ’ P=bin2dec(ﬁle1D)
w_data: in std logic vector (7 downto 0)), e tre 1
end name; 1FZET08{ 1U0, 10V],
architecture behavioral of data_writeis count = 1;
begin forc=1:106
process(w_data,clk3) for v = 1-140
variable] : line; u"_‘ ARy
file outfile: text is out “text file location"; I(c,r) =P count),
begin count = count-+1;
if clk3="1" and clk3'event then end
write(l,w_data), 1
N <na
writeline(outfile 1), :
end if: [=uint&(T)
end process; imshow(I)
end behavioral, imwrite(], location of * tif')

Figure 6: Writing image data to file

2.5. Converting .dat fileto .tif image

Thefinal step in thisframework isto convert the one dimensional image datafile (*.datafile) created in the
previous section into two dimensional image with required format such as *.tif. The pseudo code which

Figure 7: Writing to .dat file

generates a 2D image with the dimensions of 106X 160 is shown in figure 7.

II1. COLOUR MODEL CONVERTION

Numerous colour spaces such as RGB, YCrCh, YIQ CMY, YIS, CIE XYZ, HIS, HIV etc. are utilized to
represent colour depending on application. For example image acquisition and display systems use RGB

Image Processing using FPGAs: A Framework 9195

colour model and similarly YIQ and CMY are used in TV broadcasting and Image printing. In this section
more emphasis is given to RGB and Y CrCb colour models.

3.1. RGB colour mode

This colour model is a device based colour model, different devices recognize and detect colour in many
ways since a deferent physical element detects R B G components differently. In this additive colour model
R, G and B components are added to from various colours in the colour space. The RGB colour space
represented by a cube is shown Figure 8.

B

A

blue
(0,0,255) cyan
(0,255,255)
magenta / gray Iir‘e .
[255,0,255) N white
/| 1255,255,255)
7
td
Ve
Z
mid-gray ,/
(128,128,128) //
y
e -
4 ing.we
// L]
/
Vs
b // b
acx s G
0,00 & >
green
/' / (0,255,0)
r 4
/ *) /

- reg yellow
n ’ (255,0,0) (255,255,0)

Figure 8: RGB Colour space

3.2. YCrCb colour model

Inthismodel, Y representsluminanceand Cr and Cb are non negation chrominancevalues, The chrominance
values provide easy waysto segment skin fraction of image compared to RGB & HSV model. Inthis colour
spaceY, Cr and Cb componentsare uncorrelated unlike RGB, whichisvery useful in many | mage processing
algorithms.

3.3. Convertion from RGB toYCrCb

TheconversonfromRGB to Y CrCb hasitsadvantage, Medical researchistellsthat human eye hasdissmilar
sengitivity to brightness and colour. The eye has millions of rods (around 120 million), which are more
sengitive than cones (around 7 millions). The rods are not very sensitive to colour component, whereas
cones are much sengitive to colour component. The fact isthat, it is not necessary to keep all information of
colour components and thus these colour components are sub-sampled in many applications such as JPEG
compression. So it is very useful to convert high correlated RGB colour space to an uncorrelated Y CrCb
colour space. The formulafor converting from RGB to Y CrCb model is given below.

9196 M. V. Ganeswara Rao, Rajesh K. Panakala and A. Mallikarjuna Prasad

Y 16 0.184 0.614 0.062 || R
Cb|=|128|+|-0.101 -0.339 0439 |.|G
Cr 128 0439 -0.399 -0.040||B

@

V. RESULTS

The RGB to Y CrCb colour space conversion is successfully implemented using proposed frame work and
two set of images are applied to hardware. Figure 8.(a) to (d) shows the RGB representation, Luminance
component (Y), Chroma Red component(Cr) and Chroma Blue components (Cb) of the test image 1
respectively. Smilarly Figure 9.(a) to (d) showsthe RGB representation, Luminance component (Y), Chroma
Red component(Cr) and Chroma Blue components (Cb) of the test image 2. The gray level profiles of two
test images are shown in figure 10. & figure 11. The experimenta results show that, in Y CrCb colour
brightness and Chroma are highly uncorrelated, It is also observed that results obtained from FPGA
implementation are on par with software implementation. The performance parameter MSE, PSNR and
SSI are calculated for output images with reference software implementation are shown in table 1.

) A s vk : " % :
Figure 8: (a) RGB image of example 1 (b) Y Component (c) Figure 9: (a) RGB image of example 2 (b) Y Component (c)
Cb Component (d) Cr Component Cb Component (d) Cr Component
4000 ¢ v v v v - - . 8000 r T T
o 3000 1 6000 -
[} o
X [}
a X
= 2000 1 E‘ 4000 H
(o} 0
o] o]
c z
1000 1 2000
0 ' 0 . " . .)
0 20 40 60 80 100 120 140 0 % 100 150 0 20 0
Gray value Gray value
Figure 10: Histogram of example 1 Figure 11: Histogram of example 2
Table2
Per for mance Parameter s
Example 1 Example 2
Y Cr Cb Y Cr Cb
MSE 250.3635 1.6128e+04 1.5684e+04 235.6021 1.6063e+04 1.5193e+04
PSNR 24.1451 6.0550 6.1763 24.4090 6.0724 6.3143

SSIM 0.7433 0.1782 0.1773 0.8121 0.1406 0.1073

Image Processing using FPGAs: A Framework 9197

V.

CONCLUSIONS

The image processing using FPGA is one of the demanding solutions for many real-time applications. In
this paper we have presented a simple image processing frame work, which is not required any additional
hardware and software to image acquisition and display. Based on proposed framework, hardware architecture
to convert RGB colour to Y CrCb colour has been developed and implemented on Xilinx Spartan 3E FPGA.
Two sets of image data are applied to hardware, It is observed that results are as expected compared with
software implementations. Various performance measures are obtained from results that are shownin table 2.

REFERENCES

(1]
(2]

(3]

[4]

(5]
(6]

Seunghun Jin, Dogkyun Kim thuy Tuong Nguyen et.al “Design and Implementation of a Pipelined datapath for High-
Speed Face Detection Using FPGA,” IEEE Trans. Industrial informaticsval. 8, no 1, pp 158-166, Feb. 2012.

V. P Javier, R. M. Josg, S. R. Rafadl and T. S. Gerardo, “Accel eration with FPGA for bl ocks and subbl ocks edge pattern
classificationin DCT domain images,” 2014 | EEE Internationa Instrumentation and Measurement Technology Conference
(12MTC) Proceedings, Montevideo, 2014, pp. 707-712.

M. V. G Rao, P R. Kumar and A. M. Prasad, “Implementation of real time image processing system with FPGA and
DSP” 2016 International Conference on Microel ectronics, Computing and Communications (MicroCom), Durgapur, India,
2016, pp. 1-4.

S. Mars, A. El Mourabit, A. Moussa, Z. Asrih and 1. El Hajjouiji, “High-level performance estimation of image processing
design using FPGA,” 2016 International Conference on Electrical and Information Technologies (ICEIT), Tangiers,
Morocco, 2016, pp. 543-546.

P. K. Dash, S. Pyjari and S. Nayak, “Implementati on of edge detection using FPGA & model based approach,” Information
Communi cation and Embedded Systems (1 CICES), 2014 International Conferenceon, Chennai, 2014, pp. 1-6.

Melanie Po Leen O,” hardwareimplementation for Face Detection on Xilinx Virtex-11 FPGA using Reversible Component
Transformation Colour Space, “ | EEE Proc. Electronic Design, Test and Applications,2005 pp: 41-46

S. C. Chan, H. O. Ngai and K. L. Ho, “A programmable image processing system using FPGA,” Proceedings of | EEE
International Symposium on Circuitsand Systems- ISCAS’ 94, London, 1994, pp. 125-128 val. 2.

