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Abstract. We review a new stochastic integral for adapted and instantly
independent stochastic processes and show that it is well-defined. Then we

prove a unified Itô formula for the new stochastic integral. This general
formula is used to produce several interesting special cases of the Itô formula.
Then we apply these formulas to study exponential processes and stochastic

differential equations involving the new stochastic integral.

1. Introduction

Let B(t), t ≥ 0, be a Brownian motion starting at 0 and {Ft; 0 ≤ a ≤ t ≤ b} a
filtration satisfying the conditions:

(a) B(t) is {Ft}-adapted, i.e., B(t) is Ft-measurable for each t ∈ [a, b];
(b) B(t)−B(s) and Fs are independent for any s ≤ t in [a, b].

An Itô process is a stochastic process Xt of the form:

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b, (1.1)

whereXa is Fa-measurable, f(t) is an {Ft}-adapted stochastic process with almost
all sample paths being in L2([a, b]), and g(t) is an {Ft}-adapted stochastic process
with almost all sample paths being in L1([a, b]). The first integral in Equation
(1.1) is an Itô integral. If in addition f(t) is a continuous stochastic process, then
we have the equality∫ b

a

f(t) dB(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)
(
B(ti)−B(ti−1)

)
, (1.2)

in probability, see e.g., Theorem 5.3.3 in the book [14]. Notice that the evaluation
points are the left endpoints of subintervals.

The stochastic process Xt in Equation (1.1) is often expressed symbolically in
the following form of stochastic differential:

dXt = f(t) dB(t) + g(t) dt, a ≤ t ≤ b,
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with the understanding that the initial condition Xa is Fa-measurable.
Suppose θ is a C2-function on R. The Itô formula states that

θ(Xt) = θ(Xa) +

∫ t

a

θ′(Xs)f(s) dB(s)

+

∫ t

a

(
θ′(Xs)g(s) +

1

2
θ′′(Xs)f(s)

2
)
ds. (1.3)

Hence θ(Xt) is also an Itô process. In terms of stochastic differentials, Equation
(1.3) can be written as

dθ(Xt) = θ′(Xt) dXt +
1

2
θ′′(Xt) (dXt)

2,

where (dXt)
2 is computed by using the following multiplication rule:

(dB(t))2 = dt, dB(t)dt = 0, (dt)2 = 0.

More generally, suppose we have Itô processes

dX
(i)
t = fi(t) dB(t) + gi(t) dt, 1 ≤ i ≤ n.

Let θ(t, x1, . . . , xn) be a continuous function with continuous partial derivatives
θt, θxi

, θxixj
, 1 ≤ i, j ≤ n. Then we have the Itô formula in terms of stochastic

differentials

dθ(t,X
(1)
t , . . . , X

(n)
t )

= θt(t,X
(1)
t , . . . , X

(n)
t ) dt+

n∑
i=1

θxi(t,X
(1)
t , . . . , X

(n)
t ) dX

(i)
t

+
1

2

n∑
i,j=1

θxixj (t,X
(1)
t , . . . , X

(n)
t ) (dX

(i)
t )(dX

(j)
t ). (1.4)

We want to emphasize that there are two crucial conditions in the Itô theory
of stochastic integration:

(i) The integrand f(t) in Equation (1.1) is {Ft}-adapted;
(ii) the evaluation points for f(t) in Equation (1.2) are the left endpoints of

subintervals.

Under these two conditions we have (1) the martingale property of the stochastic

process
∫ t

a
f(s) dB(s), a ≤ t ≤ b, when E

∫ b

a
|f(t)|2 dt < ∞, and (2) the Markov

property of the solution of a stochastic differential equation.

There are many extensions of the Itô integral
∫ b

a
f(t) dB(t) for integrands f(t)

which may not be {Ft}-adapted, see for instance the papers [1, 2, 3, 5, 6, 7, 8,
10, 13, 18, 19, 21, 22, 23, 24, 25]. In particular, we mention an extension by using

white noise analysis. Suppose f(t) is {Ft}-adapted and E
∫ b

a
|f(t)|2 dt < ∞. A

theorem due to Kubo and Takenaka [12] states that∫ b

a

∂∗
t f(t) dt =

∫ b

a

f(t) dB(t), (1.5)

where ∂∗
t is the adjoint of the white noise differentiation operator ∂t, the left-hand

side is a white noise integral, and the right-hand side is the Itô integral of f(t).
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For detail on the white noise integral and the proof of Equation (1.5), see Chapter
13 and Theorem 13.12 in the book [13].

Notice that the white noise integral in the left-hand side of Equation (1.5) can
be defined as a Pettis integral without having to assume that f(t) is {Ft}-adapted.
However, in general

∫ b

a
∂∗
t f(t) dt is a generalized white noise function. When it is

realized as a square integrable random variable, then the integral is an extension
of the Itô integral, namely, we can define the stochastic integral∫ b

a

f(t) dB(t) :=

∫ b

a

∂∗
t f(t) dt. (1.6)

For example, when f(t) = B(1), we have∫ 1

0

B(1) dB(t) :=

∫ 1

0

∂∗
t B(1) dt = B(1)2 − 1.

For the derivation of the last equality, see Example 13.14 in the book [13].
The stochastic integral defined in Equation (1.6) turns out to be the same as

the stochastic integral introduced by Hitsuda [8] in 1972 and by Skorokhod [25] in
1975 with different methods.

In [8] Hitsuda states an extension of the Itô formula which can expressed in
white noise formulation as follows:

θ
(
B(t), B(b)

)
= θ

(
B(a), B(b)

)
+

∫ t

a

∂∗
s

(∂θ

∂x

(
B(s), B(b)

))
ds

+

∫ t

a

(1
2

∂2θ

∂x2

(
B(s), B(b)

)
+

∂2θ

∂x∂y

(
B(s), B(b)

))
ds, a ≤ t ≤ b. (1.7)

For the proof, see Theorem 13.19 in the book [13].
Now, in [1, 2] Ayed and Kuo introduced a new stochastic integral more in

the spirit of the Itô theory of stochastic integration. A stochastic process φ(t)
is called instantly independent of {Ft} if φ(t) and Ft are independent for each
t ∈ [a, b]. Suppose f(t) is an {Ft}-adapted continuous stochastic process and φ(t)
is continuous stochastic process being instantly independent of {Ft}. Then we
define a new stochastic integral as follows:∫ b

a

f(t)φ(t) dB(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)φ(ti)
(
B(ti)−B(ti−1)

)
, (1.8)

provided that the limit in probability exists. Notice that the evaluation points for
φ(t) are the right endpoints of subintervals.

In Section 2 we will provide more information on this new stochastic integral.
In [1] an Itô formula for this anticipating integral was proved:

θ
(
B(t), B(b)

)
= θ

(
B(a), B(b)

)
+

∫ t

a

θx
(
B(s), B(b)

)
dB(s)

+

∫ t

a

(1
2
θxx

(
B(s), B(b)

)
+ θxy

(
B(s), B(b)

))
ds, a ≤ t ≤ b, (1.9)
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which can be written in terms of stochastic differentials as

dθ
(
B(t), B(b)

)
= θx

(
B(t), B(b)

)
dB(t)

+
(1
2
θxx

(
B(t), B(b)

)
+ θxy

(
B(t), B(b)

))
dt.

By comparing Equations (1.7) and (1.9), we expect that our new stochastic integral
and the Hitsuda–Skorokhod integral coincide in the common domain.

The Itô formula in Equation (1.9) has been generalized to several different cases
in [16, 17, 20]. However, the derivations of the Itô formula in various forms in these
papers are somewhat tedious and not so transparent. The main purpose of the
present paper is to give a unified formulation of the Itô formula in Section 3. The
new derivation is rather simple and transparent. We will show that the various
forms of the Itô formula in the previous papers can be easily derived from the
unified formulation as special cases. Moreover, in Section 4 we will give several
applications of the Itô formula.

2. A General Stochastic Integral

First we need to prove a lemma in order to define our new stochastic integral
for general integrands beyond those in Equation (1.8).

Lemma 2.1. Let fi(t), 1 ≤ i ≤ m, gj(t), 1 ≤ j ≤ n, be {Ft}-adapted continuous
stochastic processes and let φi(t), 1 ≤ i ≤ m, ξj(t), 1 ≤ j ≤ n, be continuous
stochastic processes being instantly independent of {Ft}. Suppose the stochastic

integrals
∫ b

a
fi(t)φi(t) dB(t) and

∫ b

a
gj(t)ξj(t) dB(t) exist for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Assume that
m∑
i=1

fi(t)φi(t) =

n∑
j=1

gj(t)ξj(t), a ≤ t ≤ b.

Then the following equality holds:
m∑
i=1

∫ b

a

fi(t)φi(t) dB(t) =

n∑
j=1

∫ b

a

gj(t)ξj(t) dB(t). (2.1)

Remark 2.2. When f(t)φ(t) = g(t)ξ(t) (for Case 1 in the proof below), we do

not need to assume the existence of the stochastic integrals
∫ b

a
f(t)φ(t) dB(t) and∫ b

a
g(t)ξ(t) dB(t). Equation (2.1) for this case is understood to mean that if one

side of the equality exists, then the other side also exists and the equality holds.

Proof. We divide the proof into several cases:

Case 1. m = n = 1.

We suppress the indices so that f(t)φ(t) = g(t)ξ(t), a ≤ t ≤ b. For the sake of
technical simplicity, we assume that f(t), g(t), φ(t), and ξ(t) do not take the value
0. Then we have

f(t)

g(t)
=

ξ(t)

φ(t)
.

Note that the left-hand side is {Ft}-adapted and the right-hand side is instantly
independent of {Ft}. But it is easy to see that if an {Ft}-adapted stochastic
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process is instantly independent of {Ft}, then it must be a deterministic function.
Hence there is a continuous function a(t) on [a, b] such that

f(t)

g(t)
=

ξ(t)

φ(t)
= a(t),

and so

f(t) = a(t)g(t), φ(t) =
1

a(t)
ξ(t).

Therefore∫ b

a

f(t)φ(t) dB(t) ≈
n∑

i=1

f(ti−1)φ(ti)
(
B(ti)−B(ti−1)

)
≈

n∑
i=1

[
a(ti−1)g(ti−1)

][ 1

a(ti)
ξ(ti)

](
B(ti)−B(ti−1)

)
≈

n∑
i=1

g(ti−1)ξ(ti)
(
B(ti)−B(ti−1)

)
≈

∫ b

a

g(t)ξ(t) dB(t),

which is Equation (2.1) for this case.

Case 2. m = 1, n = 2.

In this case, we have the following assumption

f(t)φ(t) = g1(t)ξ1(t) + g2(t)ξ2(t). (2.2)

Let a(t) = Eφ(t), b1(t) = Eξ1(t), b2(t) = Eξ2(t). For technical simplicity, we as-
sume that the functions a(t), b1(t), b2(t) do not vanish. Then by taking conditional
expectation of Equation (2.2) with respect to {Ft}, we get

f(t)a(t) = g1(t)b1(t) + g2(t)b2(t).

Let ã(t) = a(t)/b2(t), b̃1(t) = b1(t)/b2(t). Then we have

g2(t) = f(t)ã(t)− g1(t)̃b1(t). (2.3)

Put g2(t) in Equation (2.3) into Equation (2.2) to get

f(t)
[
φ(t)− ã(t)ξ2(t)

]
= g1(t)

[
ξ1(t)− b̃1(t)ξ2(t)

]
. (2.4)

By Remark 2.2, we can apply Case 1. Hence∫ b

a

f(t)
[
φ(t)− ã(t)ξ2(t)

]
dB(t) =

∫ b

a

g1(t)
[
ξ1(t)− b̃1(t)ξ2(t)

]
dB(t), (2.5)

But we can use the definition in Equation (1.8) to see that∫ b

a

f(t)
[
φ(t)− ã(t)ξ2(t)

]
dB(t)

=

∫ b

a

f(t)φ(t) dB(t)−
∫ b

a

f(t)ã(t)ξ2(t) dB(t) (2.6)

and
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a

g1(t)
[
ξ1(t)− b̃1(t)ξ2(t)

]
dB(t)

=

∫ b

a

g1(t)ξ1(t) dB(t)−
∫ b

a

g1(t)̃b1(t)ξ2(t) dB(t) (2.7)

It follows from Equations (2.3), (2.5), (2.6), and (2.7) that∫ b

a

f(t)φ(t) dB(t)

=

∫ b

a

g1(t)ξ1(t) dB(t) +

∫ b

a

[
f(t)ã(t)− g1(t)̃b1(t)

]
ξ2(t) dB(t)

=

∫ b

a

g1(t)ξ1(t) dB(t) +

∫ b

a

g2(t)ξ2(t) dB(t),

which is Equation (2.1) for this case.

Case 3. m = 1, n ≥ 3.

In this case, we have

f(t)φ(t) =
n∑

i=1

gi(t)ξi(t).

Then similar to Equation (2.3) we have

gn(t) = f(t)ã(t)−
n−1∑
i=1

gi(t)̃bi(t),

where ã(t) = Eφ(t)/Eξn(t) and b̃i(t) = Eξi(t)/Eξn(t), 1 ≤ i ≤ n − 1. Then,
similar to Equation (2.4), we have

f(t)
[
φ(t)− ã(t)ξn(t)

]
=

n−1∑
i=1

gi(t)
[
ξi(t)− b̃i(t)ξn(t)

]
.

Thus the {1 : n}-situation has been reduced to the {1 : (n− 1)}-situation. Hence
we can use the same arguments as those in Case 2 and the induction to prove
Equation (2.1) for this case.

Case 4. m ≥ 2, n ≥ 1.

In this case we have
m∑
i=1

fi(t)φi(t) =
n∑

j=1

gj(t)ξj(t)

which can be rewritten as

f1(t)φ1(t) =
n∑

j=1

gj(t)ξj(t)−
m∑
i=2

fi(t)φi(t).

Thus the {m : n}-situation becomes the {1 : (n + m − 1)}-situation. Then we
simply apply Case 3 to derive Equation (2.1) for this case. □
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Now, suppose Φ(t) is a stochastic process of the following form

Φ(t) =
m∑
i=1

fi(t)φi(t), a ≤ t ≤ b, (2.8)

where fi(t)’s are {Ft}-adapted continuous stochastic processes and φi(t)’s are
continuous stochastic processes being instantly independent of {Ft}. Define the
stochastic integral of Φ(t) by∫ b

a

Φ(t) dB(t) =
m∑
i=1

∫ b

a

fi(t)φi(t) dB(t), (2.9)

where each one of the integral in the right-hand side is defined by Equation (1.8).

By Lemma 2.1 the stochastic integral
∫ b

a
Φ(t) dB(t) is well-defined.

Definition 2.3. Suppose Φ(t), a ≤ t ≤ b, is a stochastic process and there exists a
sequence {Φn(t)}∞n=1 of stochastic processes of the form in Equation (2.8) satisfying
the conditions:

(a)
∫ b

a
|Φ(t)− Φn(t)|2 dt −→ 0 almost surely.

(b)
∫ b

a
Φn(t) dB(t) converges in probability.

Then the stochastic integral of Φ(t) is defined by∫ b

a

Φ(t) dB(t) = lim
n→∞

∫ b

a

Φn(t) dB(t), in probability. (2.10)

We give two examples to demonstrate the crucial ideas of this new stochastic
integral, namely, taking the left endpoints of subintervals as the evaluation points
for the Itô part (meaning adapted) and the right endpoints of subintervals as the
evaluation points for the counter part (meaning instantly independent).

Example 2.4. It is shown in [1] that∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1. (2.11)

Here we give a simple and transparent proof of this equality. The integrand B(1)
has the following decomposition

B(1) = B(t) +
(
B(1)−B(t)

)
,

where the first term B(t) is the Itô part and the second term B(1) − B(t) is the
counterpart of B(1). By using Lemma 2.1 and Equation (1.8), we see that∫ t

0

B(1) dB(s) = lim
n→∞

n∑
i=1

[
B(si−1) +

(
B(1)−B(si)

)](
B(si)−B(si−1)

)
= lim

n→∞

n∑
i=1

[
B(1)−

(
B(si)−B(si−1)

)](
B(si)−B(si−1)

)
= lim

n→∞

[
B(1)

n∑
i=1

(
B(si)−B(si−1)

)
−

n∑
i=1

(
B(si)−B(si−1)

)2]
= B(1)B(t)− t,
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where in the last equality we have used the quadratic variation of the Brownian
motion B(t).

Example 2.5. Let us compute the stochastic integral
∫ 1

0

( ∫ 1

0
B(s) ds

)
dB(t). First

we derive a decomposition of the random variable
∫ 1

0
B(s) ds in terms of the Itô

part and the conterpart. By the Itô formula, we have

d(tB(t)) = B(t) dt+ t dB(t),

which yields that ∫ 1

0

B(s) ds = B(1)−
∫ 1

0

s dB(s). (2.12)

Note that for any 0 ≤ t ≤ 1,

B(1) = B(t) +
(
B(1)−B(t)

)
,∫ 1

0

s dB(s) =

∫ t

0

s dB(s) +

∫ 1

t

s dB(s).

Therefore, we obtain the decomposition∫ 1

0

B(s) ds =
(
B(t)−

∫ t

0

s dB(s)
)
+
(
B(1)−B(t)−

∫ 1

t

s dB(s)
)
, (2.13)

where the first term is the Itô part and the second term is the counterpart. For
simplicity, let ∆Bi = B(ti)−B(ti−1). Then by using Equation (2.13) we have∫ 1

0

(∫ 1

0

B(s) ds
)
dB(t)

= lim
n→∞

n∑
i=1

[(
B(ti−1)−

∫ ti−1

0

s dB(s)
)
+
(
B(1)−B(ti)−

∫ 1

ti

s dB(s)
)]

∆Bi

= lim
n→∞

n∑
i=1

[
B(1)−

(
B(ti)−B(ti−1)

)
−
(∫ 1

0

s dB(s)−
∫ ti

ti−1

s dB(s)
)]

∆Bi

= B(1)2 − 1−B(1)

∫ 1

0

s dB(s) + lim
n→∞

n∑
i=1

(∫ ti

ti−1

s dB(s)
)
∆Bi

= B(1)

∫ 1

0

B(s) ds− 1 + lim
n→∞

n∑
i=1

(∫ ti

ti−1

s dB(s)
)
∆Bi, (2.14)

where in the last equality we have used the fact that
∫ 1

0
s dB(s) = B(1)−

∫ 1

0
B(s) ds

from Equation (2.12). Then we use the fact that (∆Bi)
2 ≈ ∆ti to show that

lim
n→∞

n∑
i=1

(∫ ti

ti−1

s dB(s)
)
∆Bi = lim

n→∞

n∑
i=1

ti−1(∆Bi)
2

= lim
n→∞

n∑
i=1

ti−1∆ti =

∫ 1

0

t dt =
1

2
. (2.15)
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Upon putting Equation (2.15) into Equation (2.14), we obtain the value of the
stochastic integral∫ 1

0

(∫ 1

0

B(s) ds
)
dB(t) = B(1)

∫ 1

0

B(s) ds− 1

2
. (2.16)

Next, we consider the multiple Wiener–Itô integral introduced by Itô [9] in
1951. It is related to an iterated stochastic integral by the following theorem. For
a simple proof, see the book [14].

Theorem 2.6. For f ∈ L2([a, b]n), we have the equality∫
[a,b]n

f(t1, t2, . . . , tn) dB(t1)dB(t1) · · · dB(tn)

= n!

∫ b

a

· · ·
∫ tn−2

a

[ ∫ tn−1

a

f̂(t1, . . . , tn−1, tn) dB(tn)
]
dB(tn−1) · · · dB(t1).

where f̂ is the symmetrization of f .

Observe that the iterated integral over the restriced region in the right-hand
side is to make sure that in each step the integrand is adapted so that an Itô
integral is defined. However, for our new stochasic integral, there is no need to
restrict the region since in each step the integral is defined as our new stochastic
integral. The next theorem is proved in [2].

Theorem 2.7. Let f ∈ L2([a, b]n). Then∫
[a,b]n

f(t1, t2, . . . , tn) dB(t1)dB(t1) · · · dB(tn)

=

∫ b

a

· · ·
∫ b

a

[ ∫ b

a

f(t1, . . . , tn−1, tn) dB(tn)
]
dB(tn−1) · · · dB(t1).

From this theorem we see that we can compute a multiple Wiener–Itô integral
as an iterated stochastic integral just like ordinary calculus. In fact, let us consider
another example and see what we can conclude further.

Example 2.8. What is the value of the iterated integral
∫ 1

0

( ∫ 1

0
B(s) dB(t)

)
ds?

For the first stochastic integral we have∫ 1

0

B(s) dB(t) =

∫ s

0

B(s) dB(t) +

∫ 1

s

B(s) dB(t). (2.17)

Replace 1 by b in Equation (2.11), which can be easily seen to be valid, interchange
s and t, and then put b = s to get∫ s

0

B(s) dB(t) = B(s)2 − s. 0 ≤ s ≤ 1. (2.18)

On the other hand, we have∫ 1

s

B(s) dB(t) = B(s)

∫ 1

s

dB(t) = B(s)
(
B(1)−B(s)

)
. (2.19)
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Put Equations (2.18) and (2.19) into Equation (2.17) to obtain∫ 1

0

B(s) dB(t) = B(1)B(s)− s,

which, upon integrationg in s, yields immediately the equality∫ 1

0

(∫ 1

0

B(s) dB(t)
)
ds = B(1)

∫ 1

0

B(s) ds− 1

2
. (2.20)

Remark 2.9. Observe that from Equations (2.16) and (2.20) we can deduce the
following equality:∫ 1

0

(∫ 1

0

B(s) ds
)
dB(t) =

∫ 1

0

(∫ 1

0

B(s) dB(t)
)
ds,

i.e., we can change the order of integration! Thus we can define double stochastic
integrals with respect to dB(t) and ds in terms of iterated integrals. In fact, we
will use the Itô formula in Section 3 to give more examples for multiple stochastic
integrals with respect to dB(t1), dB(t2), . . . , dB(tn), and ds.

3. A General Itô Formula

The formula in Equation (1.9) is not a general form of the Itô formula for the
new stochastic integral. In fact, the formulation is somewhat misleading since it
seems to indicate that there are other forms of the Itô formula. Note that the
anticipating part B(b) in the function θ

(
B(t), B(b)

)
has the decomposition

B(b) = B(t) +
(
B(b)−B(t)

)
, (3.1)

with the Itô part B(t) and the counterpart B(b)−B(t) which we need to take care
of separately in order to obtain a general Itô formula.

A filtration {Ft; a ≤ t ≤ b} is fixed. Adaptedness and instantly independence
will be understood to be with respect to this filtration. Being motivated by the
decomposition of an anticipating stochastic process into a function of an Itô part
and a counterpart such as B(b) in Equation (3.1), we consider the following two
stochastic processes

Xt = Xa +

∫ t

a

g(s) dB(s) +

∫ t

a

h(s) ds (3.2)

Y (t) = Y (a) +

∫ b

t

ξ(s) dB(s) +

∫ b

t

η(s) ds, (3.3)

where g(t) and h(t) are adapted so that Xt is an Itô process, and ξ(t) and η(t)
are instantly independent such that Y (t) is also instantly independent. Thus Y (t)

is a stochastic process in the counterpart. For clarity, we use sub-t and sup-(t) to

denote integrals
∫ t

a
and

∫ b

t
, respectively.



A GENERAL ITÔ FORMULA 351

Let θ(x, y) be a real-valued C2-function on R2 so that we have the estimate

θ(x, y) ≈ θ(x0, y0) + θx(x0, y0)(x− x0) + θy(x0, y0)(y − y0)

+
1

2
θxx(x0, y0)(x− x0)

2 +
1

2
θyy(x0, y0)(y − y0)

2

+ θxy(x0, y0)(x− x0)(y − y0). (3.4)

We will informally derive the stochastic differential dθ(Xt, Y
(t)). The evaluation

points for Xt and Y (t) in a new stochastic integrand will be the left endpoints and
the right endpoints, respectively, of subintervals in a partition.

For any partition {a = t0, t1, . . . , tn = t} of the interval [a, t], we have

θ(Xt, Y
(t)) = θ(Xa, Y

(a)) +

n∑
i=1

[
θ(Xti , Y

(ti))− θ(Xti−1 , Y
(ti−1))

]
(3.5)

Then for each i = 1, 2, . . . , n, we use Equation (3.4) to get

θ(Xti , Y
(ti))− θ(Xti−1 , Y

(ti−1))

≈ θx(Xti−1 , Y
(ti−1))(Xti −Xti−1) + θy(Xti−1 , Y

(ti−1))(Y (ti) − Y (ti−1))

+
1

2
θxx(Xti−1 , Y

(ti−1))(Xti −Xti−1)
2

+
1

2
θyy(Xti−1 , Y

(ti−1))(Y (ti) − Y (ti−1))2

+ θxy(Xti−1 , Y
(ti−1))(Xti −Xti−1)(Y

(ti) − Y (ti−1))

= Ii + IIi + IIIi + IVi +Vi, (3.6)

where Ii, IIi, IIIi, IVi, and Vi are defined term by term in the corresponding order,
respectively.

Now, we take care of summations of these terms over i. For the first term in
Equation (3.6), we have

n∑
i=1

Ii =

n∑
i=1

θx(Xti−1 , Y
(ti−1))(Xti −Xti−1)

≈
n∑

i=1

{
θx(Xti−1 , Y

(ti)) + θxy(Xti−1 , Y
(ti))(Y (ti−1) − Y (ti))

}
(Xti −Xti−1)

→
∫ t

a

θx(Xs, Y
(s)) dXs −

∫ t

a

θxy(Xs, Y
(s)) (dXs)(dY

(s)). (3.7)
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For the second term in Equation (3.6), we have

n∑
i=1

IIi =

n∑
i=1

θy(Xti−1 , Y
(ti−1))(Y (ti) − Y (ti−1))

≈
n∑

i=1

{
θy(Xti−1 , Y

(ti)) + θyy(Xti−1 , Y
(ti))(Y (ti−1) − Y (ti))

}
(Y (ti) − Y (ti−1))

→
∫ t

a

θy(Xs, Y
(s)) dY (s) −

∫ t

a

θyy(Xs, Y
(s)) (dY (s))2. (3.8)

For the third term in Equation (3.6), we have

n∑
i=1

IIIi =
1

2

n∑
i=1

θxx(Xti−1 , Y
(ti−1))(Xti −Xti−1)

2

→ 1

2

∫ t

a

θxx(Xs, Y
(s)) (dXs)

2. (3.9)

Note that we do not have to change θxx(Xti−1 , Y
(ti−1)) to θxx(Xti−1 , Y

(ti)) since
the integrator (dXs)

2 = g(s)2 ds from Equation (3.2). Similarly, for the fourth
term in Equation (3.6), we have

n∑
i=1

IVi =
1

2

n∑
i=1

θyy(Xti−1 , Y
(ti−1))(Y (ti) − Y (ti−1))2

→ 1

2

∫ t

a

θyy(Xs, Y
(s))

(
dY (s)

)2
. (3.10)

For the last term in Equation (3.6), we have

n∑
i=1

Vi =
n∑

i=1

θxy(Xti−1 , Y
(ti−1))(Xti −Xti−1)(Y

(ti) − Y (ti−1))

→
∫ t

a

θxy(Xs, Y
(s)) (dXs)(dY

(s)). (3.11)

Observe the following two facts from Equations (3.7) to (3.11):

(1) The terms with θxy in Equations (3.7) and (3.11) cancel out! This is due
to the nature of our new stochastic integral.

(2) The coefficients of the integrals of θyy in Equations (3.8) and (3.10) add
up to −1

2 .

Finally, we sum up Equations (3.7) to (3.11) to get the stochastic differential
of θ(Xt, Y

(t)):

dθ(Xt, Y
(t)) = θx(Xt, Y

(t)) dXt +
1

2
θxx(Xt, Y

(t)) (dXt)
2

+ θy(Xt, Y
(t)) dY (t) − 1

2
θyy(Xt, Y

(t)) (dY (t))2.

Thus we have derived a general Itô formula in the next theorem.



A GENERAL ITÔ FORMULA 353

Theorem 3.1. Let Xt, a ≤ t ≤ b, be an Itô process given by Equation (3.2) and
Y (t), a ≤ t ≤ b, an instantly independent process given by Equation (3.3). Suppose
θ(x, y) is a real-valued C2-function on R2. Then the following equality holds for
a ≤ t ≤ b:

θ(Xt, Y
(t)) = θ(Xa, Y

(a)) +

∫ t

a

θx(Xs, Y
(s)) dXs +

1

2

∫ t

a

θxx(Xs, Y
(s)) (dXs)

2

+

∫ t

a

θy(Xs, Y
(s)) dY (s) − 1

2

∫ t

a

θyy(Xs, Y
(s)) (dY (s))2,

which can be expressed symbolically in terms of stochastic differentials as

dθ(Xt, Y
(t)) = θx dXt +

1

2
θxx (dXt)

2 + θy dY
(t) − 1

2
θyy (dY

(t))2.

From the derivation of Theorem 3.1, we can easily obtain the Itô formula for
multiple stochastic processes in the next theorem.

Theorem 3.2. Let X
(i)
t , 1 ≤ i ≤ n, and Y

(t)
j , 1 ≤ j ≤ m, be stochastic processes of

the form given by Equation (3.2) and (3.3), respectively. Suppose θ(t, x1, . . . , xn,
y1, . . . , ym) is a real-valued function being C1 in t and C2 in xi’s and yj’s. Then

the stochastic differential of θ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y

(t)
m ) is given by

dθ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y (t)

m )

= θt dt+
n∑

i=1

θxi dX
(i)
t +

1

2

n∑
i,j=1

θxixj (dX
(i)
t )(dX

(j)
t )

+
m∑

k=1

θyk
dY

(t)
k − 1

2

m∑
k,ℓ=1

θykyℓ
(dY

(t)
k )(dY

(t)
ℓ ). (3.12)

Remark 3.3. Let Xt and Yt be Itô processes of the form in Equation (3.2) and
X(t) and Y (t) instantly independent processes of the form in Equation (3.3). Then
we have the following product rules :

d(XtYt) = Yt dXt +Xt dYt + (dXt)(dYt),

d(XtY
(t)) = Y (t) dXt +Xt dY

(t),

d(X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t) − (dX(t))(dY (t)).

Example 3.4. We use Theorem 3.2 to derive dθ(B(t), B(b)), a ≤ t ≤ b. Note
that we have the decomposition of B(b) as

B(b) = B(t) +
(
B(b)−B(t)

)
. (3.13)

Let Xt = B(t), Y (t) = B(b)−B(t), and f(x, y) = θ(x, x+ y). Then we have

fx = θ1 + θ2, fxx = θ11 + 2θ12 + θ22, fy = θ2, fyy = θ22,
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where we have used sub-numbers to denote the partial derivatives of θ to avoid
confusing. Apply Theorem 3.2 to Xt, Y

(t), and the function f(x, y) to get

df(Xt, Y
(t)) = fx dXt +

1

2
fxx (dXt)

2 + fy dY
(t) − 1

2
fyy (dY

(t))2

= (θ1 + θ2) dB(t) +
1

2
(θ11 + 2θ12 + θ22) dt− θ2 dB(t)− 1

2
θ22 dt

= θ1 dB(t) +
(1
2
θ11 + θ12

)
dt.

But f(Xt, Y
(t)) = θ(B(t), B(b)). Hence we have the stochastic differential of

θ(B(t), B(b)) given by

dθ(B(t), B(b)) = θx dB(t) +
(1
2
θxx + θxy

)
dt,

where we have changed θ1 to θx, etc. This equality is the Itô formula in Equation
(1.9) in terms of stochastic differentials. Hence the Itô formula in [1] can be derived
from Theorem 3.2.

Example 3.5. Consider the stochastic process θ
(
B(t),

∫ 1

0
B(s) ds

)
, 0 ≤ t ≤ 1. We

can apply Theorem 3.2 to find its stochastic differential. Let X
(1)
t = B(t). By

Equation (2.13) we have the following decomposition:∫ 1

0

B(s) ds = X
(2)
t + Y (t), (3.14)

where X
(2)
t and Y (t) are defined by

X
(2)
t = B(t)−

∫ t

0

s dB(s), Y (t) = B(1)−B(t)−
∫ 1

t

s dB(s).

Then we have the stochastic differentials

dX
(1)
t = dB(t), dX

(2)
t = (1− t) dB(t), dY (t) = (t− 1) dB(t).

Define a function f(x1, x2, y) = θ(x1, x2 + y). Then we have

fx1 = θ1, fx1x1 = θ11, fx2 = θ2, fx2x2 = θ22,

fx1x2 = θ12, fy = θ2, fyy = θ22.

Apply Theorem 3.2 to X
(1)
t , X

(2)
t , Y (t), and the function f(x1, x2, y) to get

df(X
(1)
t , X

(2)
t , Y (t)) = fx1 dX

(1)
t +

1

2
fx1x1 (dX

(1)
t )2 + fx2 dX

(2)
t

+
1

2
fx2x2 (dX

(2)
t )2 + fx1x2 (dX

(1)
t )(dX

(2)
t )

+ fy dY
(t) − 1

2
fyy (dY

(t))2. (3.15)

Then use the above stochastic differentials and partical derivatives to simplify
Equation (3.15) to

df(X
(1)
t , X

(2)
t , Y (t)) = θ1 dB(t) +

(1
2
θ11 + (1− t)θ12

)
dt.
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But f(X
(1)
t , X

(2)
t , Y (t)) = θ

(
B(t),

∫ 1

0
B(s) ds

)
. Hence we have proved the equality:

dθ
(
B(t),

∫ 1

0

B(s) ds
)
= θx dB(t) +

(1
2
θxx + (1− t)θxy

)
dt. (3.16)

Here we have changed notation for partial derivatives because now there is no
confusion. In particular, let us take the function θ(x, y) = xy. Then Equation
(3.16) becomes

d
(
B(t)

∫ 1

0

B(s) ds
)
=

(∫ 1

0

B(s) ds
)
dB(t) + (1− t) dt.

Upon integrating from 0 to 1, we obtain

B(1)

∫ 1

0

B(s) ds =

∫ 1

0

(∫ 1

0

B(s) ds
)
dB(t) +

∫ 1

0

(1− t) dt

so that we have the equality∫ 1

0

(∫ 1

0

B(s) ds
)
dB(t) = B(1)

∫ 1

0

B(s) ds− 1

2
.

Thus we have another way to derive the equality in Equation (2.16).

Examples 3.4 and 3.5 lead to the following more general situation. Suppose a
random variable ζ can be decomposed as

ζ = ζt + ζ(t), ∀ a ≤ t ≤ b, (3.17)

where ζt is an Itô process of the form given by Equation (3.2) and ζ(t) an instantly
independent process of the form given by Equation (3.3). For examples, B(b) can

be decomposed as in Equation (3.13) and
∫ 1

0
B(s) ds as in Equation (3.14).

Suppose Φ(x) and θ(x, y) are C2-functions on R and R2, respectively. Let Xt

be an Itô process. We want to derive the stochastic differential of θ
(
Xt,Φ(ζ)

)
.

Use the decomposition of ζ in Equation (3.17) to rewrite

θ
(
Xt,Φ(ζ)

)
= θ

(
Xt,Φ(ζt + ζ(t))

)
.

In order to apply Theorem 3.2, we let X
(1)
t = Xt, X

(2)
t = ζt, Y

(t) = ζ(t) and define
a function

f(x1, x2, y) = θ
(
x1,Φ(x2 + y)

)
.

Then we have the following partial derivatives:

fx1 = θ1, fx1x1 = θ11, fx2 = θ2Φ
′, fx2x2 = θ22(Φ

′)2 + θ2Φ
′′,

fx1x2 = θ12Φ
′, fy = θ2Φ

′, fyy = θ22(Φ
′)2 + θ2Φ

′′.

Therefore, by Theorem 3.2 we have

df(Xt, ζt, ζ
(t)) = fx1 dXt +

1

2
fx1x1 (dXt)

2

+ fx2 dζt +
1

2
fx2x2 (dζt)

2 + fx1x2 (dXt)(dζt)

+ fy dζ
(t) − 1

2
fyy (dζ

(t))2. (3.18)
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Note that the random variable ζ does not depend on t. Hence we have dζ(t) = −dζt.
Use this fact and the above relationships on the partial derivatives to simplify
Equation (3.18) to

df(Xt, ζt, ζ
(t)) = θ1 dXt +

1

2
θ11 (dXt)

2 + θ12Φ
′(ζ) (dXt)(dζt).

Recall that f(Xt, ζt, ζ
(t)) = θ

(
Xt,Φ(ζ)

)
. Hence we have derived the stochastic

differential of θ
(
Xt,Φ(ζ)

)
.

Similarly, we can also derive the stochastic differential of θ
(
Y (t),Φ(ζ)

)
. We sum

up the above discussion as the next theorem.

Theorem 3.6. Suppose ζ is a random variable such that ζ = ζt + ζ(t) for all
a ≤ t ≤ b with ζt being an Itô process and ζ(t) an instantly independent process.
Assume that Φ(x) is a C1-function and θ(x, y) a C2-function. Then we have

dθ
(
Xt,Φ(ζ)

)
= θx dXt +

1

2
θxx (dXt)

2 + θxyΦ
′(ζ) (dXt)(dζt),

dθ
(
Y (t),Φ(ζ)

)
= θx dY

(t) − 1

2
θxx (dY

(t))2 − θxyΦ
′(ζ) (dY (t))(dζ(t)).

In particular, when Φ(x) = x, we have the formulas:

dθ(Xt, ζ) = θx dXt +
1

2
θxx (dXt)

2 + θxy (dXt)(dζt),

dθ(Y (t), ζ) = θx dY
(t) − 1

2
θxx (dY

(t))2 − θxy (dY
(t))(dζ(t)).

We can also consider the case when a random variable η is a product η = ηt η
(t)

for all t ∈ [a, b] with ηt being an Itô process and η(t) an instantly independent
process. For example

eB(1) = eB(t) eB(1)−B(t), 0 ≤ t ≤ 1.

By applying Theorem 3.2 we can easily obtain the next theorem.

Theorem 3.7. Let η be a random variable such that η = ηt η
(t) for all a ≤ t ≤ b

with ηt being an Itô process and η(t) an instantly independent process. Suppose
Ψ(x) is a C1-function and θ(x, y) a C2-function. Then we have

dθ
(
Xt,Ψ(η)

)
= θx dXt +

1

2
θxx (dXt)

2 + θxyΨ
′(η)η(t) (dXt)(dηt),

dθ
(
Y (t),Ψ(η)

)
= θx dY

(t) − 1

2
θxx (dY

(t))2 − θxyΨ
′(η)ηt (dY

(t))(dζ(t)).

For the special case Φ(x) = x, we have

dθ(Xt, η) = θx dXt +
1

2
θxx (dXt)

2 + θxyη
(t) (dXt)(dζt),

dθ(Y (t), η) = θx dY
(t) − 1

2
θxx (dY

(t))2 − θxyηt (dY
(t))(dη(t)).
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4. Some Applications

In this section we use the Itô formula to study exponential processes. First we
solve the following stochastic differential equation{

dE(t) = B(1)E(t) dB(t), 0 ≤ t ≤ 1,

E(0) = 1.
(4.1)

Being motivated by the solution of a linear stochastic differential equation in the
Itô theory (see, e.g., Section 11.1 in the book [13]), we try a stochastic process of
the form:

E(t) = exp

[
B(1)f(t)

∫ t

0

1

f(s)
dB(s)− 1

2
B(1)2f(t)2

∫ t

0

1

f(s)2
ds− g(t)

]
, (4.2)

where f(t) and g(t) are deterministic functions to be determined so that E(t) is
a solution of Equation (4.1). Note that g(0) = 0 in order for E(t) to satisfy the
initial condition E(0) = 1.

Apply Theorem 3.6 (with an obvious addition of the t-variable) to the stochastic

process Xt =
∫ t

0
1

f(s) dB(s),Φ(x) = x, η = B(1) and the following function

θ(t, x, y) = exp

[
yf(t)x− 1

2
y2f(t)2

∫ t

0

1

f(s)2
ds− g(t)

]
.

Then we have E(t) = θ(t,Xt, B(1)) with the stochastic differential given by

dE(t) = B(1)E(t) dB(t)

+ E(t)
{
1− g′(t) +

(
f(t) + f ′(t)

)[
B(1)Xt − f(t)2B(1)2

∫ t

0

1

f(s)2
ds

]}
dt.

Hence in order for E(t) to be a solution of Equation (4.1) we must have

g′(t) = 1, f(t) + f ′(t) = 0,

which yields g(t) = t since g(0) = 0 and f(t) = ce−t for some constant c. Put
these two functions into Equation (4.2) to produce

E(t) = exp

[
B(1)

∫ t

0

e−(t−s) dB(s)− 1

4
B(1)2

(
1− e−2t

)
− t

]
.

Thus E(t) is a solution of Equation (4.1) with E(0) = 1. On the other hand, the
uniqueness of a solution is obvious. We state this fact as a theorem.

Theorem 4.1. The stochastic process

E(t) = exp

[
B(1)

∫ t

0

e−(t−s) dB(s)− 1

4
B(1)2

(
1− e−2t

)
− t

]
is the solution of the stochastic differential equation{

dE(t) = B(1)E(t) dB(t), 0 ≤ t ≤ 1.

E(0) = 1.

Remark 4.2. This stochastic differential equation was first studied by Buckdahn
[3] by a different method. The white noise version is a special case of Theorem
13.34 in the book [13].
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Now, consider general exponential processes arising from the Itô part and the
counter part. Let Xt be an Itô process

Xt =

∫ t

a

g(s) dB(s)− 1

2

∫ t

a

g(s)2 ds, a ≤ t ≤ b.

On the other hand, suppose h(t) is an instantly independent process such that

E
∫ b

a
|h(t)|2 dt < ∞. Assume that the stochastic process

Y (t) = −
∫ b

t

h(s) dB(s)− 1

2

∫ b

t

h(s)2 ds, a ≤ t ≤ b,

is also instantly independent. Define an exponential process E(t) associated with
g(t) and h(t) by

E(t) = eXt eY
(t)

, a ≤ t ≤ b. (4.3)

Apply Theorem 3.2 to the above stochastic processes Xt and Y (t) and the function
θ(x, y) = ex ey. Then we get

dθ(Xt, y
(t)) =

(
g(t) + h(t)

)
θ(Xt, y

(t)) dB(t).

But θ(Xt, y
(t)) = E(t). Hence we have

dE(t) =
(
g(t) + h(t)

)
E(t) dB(t).

Thus we have proved the next theorem.

Theorem 4.3. Let g(t) be an adapted stochastic process with E
∫ b

a
|g(t)|2 dt < ∞

and let h(t) be an instantly independent process such that E
∫ b

a
|h(t)|2 dt < ∞ and∫ b

t
h(s) dB(s) is instantly independent. Then the exponential process

E(t) = exp

[ ∫ t

a

g(s) dB(s)− 1

2

∫ t

a

g(s)2 ds−
∫ b

t

h(s) dB(s)− 1

2

∫ b

t

h(s)2 ds

]
satisfies the stochastic differential equation

dE(t) =
(
g(t) + h(t)

)
E(t) dB(t).

Remark 4.4. Note that the values of E(t) at a and b are given by

E(a) = exp

[
−
∫ b

a

h(s) dB(s)− 1

2

∫ b

a

h(s)2 ds

]
E(b) = exp

[ ∫ b

a

g(s) dB(s)− 1

2

∫ b

a

g(s)2 ds

]
.

We have two special cases:

(1) When h = 0, the exponential process

E(t) = exp

[ ∫ t

a

g(s) dB(s)− 1

2

∫ t

a

g(s)2 ds

]
is the one in the Itô theory solving the equation:{

dE(t) = g(t)E(t) dB(t), a ≤ t ≤ b.

E(a) = 1.
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(2) When g = 0, we have the exponential process

E(t) = exp

[
−
∫ b

t

h(s) dB(s)− 1

2

∫ b

t

h(s)2 ds

]
,

which solves the backward stochastic differential equation:{
dE(t) = h(t)E(t) dB(t), a ≤ t ≤ b.

E(b) = 1.

Example 4.5. Consider the stochastic differential equation

dE(t) = B(1)E(t) dB(t), 0 ≤ t ≤ 1. (4.4)

By Theorem 4.1 the stochastic process

E(t) = exp

[
B(1)

∫ t

0

e−(t−s) dB(s)− 1

4
B(1)2

(
1− e−2t

)
− t

]
(4.5)

is a solution of Equation (4.4). On the other hand, we can write B(1) as

B(1) = B(t) +
(
B(1)−B(t)

)
and apply Theorem 4.3 with g(t) = B(t) and h(t) = B(1) − B(t) to see that the
stochastic process

E(t) = exp

[ ∫ t

0

B(s) dB(s)− 1

2

∫ t

0

B(s)2 ds

−
∫ 1

t

(
B(1)−B(s)

)
dB(s)− 1

2

∫ 1

t

(
B(1)−B(s)

)2
ds

]
(4.6)

is also a solution of Equation (4.4). Note that the stochastic processes in Equations
(4.5) and (4.6) are very different and have different initial conditions.

Example 4.6. Consider a stochastic differential equation with an anticipating
initial condition. In [3], Buckdahn proved that the solution of the equation{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = sgn
(
B(1)

)
,

is given by

Xt = sgn
(
B(1)− t

)
eB(t)− 1

2 t. (4.7)

In [13] we study the white noise formulation of this equation, i.e., dXt = ∂∗
t Xt dt

and use the S-transform to derive the solution Xt in Equation (4.7), see Example
13.30 in the book [13].

Example 4.7. Consider the same stochastic differential equation in Example 4.6,
but with a different initial condition, namely,{

dXt = Xt dB(t), 0 ≤ t ≤ 1,

X0 = B(1),

In [15] we use the iteration method to derive the solution

Xt =
(
B(1)− t

)
eB(t)− 1

2 t. (4.8)
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Examples 4.6 and 4.7 lead to more general linear stochastic differential equation
of the form: {

dXt = α(t)Xt dB(t) + β(t)Xt dt, a ≤ t ≤ b,

Xa = ρ
(
B(b)−B(a)

)
,

(4.9)

where α(t) is a deterministic function in L2([a, b]), β(t) is an adapted stochastic

process such that E
∫ b

a
|β(t)|2 dt < ∞, and ρ is a continuous function on R.

Note that within the Itô theory the solution of Equation (4.9) with the initial
condition Xa = x is given by

Xt = x exp

[ ∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

]
.

On the other hand, observe the forms of the solutions in Equations (4.7) and (4.8)
for the initial conditions X0 = sgn

(
B(1)

)
and X0 = B(1), respectively. Thus we

expect the solution of Equation (4.9) with the initial condition ρ
(
B(b)−B(a)

)
to

be of the form:
Xt = ρ

(
B(b)−B(a)− k(t)

)
eZt , (4.10)

where k(t) is a deterministic function to be derived and Zt is the Itô process

Zt =

∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds.

For simplicity, we assume that the function ρ is a C1-function. Apply Theorem
3.6 (with an obvious addition of the t-variable) to the function

θ(t, z, y) = θ
(
y − k(t)

)
ez

with z for Zt, y for B(b)−B(a). Then we get the stochastic differential of Xt:

dXt = α(t)Xt dB(t) + β(t)Xt dt

− ρ′
(
B(b)−B(a)− k(t)

)(
k′(t)− α(t)

)
eZt dt.

This shows that in order for Xt to be a solution of Equation (4.9), we must have

k′(t) = α(t). Hence k(t) =
∫ t

a
α(s) ds+ C. But

Xa = ρ
(
B(b)−B(a)− k(a)

)
= ρ

(
B(b)−B(a)

)
.

Thus k(a) = C = 0 and we have k(t) =
∫ t

a
α(s) ds. Put this function k(t) into

Equation (4.10) to get a solution of Equation (4.9).

Theorem 4.8. Let α(t) be a deterministic function in L2([a, b]), β(t) an adapted

stochastic process such that E
∫ b

a
|β(t)|2 dt < ∞, and ρ a continuous function on

R. Then the stochastic differential equation{
dXt = α(t)Xt dB(t) + β(t)Xt dt, a ≤ t ≤ b,

Xa = ρ
(
B(b)−B(a)

)
,

(4.11)

has a unique solution given by

Xt = ρ
(
B(b)−B(a)−

∫ t

a
α(s) ds

)
exp

[ ∫ t

a

α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

]
.

(4.12)



A GENERAL ITÔ FORMULA 361

Proof. We have already shown the existence of a solution in the above discussion.
The uniqueness of a solution is obvious, e.g., by the iteration method. □

Remark 4.9. The solution Xt in Equation (4.12) is derived in [11] by somewhat
complicated calculations. Observe that the solution Xt depends on the drift term
β(t) only in the exponential process, which is an Itô part. We also point out that
when α(t) is a non-deterministic stochastic process, Equation (4.11) seems to be
very hard to solve.
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Equations, K. Itô (ed.) (1978) 95–109, Kinokuniya.

11. Khalifa, N., Kuo, H.-H., Ouerdiane, H., and Szozda, B.: Linear stochastic differential equa-
tions with anticipating initial conditions. Communications on Stochastic Analysis 7, no. 2

(2013) 245–253.
12. Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise III, Proc. Japan Acad. 57A

(1981) 433–437
13. Kuo, H.-H.: White Noise Distribution Theory, CRC Press, 1996.

14. Kuo, H.-H.: Introduction to Stochastic Integration. Universitext (UTX), Springer, 2006.
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