ISSN: 0974-8407
J I\/I M © Serials Publications
. 9(2) 2017: pp. 201-209
Journal of Mechanicsand MEM S 2 PP
Special Issue dedicated to Prof. K'Y Ye edited by Z M Ye, P Liu and B Sun

INSTABILITY OF VOID COLLAPSE FOR
INCOMPRESSIBLE THERMO-HYPERELASTIC
MATERIALS
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ABSTRACT

The instability problem of void collapsein a spherical shell, composed of an incompressible thermo-hyperelastic
material, subject to auniformradial boundary pressureisexamined within theframework of finite elasticity. For all
values of the applied pressure, one solution corresponds to the homogeneous state of the shell in which thevoid is
open. For sufficiently large values of the pressure, thereis another sol ution in which the spherical void iscollapsed.
An explicit expression for the critical pressure at which void collapse occursis given. Stress distribution after the
collapse of void is discussed and the effect of temperature on the collapse of void is studied in the case of the
uniform temperature field as well as the non-uniform temperature field. The effect of material constant and the
initial size of thevoid on the collapse of void are discussed, too.
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1. INTRODUCTION

In recent years, rubber-like materials such as rubber and other polymeric materials are using in a broader and
broader range of engineering fidd. So nonlinear problems for cavitation instability in hyper-dastic materials have
attracted much attentions. The occurrence of a cavitation instability has been interpreted either as a bifurcation from
a homogeneously stressed solid to a solid involving a void, or as the suddenly rapid growth of a pre-existing
voidi-5,

A void in a certain nonlinear medium may grow without bound when a cavitation stress limit is reached®-8,
Ball™ determined the precise sub-class of such incompressible materials that exhibit cavitation instability and gave
an explicit expression for the critical load at which the void radius becomes infinite for such materials. For
compressible materials, various aspects of the corresponding problem have been considered™ E-5191.1101, Both for
incompressible and compressible isotropic hyper-elastic materials, cavitation solutions don’'t always exist. Other
aspects of the cavitation instability problems have been investigated include the effects of material
inhomogeneity*U-1*4 material anisotropy™-2% finite strain plasticity?Y, asymmetric deformation of cavitation(?2:23
and so on.

The “complementary” problem to this concerns the collapse of a void. When a body containing a void is
subjected to a pressure, the void may suddenly closed (the void radius becoming zero at afinite value of the applied
pressure) when the applied pressureis sufficiently large, which islarger thanitscritical value. Budiansky, Hutchinson
and Slutsky!! carried out the study of void collapse in the case of power-law viscous solids and pointed out that
there are various shapes into which an initially spherical void could asymptotically collapse. Abeyaratne and Hou®®!
carried out the examine of the possibility of void collapse in the incompressible solids and determined the class of
materials that do exist this phenomenon.

Theimportance of gaining atheoretical understanding of thethermo-mechanical behavior of rubber wasillustrated
by therole of the O-ring seals in the Challenger shuttle disaster. Not only the elasticity theory but also extensions of
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the theory to account for indastic effects, especialy for the effect of temperature, are involved for rubber-like
materials those are used in the circumstances of high temperature. Thermo-mechanical behavior of rubber-like
materials is described as the thermo-hyperelastic modd, as considered by Casey!®®, Nicholson and Nelsonf?’],
Nicholson and Linf?® and so on.

The purpose of the present paper is to further investigate the problem of void collapse in the case of the
incompressible thermo-hyperelastic materials. The problem of void collapse for a spherical shell composed of the
generalized incompressible Gent-Thomas thermo-hyperdastic material, under a uniform radial boundary pressure
is investigated. From the condition of incompressibility of the material, the radial symmetric deformation function
of the shdl is given by means of an undetermined parameter describing the deformation of the void. For all values
of the applied pressure, one solution corresponds to the homogeneous state of the shell in which the void is open.
For sufficiently large values of the pressure, which is larger than the critical value of the pressure, there is the
collapse solution in which the spherical void is collapsed.

The exact analytic rdation among the parameter for the void and the pressure as well as an explicit formula to
determinethecritical pressure is obtained from solving the differential equation satisfied by the def ormation function.
When the pressure exceeds the critical value, the spherical void may suddenly collapse. The solution depends on
the temperature of the material in the case of a uniform temperature field or a non-uniform temperature fied.

The bifurcation curves for variation of the void radius and the applied pressure are obtained from numerical
calculations based on the analytic solution. For an elevated temperaturefield, thecritical pressureis lower than that
at the reference temperature and for a descensional temperature, the critical pressure is larger than that at the
reference temperature. The stress distribution subsegquent to the collapse as well as the effect of the temperature
field on the stress distribution is analyzed. When a void is closed at the critical pressure, the stresses have an
obviously catastrophic transition from the homogeneous distribution to the non-homogeneous distribution.

2. BASICEQUATIONS

Consider here the finite deformation for a solid spherical shell with inner radius a and outer radius b, composed of
the generalized incompressible power-law thermo-hyperdastic material. Assume that the shell is subjected to a
uniformradial boundary dead-load p, onits outer boundary surface. The undeformed and the deformed configurations
of the shell are described by the spherical coordinates systems (R, ®, @) and (r, 6, ¢), with the co-origin at the center
of the shell. Assume that the deformation function of the shell is radially symmetric, namely,

r=r(R), 6=0,p=® (@<R<b0<OL27,0<D <) 1)
here r(R) is an undetermined function. The principal stretches are given by
dr (R

kRzl"(R)z—, Ao =hy =——+

dR R @)

The strain energy function of the generalized incompressible power-law thermo-hyperelastic material may be

o 32 2% (T oy 3] -
25 {HB{(II 3)+ " TIn(TO]+ . (T-T,)1, S)H 1; for n=0
W =
%Iog{hﬁ[(l;?;ﬁ%ﬂn(%}t454(I'—TO)(Il—S)ﬂ for n=0 3

In which, B > 0 and n are material parameters, p is the infinitesimal shear modulus of the material,
I, =A% +A2 + 22 is thefirst invariant of the deformation tensor. Other material parameters, C, = C_= 1506 Jkg*

K=, p =950 kg3, C, =— o, o = 6.36 x 10 K=, A, = 0.4225MPa, T, =300° KI*’l. Here, C_ is the specific heat at
constant strain, o is the volume coefficient of thermo expansion, p is the density of the material, T is a reference
temperature, A is the second Lame coefficient of the material.
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Assuming the temperature differences T = T(R) from the stress-free state is passive, stationary and radially
symmetric, the heat conduction equation is

d 2d
_+_
dR> RdR

—JT(R) =0 (4

With the boundary conditions T(R=a) = T_, T(R=b) = T, integrating (4), we have

— bTb _aTa +1ab(Ta _Tb)

T(R
() b-a R b-a

()

If T, =T, thereis a non-uniform temperature field as Eq. (5) for the shell and if T_ = T, thereis a uniform
temperature field T(R) = T, = T, for the shell.

From the incompressibility condition of the material 1, A, A, = 1 and Eq. (2), we have
1
r(R)=(R+c*-a’)? (6)

where, 0 < ¢ < ais an undetermined constant describes the deformation of the void. If ¢ > 0, the void remains open
and if ¢ =0, avoid collapse occurs. Introducing the notation

V=V(R)=7h@=r(R)Z(lJFCS_aSJS (7)

Then, the non-zero Cauchy stress components are
7, (R) =v‘2\/\/l(v‘2,v,v,T(v))— p(R)
ree(R)=7:W(R)=v\/\/2(v‘2,v,v,T(v))— p(R) (8)

in which p(R) is the undetermined hydrostatic pressure. The subscript notation on W denotes differentiation with
respect to the appropriate argument. The equilibrium equation of the sphere in the absence of body forcesis

dr,  2((R)
EWLW[T” ~ 14 |=0 9)

The boundary condition at the outer edgeis

T, (b)=-py {Tbb)}z (10)

The boundary condition at the cavity surface should be
c>0r1(c)=0 (11)
or
c=0t (<0 (12)

3. SOLUTIONS
It is easy to show that the problem always has a trivial solution corresponds to the homogeneous deformation state,

1 C3 — a3 3
namely, r(R)= (R®+c®—a’)?, (0<c<a) and the homogeneous stress state, Tr = Top = Ty = Po (1+ TJ .
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In order to seek the collapse solution for ¢ = 0O, substituting Eq. (8) into Eqg. (9) and using the variable
transformation r(R) = R¥(R), the equilibrium equation may be rewritten as

d 2 e 2 -2
E[V_Z\M(V_ ,v,v,T)— p(R):|+2V?(V W(v ,v,v,T)—vz\Nz(v ,v,v,T))=0 (13)

Integrating Eq. (13) and substitute it into Eq. (8), we have

< (R)=-p(a)-[22

a

Substitute Eq. (14) into Eq. (11)~(12), we have p(a) = 0 and

3 %V(b)vvv v,T
po=[l+ = ] | T gy (15)
v(a)

(v’]\/\ll(v’z,v,v,T) —VAW, (v’z,v,v,T))dR (14)

Where, W (v, T) = =2(v*W, —W,). The Eq. (15) is an exact analytic relation between the void radius ¢ and the
applied pressure p,. For a given pressure, the parameter ¢ corresponding to various values of it may be obtained. If
there exists a root ¢ = 0, this means that the void collapses in the shell.

Letting ¢ = 0 in Eq.(15), the critical pressure p_ at which the void collapse is given as

@l

3 %[1%2]
(. a W, (v,T)
pcr—(l——b3J | gl (16)

0

A given material admits the phenomenon of void collapse at a finite pressure if and only if its strain energy
function W(v, T) maketheintegral in Eq. (16) exist. Because material strain energy function satisfies the normalization
condition W(1, T) = 0, W,(1, T) = 0, the integral is always convergent at the upper limit and so the existence of the
integral depends on the behavior of W(O, T). If the value of W(O, T) isfinite, thentheintegral Eg. (16) exists and thus
the material admits the phenomenon of void collapse.

Thus if
n<o0 (17)
for the material, the value of the critical pressure p_ given by Eq. (16) will be finite®.

4. RESULTSOFVOID COLLAPSE

Operating numerical computation on Eq. (16) yields the critical value p,, of the pressure for the thermo-hyperelastic
material under a given temperature field. Critical values p_ of the pressure for the thermo-hypereastic material
under some given temperature fields are summarized in Table 1. Curve for variation of thecritical pressure p_, with
the original radius of the void are shown in Fig. 1. At the same time, operating numerical computation on Eg. (15)

yields the relationship ¢ = ¢(p,) between the dimensionless void radius % and the applied pressure p,. Curves for

the thermo-hyperelastic material under some given elevated and lowered uniform temperature fields are shown in
Fig. 2 and Fig. 3, respectivdy. Curves for the thermo-hyperelastic material under some given lowered and eevated
non-uniform temperature fields are shown in Fig. 4 and Fig. 5, respectively. At the same time, curves corresponding
to different values of the hardening exponent n and different original radius of the void are shown in Fig. 6 and
Fig. 7, respectively.

If p<p,, thereisaunique solution for Eq. (15), that is, ¢ > 0, so the only possible configuration is onein which
the void is open under a homogeneous deformation state. If p > p_, thereis another solution for Eq. (15) withc =0,
o there exists the collapse solution. When p > p_, the void almost keep unchanged but when p > p_, the void
suddenly collapsed.
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Figure 1: Variation of the Critical Pressurewith the Original
Radius of the Void
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Figure 3: Variation of the Void Radius with the Applied
Pressure for Uniform Descensional Temperature Field
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Figure 5: Variation of the Void Radius with the Applied
Pressure for Non-uniform Descensional Temperature Field
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Figure 2: Variation of the Void radius with the Applied
Pressure for Uniform Elevated Temperature Field
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Figure 4: Variation of the Void Radius with the Applied
Pressure for Non-uniform Elevated Temperature Field
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Table1
Critical Values of the Pressure for Some Given Temperature Fields
T 360 300 330 300 300 300 270 300 240
T 360 360 330 330 300 270 270 240 240
P, 0.06 0.0616 0.0626 0.0634 0.065 0.0685 0.0675 0.0685 0.07

It shows that the critical pressure p_ increases with the decreasing of temperature and decreases with the
increasing of temperature both for uniform and non-uniform temperature field. The effect of uniform temperature
field is larger than that of non-uniform temperature field with the same temperature on the outer boundary. That is
to say the material will be softened if thetemperatureisincreased and the material will be hardened if the temperature
is decreased.

It also shows that the critical pressure p,, decreases with the increasing value of the original radius of the void.
Thus it is easier for a shell to occur void collapse with a larger void. At the same time, the critical pressure p,,
increases with the increasing value of the hardening exponent n. That isto say it is more difficult to for the collapse
of void in a more hardening material.

5. RESULTSOF STRESSCONTRIBUTION
When p > p_, the void will collapse suddenly. The corresponding principal stresses after the collapse of void are

v(b)
& (R)=-py?(0)+ [ “lvT)

v(R)

dv

(18)
W, (v,T)+1, (R)

\4

TGG(R)ZTW(R)Z

N <

When p > p_, the principal stresses obtained from Eq. (18) for the reference temperature and a given uniform
elevated temperaturefield are shown in Fig. 8 and Fig. 9, respectively. It can be seen that the radial stress ¢, is zero
at the void surface and decreases rapidly with the increasing radius and approaches an asymptotic value in the
region far from the void. The graph declines monotonically through the shell. On the other hand, the circumferential
stress 1, is zero at the void surface and decreases rapidly with the increasing radius and approaches the same
asymptotic value in the region far from the void. But the graph does not decline monotonically through the shell.
One may see that in the region far from the void (R > 0.2b), there is a homogeneous stress state.

At the same time, if the void has collapsed, stress distribution does not have obvious different among different
temperature fidds under the same pressure and the homogeneous stress state in the region far from the void is
almost the same as others.

The stresses corresponding to the homogeneous solution are given by the homogeneous state of stress
3 43)\3
T = Too = Tpo = Po (:HTJ , When p < p_. Thus, when a void is closed when p = p_, the stresses have an

obviously catastrophic transition from the homogeneous distribution to the non-homogeneous distribution.

6. ENERGY COMPARISON

For a spherical shell composed of the incompressible thermo-hyperdastic material, under a uniform radial boundary
pressure, one solution corresponds to the homogeneous state of the shell in which the void is open always exist for
all values of the pressure. For sufficiently large values of the pressure, there is the collapse solution in which the
spherical void is collapsed. So it is necessary to compare the potential energies corresponding to each solution.

Apparently, for the trivial solution, the potential energy of the shell is E; = 0.
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For the collapse solution, the potential energy of the shdl is

E=[wav - | po(b—(b3+c3—a3);JdA
\Y A

(b3+c3—a3)%

=4x .[

0

3
RAWAR — 47tb? g 1—(b

+c*-a° T (19)

Under a given temperature field, substituting Eq. (3) and Eq. (15) into Eqg. (19), we will yidd the potential
energy of the shell for the collapse solution. Numerical result under the reference temperature is shown in Fig. 10.
It is shown that when p, > p_, the potential energy of the shell corresponds to the collapse solution is always lower
than that corresponds to the trivial solution. So the collapse solution is stable when p, > p_, and the phenomenon of

void collapse does exist in the shell.
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7. CONCLUSION

The bifurcation problem of void collapse for incompressible thermo-hyperelastic materials under a uniform radial
boundary pressureand a given temperaturefidd is studied. For small values of the pressure, one solution corresponds
to a homogeneous state exists. However, for sufficiently large values of the pressure, there is the collapse solution
in which the spherical void is collapsed. It is apparent that the effect of temperature on the collapse of void is
obvious.The critical pressure increases with the decreasing of temperature and decreases with the increasing of
temperature both for uniform and non-uniform temperature field. At the same time, the critical pressure decreases
with the increasing value of the original radius of the void but increases with the increasing value of the hardening
exponent n of the material.
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