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Abstract: This paper presents an investigation of the development of system identification using intelligent algorithms.
A simulation platform of a flexible beam vibration using finite difference (FD) method is accomplished to demonstrate
the capabilities of the identification algorithms. Three heuristic approaches for system identification are explored
and evaluated. These identification approaches are, Adaptive Neuro Fuzzy Inference System (ANFIS) model, Bees
Algorithm (BA) and Particle Swarm Optimization, PSO. The above approaches are used to estimate a linear discrete
second order model for the flexible beam vibration. The model is implemented, tested and validated to demonstrate
the merits of the algorithms for system identification. Finally, a qualitative comparison have been accomplished to
address the system performance in terms of error convergence of the proposed approaches. The achieved results of
intensive simulated experiments show that PSO outperforms the other approaches.
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1. INTRODUCTION

This paper presents an investigation of the development of a discrete time model based on the observation
of the input and output signals. Such models can be used for control system design, adaptive guidance or
fault detection (Fei 2007). Parameter estimation, in turn system identification is a common criterion for
control system, in particular for sensitive or adaptive control system design. In fact, a closed loop control
system may be unstable or exhibit unacceptable transient response characteristics if the estimated parameters
used in the system model for controller design do not coincide with the actual process parameters. Therefore,
accurate and reliable parameters estimation technique is critical for the design and development of high-
performance control systems in which the estimated parameters are often used in the field orientation,
motion control, self-sensing, and other advanced algorithms.

A flexible beam system in transverse vibration is considered in this paper. Such as system has an
infinite number of modes, although in most cases the lower modes are the dominant ones requiring attention.
The unwanted vibrations in the structure are assumed to be the result of a single point disturbance of
broadband nature. First-order central finite difference (FD) methods are used to study the behaviour of the
beam and develop as suitable test and verification platform. An AVC system is designed utilizing a single
input single output control structure to yield optimum cancellation of broadband vibration at a set of
observation points along the beam. The controller design relations are formulated such as to allow on-line
design and implementation and thus, yield an adaptive control algorithm (Long Zhao and Jing Liu 2012). It
is reported earlier that the the conventional on-line system identification schemes are in essence local
search techniques (Hashim et al. 2006). These techniques often fail in the search for the global optimum if
the search apace is not differentiable or linear in the parameters. To overcome this limitation, this investigation
employed GAs and ANFIS to identify characteristics of the AVC system. The evolutionary GAs and the
ANFIS algorithm of the MATLAB tool boxes are used to estimate the controller characteristics, where the
controller is designed based on the plant model. This is realized by minimizing the prediction error of the
actual plant output and the model output. The flexible beam system mentioned above is considered as the
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plant model. An AVC system is designed for optimum cancellation of broadband vibration along the beam.
The AVC algorithm is designed, implemented and tested using GAs and ANFIS algorithm. The performances
of the both algorithms in implementing AVC system are assessed in the suppression of vibration along the
beam. These are presented and discussed through a set of experiments.

The main objective of this paper is to identify a linear discrete second order model using GAs, ANFIS,
BA and PSO. A simulation platform of a flexible beam system in transverse vibration using FD method
(Long Zhao and Jing Liu 2012) is considered to demonstrate the capabilities of the algorithms for system
identification. The proposed second order model is implemented using the GAs, ANFIS, BA and PSO. It is
then tested and validated for system identification within the simulation framework of a flexible beam
system. Finally, a performance comparative of the four algorithms are presented and discussed to demonstrate
the capabilities of the algorithm in implementing system identification. In next sections, all these algorithms
will be presented.

2. INTELLIGENT IDENTIFICATION ALGORITHMS

The conventional system identification schemes are in essence local search techniques. These techniques
often fail in the search for the global optimum if the search space is not differentiable or linear in the
parameters. On the other hand, these techniques do not iterate more than once on each datum received. An
alternative strategies using artificial intelligence algorithms could provide better solution. To achieve this
goal, five most commonly used intelligence algorithms are used to demonstrate the capabilities.

2.1. Feed-Forward Neuro-fuzzy Technique

One major disadvantage of fuzzy approaches is that there are no clear guidelines as to how to fine-tune the
fuzzy membership functions. However, learning techniques are being developed that can help in this process.

Updating the knowledge base affects the current rules and hence the system outputs. Therefore, a neuro-
fuzzy technique has been proposed to fine-tune these rules and minimise the total error between the desired
output and the fuzzy controller output.

Mamdani-model-based fuzzy neural networks (FNNs) represent more transparent neurofuzzy systems
compared with TS-model-based FNNs (Shankir, 2001). The reason is that the rule base of the Mamdani-
model is more understandable to human users. Also, it is more general in terms of how its rule base is created,
because the latter can be constructed using human experience and numerical data. However, a disadvantage
of this model is that it does not allow easy mathematical analysis due to the logical nature of its inference
functions, e.g. the logic min/max functions. Also, it does not allow the simple application of BP as one of the
most powerful learning algorithms, due to the non-differentiable min/max functions employed.

In this chapter, a Mamdani-model-based FNN with Differentiable Activation functions (DA-FNN) is
described. A differentiable alternative to the logic min and logic max functions termed softmin and softmax
(Shankir, 2001) are presented. These two differentiable functions (softmin and softmax) are employed
instead of the two non-differentiable functions (logic min and logic max) to implement the decision-making
mechanism of DA-FNN. Using these differentiable functions allows the effective application of BP for the
parameter learning of DA-FNN.

Figure 1(a) presents the structure of the proposed neuro-fuzzy system. The structure is a six-layer feed-
forward connectionist representation of a Mamdani-model-based fuzzy logic system (FLS) (Mamdani,
1974). In general, a node in any layer has some finite “fan-in” of connections represented by weight values
from other nodes and a “fan-out” of connections to other nodes (see Figure 1(b)). Associated with the fan-
in of a node is an aggregation function, f, that serves to combine information, activation, or evidence from
other nodes. Using the same notations as in (Lin and Lee, 1992), the function that provides the net input to
such a node is written as follows:
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where p is the number of fan-ins of the node, w is the link weight associated with each fan-in, u is an output
of a node in the preceding layer associated with the fan-in and the superscript indicates the layer number. A
second action of each node is to output an activation value as a function of its net input,

� �f kkaooutput k
i
�� (2)

where ak denotes the activation function in layer k. The functions of the nodes in each of the six layers of
the proposed structure are described next.

Layer 1: Nodes in Layer 1 are input nodes that represent input linguistic variables. Layer one contains
N nodes, each of which receives a crisp input vector x = (x

1
,..., x

N
). The nodes in this layer simply transmit

input values to the next layer directly. That is,

fxif iii
111

aandu1
i

��� (3)

The link weights in Layer 1 are fixed at unity.

Layer 2: Nodes in Layer 2 are input term nodes which act as membership functions. An input linguistic
variable x in a universe of discourse U is characterised by � �T,...,T,T N

x
2
x

1
x�T(x)  and

� �M,...,M,M N
x

2
x

1
x�M(x) , where T(x) is the term set of x; that is the set of names, e.g. (small, medium,

large), of the linguistic values of x and M(x) is the membership function, e.g. (triangular, trapezoidal, bell-
shaped), defined on a universe U, bell-shaped function is chosen because it is differentiable function. The
function of each node j in a term set i is to calculate the degree of membership of input xi with respect to the

membership function M j

ix , Ni1,2,....,j� , associated with the term set T(xi) according to the following

bell-shaped function:

Figure 1(a): Structure of the proposed neuro-fuzzy system
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where m
ij
 and �

ij
 are, respectively, the centre (or mean) and the width (or variance) of the bell-shaped

function of the jth term of the ith input linguistic variable x
i
.

Layer 3: The nodes in Layer 3 are rule nodes, where each node associates one term node from each term
set to form a condition part of one fuzzy rule. In this structure, the softmin function (Berenji and Khedkar,
1992) and its complement softmax function (Shankir, 2001) are used.
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where μai � , ai1ai ��  and the parameter k controls the “hardness” of the softmin function.

Therefore, the function of the rth rule node using softmin can be written as follows:

fandsoftminf rrr
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where r = 1,…, R, and R is the number of rules or rule nodes in layer three. However, in this layer, there are
no link weights to be adjusted because all the link weights are fixed at unity.

Figure 1(b): Basic structure of a node in the network
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Layer 4: The nodes in this Layer are output term nodes which act as membership functions to represent
the output terms of the respective L linguistic output variables. The nodes in Layer 4 should integrate the
fired rules that have the same consequent. The softmax function is used to perform the integration. Therefore,
the function of each term node j in the output term set i can be written as follows:
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where p is the number of rules sharing the same consequent (the same output term node). Hence, the link
weights in Layer 4 are fixed at unity.

Layer 5: The number of nodes in Layer 5 is 2L, where L is the number of output variables, i.e. there are
two nodes for each output variable. The function of these two nodes is to calculate the denominator and the
numerator of a quasi-Centre Of Area (COA) defuzzification value for each output variable. The functions
of the two nodes of the ith output variable are:
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where f ni
5  and f di

5  are, respectively, the node functions of the numerator and the denominator nodes of

the ith output variable.

Layer 6: The nodes in Layer 6 are defuzzification nodes. The number of nodes in this Layer equals the
number of output linguistic variables. The function of the ith node corresponding to the ith output variable
can be written as follows:

aya 6666

56

56

iiiii andfand
adiwdi

aniwnif ��
�

�
� (11)

where wni
6  and wdi

6  are Layer 6 link weights associated with each output variable node.

In order to build a neuro-fuzzy system based on the above description, three main steps have to be
considered. The first step is to specify the input and output variables of the network. The second step is to
divide the input-output universes into a suitable number of partitions (fuzzy sets) and to specify a membership
function for each partition. A linguistic term has to be assigned to each membership function and the
parameters of the membership function (centre and width) have to be specified initially. The third step is to
generate fuzzy rules to perform the input-output mapping of the FLS. After the construction of the network,
a parameter learning phase has to be conducted. The algorithm for that phase is explained next.

5.5.1. Parameter Learning Algorithm

Following the construction phase, the network then enters the parameter learning phase to adjust its free
parameters. The adjustable free parameters were selected to be the centres (m

ijs
) and widths (s

ijs
) of the term

nodes in Layer 4 as well as the link weights in Layers 2 and 6. A supervised learning technique is employed
along with the back propagation (BP) learning algorithm (Berenji and Khedkar, 1992) to tune these
parameters. The problem can be stated as: ‘Given n input patterns x

i
(t), i = 1,...., n, m desired output

patterns y
i
(t), i = 1,....., m, the fuzzy partitions, and the fuzzy rule base, adjust the free parameters of the

network optimally’. In the parameter learning phase, the goal is to minimise the following error function:
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where y(t) is the desired output, and y
net

(t) is the current network output. For each training data set, starting
at the input nodes, a forward pass is made to compute the activity levels of all the nodes in the network.
Then, starting at the output nodes, a backward pass is followed to compute the rate of change of the error
function with respect to the adjustable free parameters for all the hidden nodes. Assuming that w is an
adjustable free parameter in a node, then the general learning rule can be written as follows:
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where � is the learning rate. Using the chain rule, the partial derivative can be defined thus:
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The calculation of the back-propagated errors as well as the updating of the free parameters can be
described starting at the output nodes as follows.

Layer 6: Using Equation (15) and Equation (11), the adaptive rule for the Layer 6 weights is derived
below:
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where �
6
 is the learning rate of the link weights in Layer 6. The propagated errors from Layer 6 to the

numerator and the denominator nodes in Layer 5 are derived as follows:
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Layer 5: An adjustment is required for the link weights w5
ijn  which represent the centres mij of the

output membership functions. Also, an adjustment is required for the free parameter sij that represents the
width of the output membership functions. Consequently, using Equation (9) and Equation (15), the adaptive
rule to tune the free parameters in Layer 5 is derived. First, the adaptive rule to tune the centres of the output
membership functions can be obtained as follows:
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Second, the adaptive rule to tune the widths of the output membership functions is given by:
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where �
5
 is the learning rate of the adjustable parameters �

ij
 and m

ij
 in Layer 5. The propagated error from

Layer 5 to the jth node in the ith term set in Layer 4 is:
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Layer 4: No adjustment is required for the link weights of Layer 4. Only the error signals �4
r  are

required to be calculated and propagated to a rule node r in Layer 3. Each one of these error signals is a

summation of L propagated error signals �4
ri , one error signal from a specific node j of each term set i,

where i = 1,…., L and L is the number of output variables (or term sets). Using Equation (15), the error

signal � 4
r  is then:
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From Equations (5.8) and (5.5)
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if the jth term node at the ith term set in Layer 4 is connected to the rth rule node in Layer 3. Otherwise,

0
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where p is the number of rules sharing the same jth output term node, and uijm

4
is the complement of the mth

input to the jth output term node at the ith term set in Layer 4.

Layer 3: As with Layer 4, no adjustment is required for link weights in Layer 3. Only the error signals

� 3
ij  are required to be calculated and propagated from the rth rule node in Layer 3 to the jth term node at the

ith term set in Layer 2. Each one of these error signals is a summation of p propagated error signals� 3
ijm  from

Layer 3, where pm ,...,1� , and p is the number of rules which share the same jth term node at the same ith

input term set in Layer 2. Using Equation (15), the error signal � 3
ij  can be calculated as follows:
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From Equations (7) and (6)
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if the jth term node at the ith input term set in Layer 2 is connected to the rule node m in Layer 3; otherwise,
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where N is the number of input term sets and u
3
mi  is the ith input to the rule node m in Layer 3.

Layer 2: Using Equation (5.13) and Equation (5.4), the adaptive rule to tune the weights in Layer 2 is
given by:
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where �
2
 is the learning rate of the link weights in Layer 2. The propagated error from Layer 2 to the ith input

node in Layer 1 is derived as:
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Following the construction phase and the learning phase, an optimally tuned FLS is developed to perform
a specific mapping function. This mapping function may represent a function of a dynamic system or a
control function.

3.2. Bees Algorithm

The bees algorithm is an optimization algorithm inspired by the natural foraging behaviors of honey bees to
find the optimal solution. It belongs to the category of “intelligent” optimization tools as it also simultaneously
evaluates many points in the parameter space and converges towards the global solution and is also based
on the method of minimization of the prediction error. Bees Algorithm requires a number of parameters to
be set, namely: number of scout bees (n), number of sites selected out of n visited sites (m), number of best
sites out of m selected sites (e), number of bees recruited for best e sites (nep), number of bees recruited for
the other (m-e) selected sites (nsp), initial size of patches (ngh) which includes site and its neighbourhoods
and stopping criterion. The procedure for BA can be written as follows:

1. Initialize population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met) - format new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites) and evaluate fitness’s.

6. Select the fittest bee from each patch.

7. Assign remaining bees to search randomly and evaluate their fitness’s.

8. End While

The algorithm starts with the n scout bees being placed randomly in the search space. The fitness’s of
the sites visited by the scout bees are evaluated in step 2. In step 4, bees that have the highest fitness’s are
chosen as “selected bees” and sites visited by them are chosen for neighborhoods search. Then, in steps 5
and 6, the algorithm conducts searches in the neighborhoods of the selected sites, assigning more bees to
search near to the best e sites. The bees can be chosen directly according to the fitness’s associated with the
sites they are visiting. Alternatively, the fitness values are used to determine the probability of the bees
being selected. Searches in the neighborhood of the best e sites which represent more promising solutions
are made more detailed by recruiting more bees to follow them than the other selected bees. Together with
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scouting, this differential recruitment is a key operation of the Bees Algorithm. However, in step 6, for each
patch only the bee with the highest fitness will be selected to form the next bee population. In nature, there is
no such a restriction. This restriction is introduced here to reduce the number of points to be explored. In step
7, the remaining bees in the population are assigned randomly around the search space scouting for new
potential solutions. These steps are repeated until a stopping criterion is met. At the end of each iteration, the
colony will have two parts to its new population – representatives from each selected patch and other scout
bees assigned to conduct random searches (Pham and Castellani 2009; Packianather et al. 2009; Pham 2006).

3.3. PSO

Sedighizadeh and Masehian (Sedighizadeh, and Masehian 2009) developed PSO algorithm simulating the
behaviour of swarms in the nature, such as birds, fish, etc. In PSO, the potential solutions, called particles,
fly through the problem space by following the current optimum particles. PSO has been successfully
applied in many scientific areas and there are many variants of the algorithm. A survey of PSO methods and
applications could be found in (Lalwani et al. 2013). At the beginning, a set (swarm) of random solutions
(particles) is used to initialize PSO algorithm that starts iterations looking for optimal solution. During
every iteration, each particle is updated by two best values. The first one is the personal best pbest that the
particle has achieved so far. The second is the global best gbest obtained by any particle in the swarm. After
finding these two best values, the particle updates its velocity and position according to equations (33) and
(34) respectively.The typical procedure of PSO is shown as follows:

initialize the population randomly.

DO

{

For each particle.

{

Calculate fitness value If the fitness value is better than the best
fitness value (pbest) in history then set current value as the new
pbest.

}

Choose the particle with the best fitness value of all particles as

the gbest.

For each particle.

{

Calculate new velocity:

Vnew= W.Vo1d +C1.R1.(pbest - X) + C2.R2.(gbest-X) (33)

Where W is inertia constant, R1 and R2 are random values and C1 and C2 are constant values and X is
particle position.

Update particle position:

Xnew = Xold + Vnew (34)

}

}

Until termination criterion is met.

The random numbers R1 and R2 are generated uniformly between 0 and 1 and the constants C1 (self-
knowledge factor) and C2 (social-knowledge factor) are usually in the range from 1.5 to 2.5. Finally, the
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inertia factor W can be fixed or varied with a decreasing value as the algorithm proceeds or it may be
restarted as in (Lalwani et al. 2013). A possible solution (particle) is a vector of n elements, where each
element is associated to a given force. Thus, the search space size is mn There are k particles in the swarm
that form swarm (population) size; these particles are initialized randomly.

4. THE FLEXIBLE BEAM SYSTEM

Consider a cantilever beam as a plant model of length L, shown in figure , fixed at one end and free at
another, with a force U(x, t) applied at a distance x  from its fixed (clamped) end at time t, resulting a
deflection y(x, t) of the beam from its stationary (fixed) position at the point where the force has been
applied. The motion of the beam in transverse vibration is, thus, governed by the well known fourth-order
partial differential equation (PDE) (Madkour 2007).

),(
1),(),(

2

2

4

4
2 txU

mt

txy

x

txy
��

�
�

�
�

� (35)

Where µ is a beam constant given by A
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, with �, A, I and E representing the mass density, cross-

sectional area, moment of inertia of the beam and the Young modulus respectively, and m  is the mass of the
beam. The corresponding boundary conditions at the fixed and free ends of the beam are given by
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Note that the model thus utilised incorporates no damping. To construct a suitable platform for test, a
method of obtaining numerical solution of the PDE in equation (35) is required. This can be achieved by
using the finite difference (FD) method. This involves a discrimination of the beam into a finite number of
equal-length sections (segments), each of length �n, and considering the beam motion (deflection) for the
end of each section at equally-spaced time steps of duration Dt. Thus, first-order central FD methods is
used to approximate the partial derivative terms in equations (16) and (17) yields.

m
txUtSYYY jjj

1
),()( 22

11 ����� �� � (37)

where, Y
k
 ( 1 , ,1 ��� jjjk ) is an n×1 matrix representing the deflection of grid-points 1 to n of the beam

at time step k, S is a matrix, given in terms of characteristics of the beam and the discrimination steps �t

and �x, and � � � � 2422 �� ���� xt . Equation (24) is the required relation for the simulation algorithm,
characterising the behaviour of the cantilever beam system, which can be implemented on a digital computer
easily. It has been shown that a necessary and sufficient condition for stability satisfying this convergence
requirement is given by 25.00 2 �� � (Tavakolpour et al. 2009).

5. IMPLEMENTATION AND RESULTS

A cantilever beam in transverse vibration of length L = 0.635 meter, mass m = 0.037 kg, was considered as
plant for investigation. The beam was discretised into 19 small segments. To allow dominant modes of
vibration of the beam to be excited, a step disturbance force (0.1N) of finite duration was applied to a
suitable node of the beam. The input and output samples of the plant was collected from two suitable nodes
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of the beam. Moreover, sample period was selected as 3.0��t ms which is sufficient to cover all the
resonance modes of vibration of the beam (Tavakolpour 2009).

A linear discrete second order model was estimated using the ANFIS, BA and PSO.
1 2

1 2
1 2

1 2

1 ( ) ( )
( ) ( )

1 ( ) ( )

b z b z
Y z U z

a z a z
(38)

Investigations were carried out using Fuzzy Logic Toolbox Version 2.2.4 for ANFIS. The system
identification algorithms were carried out for about 5s (16,700 iterations) using the linear discrete second
order model (equation 38) with grid points 16 and 20 as an input and output samples of the plant respectively
with a set of input output data simulated using equation 37.

BA and PSO are used to estimate the parameters of the model of equation (38). On the other hand,
ANFIS is used to estimate the equivalent model using plant input and corresponding output. Table 1 shows
the summary of the error convergence performances of the algorithms. The error has been calculated based
on the differences between absolute value of the original and the estimated signal. On the other hand, the
execution time of the algorithms was measured for 16,700 iterations. It is noted that error convergences for
all the algorithms are in similar level. It is also noted that PSO perform better as compared to ANFIS and
BA offers the best performance among the three algorithms.

Table 1
Performance evaluation of proposed

Algorithm Error

ANFIS 0.6559

BA 0.6079

PSO 0.6032

Figure 4 shows the time domain performance of ANFIS, BA, and PSO where the solid signal represents
actual output and doted one represents the estimated output of the model. It is observed that a significant
error convergence leads almost overlapping of the two signals in each case. It is also noted that the PSO

Figure 2: Schematic diagram of the cantilever beam system
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offers similar level of performance for error convergence as compared to the other two algorithms.
Corresponding auto-power spectral density is shown in Figure 5, which further demonstrated the similarity
and level of error convergence. As shown in Figure 4, the solid signal in Figure 5 represents actual output
and doted one represents the estimated output of the model.

6. COMPARATIVE ANALYSIS FOR ACTIVE VIBRATION CONTROL PERFORMANCE

This paper presents the experimental results of Active Vibration Control Systems using the various intelligent
algorithms. The results are discussed to demonstrate the capabilities of these algorithms.

6.1. Impact of Identification Algorithms in Control System Design

As discussed earlier, the ANFIS, BA, and PSO algorithms were used to estimate the parameters of the AVC
system based on the input and corresponding output of the plant model, and the system models were
developed based on the input and the cancellation signal required for destructive interference at the control

Figure 4a: Performance evaluation of ANFIS Figure 4b: Performance evaluation of BA

Figure 4a: Performance evaluation of PSO Figure 5a: Performance evaluation of ANFIS in auto-
power spectral density algorithm
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point. It is worth noting that the output signal with 180o phase shift is considered as cancellation signal. The
locations of the input sensor and the output actuator were selected for the best performance based on the
previous investigation as discussed in the system identification section. The AVC system was then tested
and validated through a set of experiments.

6.2. Beam fluctuation at the end point before and after cancellation by AVC using the intelligent
algorithms

Figure 6.1 shows the time domain response at the end point of the beam before and after cancellation.
Corresponding vibration after cancellation using different algorithms are shown in 6(a) ANFIS, (e) BA and
(f) PSO, respectively.

Figure 5b: Performance of BA in auto-power
spectral density

Figure 5a: Performance of PSO in auto-power
spectral density

Figure 6.1a: Beam fluctuation before and after force
cancellation using ANFIS

Figure 6.1b: Beam fluctuation before and after
force cancellation using BA

It is noted in the identification section that PSO offers best convergence among all the algorithms. This,
in turn, helps to identify more accurate controller parameters and results in best performance among all the
algorithms in implementing the AVC system.
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6.3. The overall range of fluctuations for the beam in time domain along the grid points in 2D form

Figure 6.4 demonstrates the overall range of fluctuations for the beam in time domain along the grid points
in 2D form. The dotted line in the Figure depicts the maximum and minimum amplitude of the deflection
along the grid points after cancellation and the solid line depicts the amplitude of deflection of each algorithm
at a random sampling period. It is further evidence that overall performance of the BGA and BA are better
as compared to the other algorithms.

The experimental results and convergence analysis show that the BGA and BA performed consistently
better than the other algorithms. We believe the learning aspect of these two algorithms play a significant
role during the simulation process.

It is noted in the identification section that PSO offers best convergence among all the algorithms. This,
in turn, helps to identify more accurate controller parameters and results in best performance among all the
algorithms in implementing the AVC system.

Figure 6.1c: Beam fluctuation before and after force
cancellation using PSO

Figure 6.2a: Beam fluctuation range after
cancellation using (ANFIS)

Figure 6.2b: Beam fluctuation range after
cancellation using (BA)

Figure 6.2c: Beam fluctuation before and after force
cancellation using PSO
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It is observed that the peak to peak amplitude at the end point before cancellation was +219.50 µm to -
222.94 µm by ANFIS, +239.62 µm to -235.03 µm by BA, +193.06 µm to -199.42 µm by PAO.

6. CONCLUSION

This paper has presented the intelligent system identification of a flexible beam system for adaptive active
vibration control using finite difference (FD) method is used to demonstrate the capabilities of the
identification algorithms. A number of approaches and algorithms for system identification are explored
and evaluated. These identification approaches are traditional Recursive Least Square (RLS) filter, Genetic
Algorithms (GAs), Adaptive Neuro Fuzzy Inference System (ANFIS) model, General Regression Neural
Network (GRNN), Bees Algorithm (BA) and Particle Swarm Optimization, PSO. A plant model for a
flexible beam system was considered to demonstrate the merits of the algorithms. A comparative study of
the heuristic algorithms has been presented and discussed through a set of experiments. PSO outperforms
in terms of system convergence for the same number of iterations.
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