IJCTA, 8(4), 2015, pp. 1503-1510
© International SciencePress

A Structural Design for Web Application
Based on Model-view-presenter View-
model (Mvpvm) Pattern

Malar P* & AgniseKalaRani X**

Abstract: In earlier times, to design aPHP based on MV C and MV P pattern which provides better performance. But,
MYV C pattern PHP devel opment design stages new level s of indirection and therefore the compl exity of the solution
isincreased. It aso lifts the event-driven nature of the user-interface code, which can become more tedious for
debugging. In this research work, an improved design is proposed on the basis of the Model view presenter
viewmode (MVPVM) pattern. The new approach targets at very large-scal e enterprise applications with multiple
views, having different business requirements that may require binding onto the same ViewModel, indicating the
ViewModel cannot contain view-specific businesslogic. It also showsthat it isdefinitely performing extensive unit
testing and coded Ul testing of the components, hence that process has to be much efficient as possible. The
proposed MVPV M pattern comprises model, view, presenter and View Model. The MVPVM pattern yields better
design for PHP web applicationsthrough the separation of the dataview and main controls of web applications. The
vital benefits of the proposed MVPVM pattern are easy maintenance; debugging and the problems are sol ved more
easily when compared to the conventional patterns. Consequently, an improved design is obtained.

Keywords: Model view presenter, Modd view controller, PHP, Web application

1. INTRODUCTION

Owing to the speedy increase corresponding to the number of Web users over the earlier two decades, the
extensve opportunitiesand convenient softwaredesign, and thelarger demand for such applicationshasgivenrise
to aconsiderableincreasein the number of people working on web applicationsdesign[1]. For some period of
time not so0 long ago, Web applications had just been only an add-on to some other gtrict systemand hence design
of theseweb applicationsrequired people withlots of experiencein other fields of software. The PHP, J-Query are
someof theimportant scripting languagesthat were used for web applications development.

PHPisasarver-ade scripting language employed for web development but also considered asagenerd-purpose
programming language. Now, PHPisinstaled on morethan 244 millionwebstesand 2.1 millionweb servers[2,3].
PHP codeisdecoded by aweb server with aPHP processor module, which, inturn, givestheresulting web page:
PHP commands canalso be embedded directly into an HTML source document instead of calling anexterndl filefor
dataprocessang. It hasevolved alot moreto have acommand-lineinterface capability and can befound to beused in
separate graphical gpplications. But intherecent times, young keen people have begunto design Web pageswith the
help of scripting languages without even possessing the knowledge of eventhe smplest principlesof software design.
Severd authorshaveintroduced different techniquesfor minimizing the complexity. One of theimportant methodsis
theintroduction of the design patternsinthe PHP and the creetion of anew design depending onthedesign patterns.

Onemeansfor solving the problem isthe evolution of aweb application design whichisevolved for supporting
the development of dynamic websites, web gpplication and web services. Thegoal of thedesignisto mitigatethe

* Ph.D Research Scholar, Karpagam Academy of Higher Education, Coimbatore— 641 021, Tamil Nadu, India.Email: malar.prp@gmail.com

** Professor, Department of Computer Applications, Karpagam Academy of Higher Education, Coimbatore-641 021, Email:
agneskala72@gmail .com

1504 Malar P. & Agnise Kala Rani X

overhead that isassociated with the usua activitiesinvolved in web development. For instance, many designsare
provided with librariesfor database access, templating designs and session management, and they also support
codereuse often[2]. The software designssubstantialy minimize the amount of time, effort, and resourcesthat are
necessary for developing and maintaining web applications. In addition, adesgnisan open architecturewhichisin
accordance with few generally accepted standards|3].

MV C design patternisconsidered to bean efficient method for the evolution of structured modular applications,
[4]. Intheform of adesign pattern, usudly MV Cisfor the purpose of splitting an gpplicationinto multipleindependent
layersthat can be evauated, and implemented occasionally, in anisolated manner. Through the decoupling models
and views, MV C facilitates decreasing the complexity in architectura designand also increasestheflexibility and
reuse of code. Eventhough flexibility and reusability are gained, it hasfew issuesthat impact PHP designlike new
levels of indirection and therefore the complexity of the solutionisincreased, and the event-driven nature of the
user-interface code, canturn out to be hard for debugging, Views such asgraphical displays may take up some
timetoyidd resultsand in casethe model undergoes changesin afrequent manner, the views could be overwhelmed
withrequestson update.

Inorder to get over the challengesand problemsinthe MV C and MV P design pattern, an enhanced version of
design patternreferred to asModel view presenter view modd (MVPVM) isutilized for the development of anew
PHPdesignin this paper.

2. MATERIALSAND METHODS
2.1. M odel view controller

The modd-view-controller or MV C isasoftware architecturethat isused generdly for developing web applications
or software structure. It meansthat, it isastructurefor web applicationsto go behind for guaranteeing efficiency
and congstency. Many of the widdly-known designs make use of the MV C architecture that includesASPNET,
Codel gniter, Zend, Django, and Ruby on Ralils. Figure 1 indicatestherelationship betweentheModd, View, and
Controller.

* Modd: businesslogic & processing

* View: userinterface (Ul)

» Controller: navigation& input

Inthe caseof MV C, the presentation layer isdivided into controller and view. Themost important separation
is between the presentation and application logic. Thesplit in View/Controller isless. MV Cincludes much of the

architecture of an application than being distinguished for adesign pattern. Hence thetermarchitectura pattern
may befunctional, or most probably an aggregate design pattern|[5, 6].

Mode

TheModd inMV Cisthearea-specific representation of theinformetion onwhich the gpplicationworks Application
(or domain) logic imparts Significanceto raw data(e.g., itismanipulativein casetoday isthe user’shirthday, or the
totals, taxesand shipping chargesfor shopping cart items). Severa applications use apersstent Sorage mechanism
(likeadatabase) for the storage of data. MV C doesnot intend to mention the resource management layer asit is
understood to be beneath or enclosed by the Mode.

View
Yieldsthe model into aform suitable for interaction, View is basically auser interface element. MV Cisoften
observed inweb applications, inwhichtheview isthe HTML page and the codethat collectsdynamic datafor the

page.

A Structural Design for Web Application Based on Model-view-presenter... 1505

Controller

Doesthe processing and then respondsto events, generdly user actionsand may react to variationson the model
and view. The control flow generally worksin the following manner [8, 9]:

1.
2.
3.

Theuser interactswith the user interfacein multiple ways (e.g., user pressesabutton)
A controller getstheinput event fromthe user interface, often by meansof aregistered handler or calback.

The controller operates on the model, possibly updating it in away that suits the user’s action (e.g.,
controller doesthe updation over user’sshopping cart). Complex controllersare prepared repeatedly
through thecommand patternin order to encapsulate actionsand have asimplification of the extension.

A view makesuse of themodel to develop an appropriate user interface (e.g., view generatesascreenthat
liststhecontentsof the shopping cart). Theview collectsits own datafromthe modd. Themodel hasno
direct information about the view.

The user interfaceremainsfor thenext user interactions, whichstartsthecycle.

Data Manipulation

Action Wl

Control
ontrols Model

RG.SHIT i V]eW I‘---------ﬂ

Figure 1: Model view controller architecture

Disadvantagesof MV C pattern

TheMV C patternexhibits new levels of indirection and henceresultsin increasein the complexity of the
solution.

In case of the model undergoing changes frequently, the views could be loaded with updaterequests.

Viewssuch asgraphical displaysmay useup sometimeto produce the result. Consequently, the view may
be falling behind update requests.

Unit testing cannot be conducted.

2.2. Model View Presenter

The MVPisderived fromMV C software pattern that isuseful for the structuring of user interfaces. The MV P
design pattern separatesthe view fromits presentation logic to alow each to be distinguished separately [10]. In
MV P, theview goeson to become an ultra-thin component whose functionisjust to be ableto offer apresentation
to theuser. The view capturesand dealswith the eventsincrease by the user, though forwarding thesedirectly to
the presenter who isaware on the meansof treating them. The presenter then communicateswiththe model, and
coordinateswiththe view’scontrolsdirectly so asto present thedata

The Model

Thisisthedataonwhichthe user interface will work upon. It isgeneraly adomain object and thegod isthat such
objectsare supposed to have no idea of the user interface. Herethe M in MV Pisdifferent fromthe M inMV C. As

1506 Malar P. & Agnise Kala Rani X

discussed previoudly, itis, infact, anApplication M odel, which touchesonto multiple aspectsof the domain data
but also doestheimplementation of the user interfaceto makeanimpact over it. In MV P, themodel ismerely a
domain object and thereisno anticipation of (or link to) the user interfaceat all.

The View

The performance of aview inMVPissimilar to that of MV C. It istheview’s obligation to haveto display the
contentsof amodd. The modé isthen projected to initiate appropriate change notificationsevery timeitsdatais
changed and these allow the view to “hang off” the model next to thestandard Observer pattern. Similar to theway
asMV C does, thispermitsmultiple viewsto belinked to asingle model [9].

Onesgnificant differencein MV Pistheeimination of the controller. Asan dternate, theview issupposed to
managetheraw user interface eventsthat are generated by the operating system (inWindowsthese are observed
asWM_xxxx messages) and like thiskind of operation suitsmore apparently into the style of many of the recent
operating systems. Insome cases, likeaText View, the user input isheld directly by the view and utilized to make
modificationsto themodel data. However, in most casesthe user input eventsare generdly routed through the
presenter and thisisresponsible for the way the model getsmodified 5.

The Presenter

Whenitisthe responsibility of the view to display modd data, it isactualy the presenter that controlshow the
model can be manipulated and hence can bevaried by the user interface. In severa ways, aMV P presenter is
based on the gpplication modd in MV C; mogt of the code gartswith how auser interface workswhichisbuilt into
apresenter class. Theimportant differenceisthat a presenter isdirectly connected to itsassociated view such that
thetwo can closely coordinate intheir roles of providing the user interfacefor aspecific model.

Benefits of MVP

Thereforetheimpact of this“twist” isthat the presenter, which isthe datamanipulation part of auser interface, is
also permitted direct accessto theview, where the datadisplay isrealized. Thiscan be very convenient at times
and isone of the most apparent advantagesover MV C where the application model smply hasanindirect link to
itsassociated view. The Dolphinimplementation of MV P also handlesthe dispensing of theideaof acontroller,
whichisaimed at making thedesign “fit” better along with the Windows operating system underneath.

When compared with the actual widget design, MV P provides amuch greater isolation between the visual
presentation of an interface and the code necessary for implementing theinterface functionality. Thelatter livesin
one or more presenter classes which are coded as normal making use of astandard classbrowser. The window
layoutsfor severa applicationsare created by atool cdled the View Composer whichisagain utilized for creating
aningtanceof the view required 6. Theseview instancesresideinan internal binary form by aResource Manager.

Data Manipulation and delivery

Action

e ———— Presenter
1_7
User
A
Updates Model

¢

View

Figure 2: Model view presenter architecture

A Structural Design for Web Application Based on Model-view-presenter... 1507

Generally, one or moreview instances can get associated with any presenter classand apresenter can definewhich
specific view isneeded whenit islaunched. Thereforeit iseasier for an MV P application to bewithone or more
“skins’ that can be chosen as necessary.

Disadvantages

Thedisadvantagespertaning to Model-View-Presenter areidenticd to the disadvantagesof Modd-View-Cortroller
asbelow:

* Thepatterniscomplicated and may be not really necessary for smple screens.
» Thepatternisonemorethingto belearnt for busy developers: there'ssurely an overhead.
* It canbedifficult to debug eventsthat are being fired in active M ode-View-Presenter.

* The'PassveView' version of Mode-View-Presenter canresult in aparticular amount of boilerplate code
that hasto bewritteninorder to get theinterfaceinto the View to work.

3. PROPOSED METHODOLOGY

The definitions of the MV PVM componentsthat follow have extractsfrom “Twisting the Triad” asand when
applicable. Theproposed Modd-View-Presenter View-Modd (MVPVM) Patternfor PHPdesignisillustrated in
figure 3. Inthisnew design theView model concept is presented, which is about not making reuse of theviews. It

PRESENTER i

Receiving request
and actions to be

taken by model

Answer for

i

client request ‘—!—
1
1

emmmman A J——

: MODEL
Client i
4 1
request i Business Logic
H layer (BLL)
4 :
E Data access
1
i layer (DAL)
1
) \ A
1 L
i VIEW !
Data Binding : View template :
. Notification ' H
View Model & = = = = = = >) ;
: l :
H i
: !
: View Logic | !
i
1
1
!

Figure 3: Proposed design using MVPVM pattern

1508 Malar P. & Agnise Kala Rani X

assstsinreducing the scalability issuesetc. The View isheld accountablefor generating the user interface; it can
seetheView Modd, initiateits methods and can make modificationsto its propertieswhenever necessary. View
preservesaone-way referenceto theView Modd. When aView Modd property ismodified, View isnotified by
meansof observer synchronization. On the contrary, when auser interactswiththe View, View Modd properties
aremodified directly. View Model holdsthe responsibility for managing the view state and user interaction; it
possesses accessto the domain Model, so that it can work with domain data and summon businesslogic. View
Model has no knowledge of View. Model is accountable for dealing with the domain data and quite has no
awareness about theView Model. This approach permitsthe creation of various different viewsfor the samedata,
and observer synchronization rendersthese viewsto operate smultaneoudy. For instance, let the previous case of
thefinancial report be extended. The new target is providing auser two viewsof thereport: atableand apiechart.
When dataisdtered inthe Model, the View Modd recelvesthenotification. The View Model theninvokesthe
Model for getting the datarequired (e.g. thelist of objects describing the subject and an amount) and setsthe data
inaproperty Data. Two Views (onefor thetable and onefor the pie chart) seethe View Moded and have updations
madeto thelir representationswhen the Datais modified. Each View hasitsownlogic on how the datahasto be
presented. Thefirst view generatesatablewith columns, subject and amount; the second makes use of the amount
to plot apie chart and the subject to have alegend.

MVPVM: The Model

Thisisthe datathe user interface works upon. It isgenerally adomain object and the intent isthat such objects
should have no information regarding the user interface. Theisolation of the Model from the View Model is
necessary for addressing the concernsrelated to dependency injection and its usage withinthe Business L ogic
Layer (BLL) and DataAccessLayer (DAL) to Create, Read, Update, Deleteand List (CRUDL) persisted data
Only the DAL has accessto the persisted Model objectsin MVPVM.

MVPVM: The View

“The behavior of aview inMVPismuch smilar to that in MV C. It istheresponsbility of theview to display the
contentsof amodel. The modd issupposed to do the triggering of the suitable change notificationswhenever its
datais changed and these permit theview to * hang off’ the model adheringto the standard Observer pattern. Inthe
identical way asMV C does, thispermits multiple viewsto be linked to asingle model.

It hasto be emphasized that MV P isnot entirely anew pattern and that it isvalid today also asit was MV P
springed fromMV C. But, the quotereferencesthe“Modd,” whileMV PV M makes use of the“ViewModd”.

With MV PV M, there's never anecessity to have codeinthe codethat isbehind. The Presenter hasaccessto
theView and can Sgn up for notification on events, manipulate controlsand the Ul asneeded. Thiswas advantageous
when developing the multi-targeted application that isassociated with thisarticle.

A View has no information about the ViewModel, hence they aren't tightly coupled. Until aViewModel
provides support to al of the propertiesto which aView isbound, it can conveniently make use of theView. The
Presenter hastheresponsbility for wiring up Viewsto their View Modes by fixing their Data Context to the View
Model that isapplicable.

MVPVM: The Presenter

“While the view isresponsible for displaying model data, it is the presenter that tells how the model can be
influenced and modified by the user interface. Thisiswherethe heart of an application’sbehavior isresding. In
several ways, an MV P presenter equalsthe application modd inMV C; most of the codethat dealswiththe means
by whichauser interface operatesis stitched into apresenter class. Theimportant differenceisthat apresenter is
directly connectedto itsassociated view such that thetwo can closely coordinateinther roles of rendering the user
interfacefor aspecificmodel.” —" Twigtingthe Triad”.

A Structural Design for Web Application Based on Model-view-presenter... 1509

The Presenter will be dependent on theinterfacesfor the BLLsfromwhichit hasto recollect domain objects
(data). It will make use of theresolved instances asit isconfigured inthemodule or bootstrapper inorder to access
the dataandfill up the ViewModel. Generrally, only the Presenter will be tightly coupled to the components of
MV PVM. It will betightly coupled to the View, ViewM odd and the BLL inter faces. Presentersaren’'t supposed
to bereused; they ded with particular concernsaong with the businesslogic/rulesrelated to those concerns. Inthe
caseswhere aPresenter can be reused acrossenterprise applications, thereare huge chancesthat amodulewould
be moreappropriate for the task—that is, alogin module (project) could be created and that could bereused by
all of theenterprise applications. If it is coded againg an interface, the module can be easlly reused employing
dependency injection technologieslikethe MEF or Unity.

MVPVM: The View Model

“InMV P, the model istruly adomain object and thereisno anticipation of (or link to) theuser interface at all.
Thisavoidsthe View Model from being tightly coupled to asingle View, alowingit to bereused by several
Views. Inasimilar manner, the View Model will possess no application businesslogic, henceit iseasy to share
View Modelsacrossenterprise gpplications. This supportsreuse and application integration. For instance, the
Security Command View Model isin the Gwn. Library. Mvp Vm.xxxx project (where xxxx = Silverlight,
desktop or Windows Phone). Since aUser View Model will be needed in most of the applications, thisisa
reusable component. Caution hasto be taken so asnot to polluteit with businesslogic that isspecific to the
demo application. Thisisnot anissuewith MVPVM, asthe businesslogic will be managed by the Presenter,
and not withinthe View Model (shownin Figure 3).

The BusinessLogic L ayer

BLLshaveno information regarding the persisted Model data. Their behavior is strict with respect to domain
objectsandinterfaces. Generally, dependency injection can be applied inorder to resolvethe DAL interface within
the BLL, so it is possible to swap out the DAL later without impacting any downstream code., A MockBlI
implementation for | BusinessLogicL ayer for the demo applicationisto benoted in Figure5, line 34. Later it canbe
easlly substituted with an implementation during production of theinterfacewithasingleline of codesinceit is
developed against an interface.

Businesslogicisn't restricted to the BLLS. In Figure4, theregister named the types(for | Presenter Command)
insuchaway that it can make use of dependency injection asafactory. When the user clicks on abuttononthe

Figure 4: Registering BLL, DAL and Commands

1510 Malar P. & Agnise Kala Rani X

command parameter it istaken care of (instantiated) by the base class and the relevant command is executed.
All that was necessary for wiring thisup was aButton command in XAML and an entry inthe SecurityModule
[12,13].

The Data Access L ayer

Persisted domain data could be maintained in SQL databasesor XML or text files, or returned from aREST
service. WithMVPV M, only the DAL contains specific information that isnecessary for retrieving the data. The
DAL will only retrieve domain objectsto the BLL. Thispreventsthe necessity for the BLL to be knowledgeable
about theconnection strings, filehandles, REST servicesand so on. Thisimprovesthescalability and extenshility;
DAL canbe switched froman XML fileto acloud servicewithout any impact over any existing code residing out
of the DAL and the application configurationfile. Until thenew DAL unit testsswork finefor the CRUDL processes,
the gpplication can be configured in order to utilizethenew DAL without any impact over current gpplicationsand
their utilization.

4. CONCLUSION

The PHPisahighly efficient language for developing dynamic and interactive web applications. Oneamong the
defining characteristics of PHP isthe ease with which developers can connect and manipulate a database. PHP
aldsthepreparation of the functionsfor manipulation of thedatabase. But, database management is performed by
the Structure Query Language (SQL). Many new programmersfrequently havetrouble with SQL syntax. Inthis
paper, the PHPdesgnisintroduced for database management onthebasis of theMVPVM pattern. TheMVPVM
patternisvery helpful for thearchitecture of web applications, isolating themode, view, presenter and Modelview
of aweb application. The PHP design encapsulates general database operationswhichare INSERT, UPDATE,
DELETE and SELECT. The user or programmer is capable of easily programming web application software
projectsor projectsof their own by means of customization inthe development. This PHP designtakesthe best
advantages of itsloose coupling, expangbility, and reusable quality.

References
[1] Andris Paikens, Guntis Arnicans “Use of Design Patterns in PHP-Based Web Application Frameworks’ LATVIJAS
UNIVERSITATESRAKSTI. (2008), 733.
[2] GamratB., “PHPand preprocessed Web pages,” Dr. Dobb’ S Journal, January (2006), 31(1), pp. 46-48.
[8] Stig Seether Bakken, Alexander Aublach, Egnn Schmid et al., “PHP Manual,” The PHP Documentation Group, (2007).
[4] Hofmeister C., Nord R.L., Soni D., “Applied SoftwareArchitecture,”. Addison Wedl eyy (2000) ¥

[5] Song Wi, “Approach to Web application program based on MVC and J2EE,” Hebel Journal of Industrial Science &
Technology, July (2005) ,22(4), pp. 189-191.

[6] Ni L.P. PravinaUtpatadevi, A. A. K. Oka Sudana, A. A. Kt. Agung Cahyawan “Implementation of MV C (Mode -View-
Controller) Architectural to Academic Management Information System with Android Platform Base’ International Journal
of Computer Applications (0975 —8887) Volume 57— No.8, November 2012.

[7] Zamah Sari, Moechammad Sarosa, Heru Nurwasito “ Concept of Designing an Optimized Pull Model View Controller Type
Content Management Framework” International Journal of Computer Applications, (2012).

[8] NellyDelessy-Gassant, Eduardo B. Fernandez “ The Secure MV C pattern” International Symposum on SoftwareArchitecture
and Patterns, July 23-27, (2012).

[99 R.Anusha, Ch.SvaramamohanaRao " Secured N-Tier Attack Detection and Prevention Mechanism” International Journal
of Computer Trendsand Technology (IJCTT) —volume4 I ssue 8-August (2013).

[10] Andy Bower “Twisting TheTriad” Camp Smalltalk 1, San Diego, March 2000 http://avi adezra.blogspot.in/2007/07/twisting-
mvp-triad-say-hello-to-mvpc.html

[11] VeglisA., LecdercgM., QuemaV., “PHPand SQL made smple, Distributed Systems Online,” Aug 2005, 6(8), pp. 15-22.
[12] http://www.codeproject.com/Arti cles/42830/M oddl -View-Controller-Modd -View-Presenter-and-Mod.
[13] Bill Kratochvil, TheModel-ViewPresenter-ViewModel Design Pattern for WPF, MVPVM DESIGN PATTERN, 2011.

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

