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ABSTRACT

The instability problem of void collapse in a spherical shell, composed of an incompressible thermo-hyperelastic
material, subject to a uniform radial boundary pressure is examined within the framework of finite elasticity. For all
values of the applied pressure, one solution corresponds to the homogeneous state of the shell in which the void is
open. For sufficiently large values of the pressure, there is another solution in which the spherical void is collapsed.
An explicit expression for the critical pressure at which void collapse occurs is given. Stress distribution after the
collapse of void is discussed and the effect of temperature on the collapse of void is studied in the case of the
uniform temperature field as well as the non-uniform temperature field. The effect of material constant and the
initial size of the void on the collapse of void are discussed, too.
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1. INTRODUCTION

In recent years, rubber-like materials such as rubber and other polymeric materials are using in a broader and
broader range of engineering field. So nonlinear problems for cavitation instability in hyper-elastic materials have
attracted much attentions.The occurrence of a cavitation instability has been interpreted either as a bifurcation from
a homogeneously stressed solid to a solid involving a void, or as the suddenly rapid growth of a pre-existing
void[1]~[5].

A void in a certain nonlinear medium may grow without bound when a cavitation stress limit is reached[6]~[8].
Ball[1] determined the precise sub-class of such incompressible materials that exhibit cavitation instability and gave
an explicit expression for the critical load at which the void radius becomes infinite for such materials. For
compressible materials, various aspects of the corresponding problem have been considered[1],[3]~[5],[9],[10]. Both for
incompressible and compressible isotropic hyper-elastic materials, cavitation solutions don’t always exist. Other
aspects of the cavitation instability problems have been investigated include the effects of material
inhomogeneity[11]~[14], material anisotropy[15]~[20], finite strain plasticity[21], asymmetric deformation of cavitation[22],[23]

and so on.

The “complementary” problem to this concerns the collapse of a void. When a body containing a void is
subjected to a pressure, the void may suddenly closed (the void radius becoming zero at a finite value of the applied
pressure) when the applied pressure is sufficiently large, which is larger than its critical value. Budiansky, Hutchinson
and Slutsky[24] carried out the study of void collapse in the case of power-law viscous solids and pointed out that
there are various shapes into which an initially spherical void could asymptotically collapse. Abeyaratne and Hou[25]

carried out the examine of the possibility of void collapse in the incompressible solids and determined the class of
materials that do exist this phenomenon.

The importance of gaining a theoretical understanding of the thermo-mechanical behavior of rubber was illustrated
by the role of the O-ring seals in the Challenger shuttle disaster. Not only the elasticity theory but also extensions of



the theory to account for inelastic effects, especially for the effect of temperature, are involved for rubber-like
materials those are used in the circumstances of high temperature. Thermo-mechanical behavior of rubber-like
materials is described as the thermo-hyperelastic model, as considered by Casey[26], Nicholson and Nelson[27],
Nicholson and Lin[28] and so on.

The purpose of the present paper is to further investigate the problem of void collapse in the case of the
incompressible thermo-hyperelastic materials. The problem of void collapse for a spherical shell composed of the
generalized incompressible Gent-Thomas thermo-hyperelastic material, under a uniform radial boundary pressure
is investigated. From the condition of incompressibility of the material, the radial symmetric deformation function
of the shell is given by means of an undetermined parameter describing the deformation of the void. For all values
of the applied pressure, one solution corresponds to the homogeneous state of the shell in which the void is open.
For sufficiently large values of the pressure, which is larger than the critical value of the pressure, there is the
collapse solution in which the spherical void is collapsed.

The exact analytic relation among the parameter for the void and the pressure as well as an explicit formula to
determine the critical pressure is obtained from solving the differential equation satisfied by the deformation function.
When the pressure exceeds the critical value, the spherical void may suddenly collapse. The solution depends on
the temperature of the material in the case of a uniform temperature field or a non-uniform temperature field.

The bifurcation curves for variation of the void radius and the applied pressure are obtained from numerical
calculations based on the analytic solution. For an elevated temperature field, the critical pressure is lower than that
at the reference temperature and for a descensional temperature, the critical pressure is larger than that at the
reference temperature. The stress distribution subsequent to the collapse as well as the effect of the temperature
field on the stress distribution is analyzed. When a void is closed at the critical pressure, the stresses have an
obviously catastrophic transition from the homogeneous distribution to the non-homogeneous distribution.

2. BASIC EQUATIONS

Consider here the finite deformation for a solid spherical shell with inner radius a and outer radius b, composed of
the generalized incompressible power-law thermo-hyperelastic material. Assume that the shell is subjected to a
uniform radial boundary dead-load p0 on its outer boundary surface. The undeformed and the deformed configurations
of the shell are described by the spherical coordinates systems (R, �, �) and (r, �, �), with the co-origin at the center
of the shell. Assume that the deformation function of the shell is radially symmetric, namely,

r = r(R),  � = �, ��= �   (a � R � b, 0 � ������, 0 �������) (1)

here r(R) is an undetermined function. The principal stretches are given by
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In which, � > 0 and n are material parameters, � is the infinitesimal shear modulus of the material,
2 2 2

1 RI � �� � �� � �  is the first invariant of the deformation tensor. Other material parameters, C3 = C
e
 = 1506 Jkg–1

K–1, ��= 950 kgm–3, C4 = – ��� ��= 6.36 × 10–4 K–1, ��= 0.4225MPa,  T0 = 300° K[29]. Here, C
e
 is the specific heat at

constant strain, � is the volume coefficient of thermo expansion, � is the density of the material, T0 is a reference
temperature, � is the second Lame’ coefficient of the material.



Assuming the temperature differences T = T(R) from the stress-free state is passive, stationary and radially
symmetric, the heat conduction equation is
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With the boundary conditions T(R = a) = T
a
, T(R = b) = T

b
, integrating (4), we have
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If  T
a
 � T

b
, there is a non-uniform temperature field as Eq. (5) for the shell and if T

a
 = T

b
, there is a uniform

temperature field T(R) = T
a
 = T

b
 for the shell.

From the incompressibility condition of the material �
R
 ����� = 1 and Eq. (2), we have

� � � �
1

3 3 3 3r R R c a� � � (6)

where, 0 � c � a is an undetermined constant describes the deformation of the void. If c > 0, the void remains open
and if c = 0, a void collapse occurs. Introducing the notation
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Then, the non-zero Cauchy stress components are
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in which p(R) is the undetermined hydrostatic pressure. The subscript notation on W denotes differentiation with
respect to the appropriate argument. The equilibrium equation of the sphere in the absence of body forces is
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The boundary condition at the outer edge is
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The boundary condition at the cavity surface should be

c > 0  �
rr
(c) = 0 (11)

or
c = 0 �

rr
 (c) � 0 (12)

3. SOLUTIONS

It is easy to show that the problem always has a trivial solution corresponds to the homogeneous deformation state,

namely, � �
1
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In order to seek the collapse solution for c = 0, substituting Eq. (8) into Eq. (9) and using the variable
transformation r(R) = Rv(R), the equilibrium equation may be rewritten as
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Integrating Eq. (13) and substitute it into Eq. (8), we have
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Substitute Eq. (14) into Eq. (11)~(12), we have p(a) = 0 and
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Where, W
v
(v, T) = –2(v–3W1 – W2). The Eq. (15) is an exact analytic relation between the void radius c and the

applied pressure p0. For a given pressure, the parameter c  corresponding to various values of it may be obtained. If
there exists a root c = 0, this means that the void collapses in the shell.

Letting c = 0 in Eq.(15), the critical pressure p
cr

 at which the void collapse is given as
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A given material admits the phenomenon of void collapse at a finite pressure if and only if its strain energy
function W(v, T) make the integral in Eq. (16) exist. Because material strain energy function satisfies the normalization
condition W(1, T) = 0, W

v
(1, T) = 0, the integral is always convergent at the upper limit and so the existence of the

integral depends on the behavior of W(0, T). If the value of W(0, T) is finite, then the integral Eq. (16) exists and thus
the material admits the phenomenon of void collapse.

Thus if

n < 0 (17)

for the material, the value of the critical pressure p
cr

 given by Eq. (16) will be finite[25].

4. RESULTS OF VOID COLLAPSE

Operating numerical computation on Eq. (16) yields the critical value p
cr

 of the pressure for the thermo-hyperelastic
material under a given temperature field. Critical values p

cr
 of the pressure for the thermo-hyperelastic material

under some given temperature fields are summarized in Table 1. Curve for variation of the critical pressure p
cr

 with
the original radius of the void are shown in Fig. 1. At the same time, operating numerical computation on Eq. (15)

yields the relationship c = c(p0) between the dimensionless void radius c
b  and the applied pressure p0. Curves for

the thermo-hyperelastic material under some given elevated and lowered uniform temperature fields are shown in
Fig. 2 and Fig. 3, respectively. Curves for the thermo-hyperelastic material under some given lowered and elevated
non-uniform temperature fields are shown in Fig. 4 and Fig. 5, respectively. At the same time, curves corresponding
to different values of the hardening exponent n and different original radius of the void are shown in Fig. 6 and
Fig. 7, respectively.

If p < p
cr

, there is a unique solution for Eq. (15), that is, c > 0, so the only possible configuration is one in which
the void is open under a homogeneous deformation state. If p � p

cr
, there is another solution for Eq. (15) with c = 0,

so there exists the collapse solution. When p > p
cr

, the void almost keep unchanged but when p � p
cr

, the void
suddenly collapsed.
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Figure 1: Variation of the Critical Pressure with the Original
Radius of the Void

Figure 2: Variation of the Void radius with the Applied
Pressure for Uniform Elevated Temperature Field

Figure 3: Variation of the Void Radius with the Applied
Pressure for Uniform Descensional Temperature Field

Figure 4: Variation of the Void Radius with the Applied
Pressure for Non-uniform Elevated Temperature Field
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Figure 5: Variation of the Void Radius with the Applied
Pressure for Non-uniform Descensional Temperature Field

Figure 6: Variation of the Void Radius with the Applied
Pressure for the Hardening Exponent n
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It shows that the critical pressure p
cr

 increases with the decreasing of temperature and decreases with the
increasing of temperature both for uniform and non-uniform temperature field. The effect of uniform temperature
field is larger than that of non-uniform temperature field with the same temperature on the outer boundary. That is
to say the material will be softened if the temperature is increased and the material will be hardened if the temperature
is decreased.

It also shows that the critical pressure p
cr

 decreases with the increasing value of the original radius of the void.
Thus it is easier for a shell to occur void collapse with a larger void. At the same time, the critical pressure p

cr

increases with the increasing value of the hardening exponent n. That is to say it is more difficult to for the collapse
of void in a more hardening material.

5. RESULTS OF STRESS CONTRIBUTION

When p > p
cr

, the void will collapse suddenly. The corresponding principal stresses after the collapse of void are
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When p � p
cr

, the principal stresses obtained from Eq. (18) for the reference temperature and a given uniform
elevated temperature field are shown in Fig. 8 and Fig. 9, respectively. It can be seen that the radial stress �

rr
 is zero

at the void surface and decreases rapidly with the increasing radius and approaches an asymptotic value in the
region far from the void. The graph declines monotonically through the shell. On the other hand, the circumferential
stress ��� is zero at the void surface and decreases rapidly with the increasing radius and approaches the same
asymptotic value in the region far from the void. But the graph does not decline monotonically through the shell.
One may see that in the region far from the void (R � 0.2b), there is a homogeneous stress state.

At the same time, if the void has collapsed, stress distribution does not have obvious different among different
temperature fields under the same pressure and the homogeneous stress state in the region far from the void is
almost the same as others.

The stresses corresponding to the homogeneous solution are given by the homogeneous state of stress
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, when p < p

cr
. Thus, when a void is closed when p = p

cr
, the stresses have an

obviously catastrophic transition from the homogeneous distribution to the non-homogeneous distribution.

6. ENERGY COMPARISON

For a spherical shell composed of the incompressible thermo-hyperelastic material, under a uniform radial boundary
pressure, one solution corresponds to the homogeneous state of the shell in which the void is open always exist for
all values of the pressure. For sufficiently large values of the pressure, there is the collapse solution in which the
spherical void is collapsed. So it is necessary to compare the potential energies corresponding to each solution.

Apparently, for the trivial solution, the potential energy of the shell is E0 = 0.

Table 1
Critical Values of the Pressure for Some Given Temperature Fields

T
a(K)

360 300 330 300 300 300 270 300 240

T
b(K)

360 360 330 330 300 270 270 240 240

p
cr

0.06 0.0616 0.0626 0.0634 0.065 0.0685 0.0675 0.0685 0.07



For the collapse solution, the potential energy of the shell is
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Under a given temperature field, substituting Eq. (3) and Eq. (15) into Eq. (19), we will yield the potential
energy of the shell for the collapse solution. Numerical result under the reference temperature is shown in Fig. 10.
It is shown that when p0 � p

cr
, the potential energy of the shell corresponds to the collapse solution is always lower

than that corresponds to the trivial solution. So the collapse solution is stable when p0 � p
cr

 and the phenomenon of
void collapse does exist in the shell.

Figure 7: Variation of the Void Radius with the Applied
Pressure for the Original Radius of the Void

Figure 8: Stress Distribution under an Uniform Temperature
Field

Figure 9: Stress Distribution under an Uniform
Temperature Field

Figure 10: Energy Curve under the Renference
Temperature Field
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7. CONCLUSION

The bifurcation problem of void collapse for incompressible thermo-hyperelastic materials under a uniform radial
boundary pressure and a given temperature field is studied. For small values of the pressure, one solution corresponds
to a homogeneous state exists. However, for sufficiently large values of the pressure, there is the collapse solution
in which the spherical void is collapsed. It is apparent that the effect of temperature on the collapse of void is
obvious.The critical pressure increases with the decreasing of temperature and decreases with the increasing of
temperature both for uniform and non-uniform temperature field. At the same time, the critical pressure decreases
with the increasing value of the original radius of the void but increases with the increasing value of the hardening
exponent n of the material.
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