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Abstract

The article studies and compares the performance properties of a weighted
average estimator of Ordinary Least Squares and Stein-rule considering
balanced loss function proposed by Zellner (1994). Superiority conditions have
been derived assuming error distribution to be non-normal.

1. INTRODUCTION

Recently a number of research articles have appeared that utilize balanced loss,
proposed by Zellner (1994), to compare the performance properties of various
estimators in linear regression model [see, e.g. Wan (1994), Giles et.al. (1996) and
Ohtani (1998)].The idea behind using balanced loss is to take into account both the
“goodness of fit” and the precision of estimator simultaneously.

Assuming normally distributed errors, Giles et.al.(1996) studied the
performance of Stein-rule estimator using balanced loss. In many practical situations,
however, normality assumption is quite often unwarranted and may lead to invalid
and erroneous inferences. Therefore, in this paper considering a weighted average
estimator of the ordinary least squares and the Stein-rule, the conditions of
dominance have been derived using small disturbance asymptotic theory and
assuming error distribution to be not necessarily normal.

In Section 2, the model and the estimators have been described. Section 3
discusses the properties of the estimator and lastly in Appendix, proof of the theorem
is provided.

2. THE MODEL AND THE ESTIMATORS

Let us postulate the following linear regression model
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y = X� + u  (2.1)

where y is an n x 1 vector of observations on the variable to be explained, X is an
n x p full column rank matrix of n observations on p explanatory variables, � is a p
x 1 vector of regression coefficients associated with them and u is an n x 1 vector
of disturbances, the elements of which are assumed to be independently and
identically distributed having finite moments up to order four so that

2 2 3 3 4 4
t t t 1 t 2E(u ) 0,     E(u ) ,    E(u ) ,     E(u ) ( 3);       t 1,2,3.........n.� � � � � � � � � � � (2.2)

where 1�  and 2�  are Pearsonian measures of skewness and kurtosis respectively..
For normally distributed errors both 1�  and 2�  are zero so that for non-normal
distributions 1�  and 2�  provide measures of departure from normality. Using (2.2)
some expectations that are useful in studying the properties of estimators can be
written as follows:

2E(u Au) (tr A)� �� (2.3)

3
1 nE(u Au, u) (I A)e� �� � � (2.4)

4
2 n nE(u Au.uu ) [ (I A) (tr A) I 2A]� � �� � � � � (2.5)

where A is any symmetric matrix with nonstochastic elements, ‘*’ denotes the
Hadamard product operator and e is an nx1 vector with all elements unity.

Application of least squares to (2.1) yields the ordinary least squares estimator,
given by

b = (X� X)–1 X� y (2.6)

which is well known to be the best linear unbiased estimator of �, having variance-
covariance matrix

� � 12 )X'X(bV     ��� . (2.7)

The Stein-rule estimator of the regression coefficient from (2.1) is given by

b
Xb'Xb

)Xby()Xby(
k1ˆ      

' �
�

�
�
�

� ���
��� (2.8)

where k is any positive non-stochastic scalar characterizing the estimator.

The balanced loss function proposed by Zellner (1994) is given by
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(L      111 �������������������� (2.9)
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which for w1 = 1 provides goodness of fit of the estimator�
~

 whence w1 = 0 focuses
on the precision of the estimator. Any other value of 1w between 0 and 1 gives
different weight to the goodness of fit and the precision of estimation. Following
Ohtani (1998), when balanced loss function is used another estimator, which is a
weighted average estimator of the OLS and the Stein-rule, should be used which
takes into account both, the goodness of fit and the precision of estimation
simultaneously. It is given by

���� ˆ)w-(1 b  w 
~

     22
(2.10)

where 2w � [0,1] .Clearly w2 = 1 yields OLS estimator and w2 = 0 gives the Stein-
rule estimator. If 1w � 2w , the weight to goodness of fit in the loss function is
different from the weight in the estimator, i.e., the magnitude of importance for
goodness of fit is different when we evaluate loss and when we estimate parameters;
the same being true for precision of estimation. Similarly 1w = 2w  indicates that
the same weight is used for the loss function and the estimator.

3. PROPERTIES OF ESTIMATORS

Assuming error distribution to be normal Giles (1996) derived the exact risk of the
Stein-rule estimator under balanced loss and found that some well-known results
under quadratic error loss are not robust to balanced loss. When the error distribution
is non-normal the exact expressions of risk of Stein-rule estimator is not only
intricate but it is difficult to draw clear inferences from them. Therefore, here
small disturbance asymptotic approximations are used in order to obtain expression
of risk of �

~
under balanced loss when errors are not necessarily normal.

THEOREM: When disturbances are small and not necessarily normal, the
risk of�

~
 to order )(O 4� , is given by

� � � � e )P*I(X
XX

)w1)(w1(
k2)w)p2n(p
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1
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1
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����
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�������� (3.1)
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Proof: See Appendix

When w2 = 1, we get the expression of the risk of OLS under balanced loss while
w2 = 0 gives the risk of Stein-rule estimator under balanced loss. These are given
by

� � � � and          w)p2n(pbR          1
2 ���� (3.2)
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XX
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respectively. Looking at the expression (3.1) we observe that due to non-normality

of the disturbances the terms of order )(O 4�  are generally non-zero. The skewness

shows its effect in terms of order )(O 3�  while the effect of kurtosis appears in

terms of order )(O 4� . Comparison of risk functions (3.1) and (3.2)

��  )
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R(- R(b) � �eP*I'X
X'X

)w1)(w1(k
2 Xn

211
3

��
���
����

(3.4)
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For skewed distributions of disturbances, the leading term in (3.4) depends
upon 1� , a measure of departure from symmetry. Positivity of this term implies
that�

~
 will be superior to b while negativity implies otherwise.

For symmetrical distributions ( 01 �� ), the change in efficiency is determined
by the terms of order )(O 4� . Clearly�

~
 dominates b under balanced loss if k is

chosen to satisfy
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where � � )2pn)(pn(P*Ptrq XX2 ������  and

� � )2p)(pn(}P*IM{ trg Xn22 �����

Following Vinod and Ullah (1978) similar conditions for symmetrical
leptokurtic )0,0( 21 ����  and symmetrical platykur tic )0,0( 21 ����
distributions of disturbances can be derived. For this purpose we introduce the
following notations:

1-
Xn

1-2 X)X(X)P*I(XX)X(Gwith  X)G       Xtr(     ,
)pn(

�������
�
�

��

Using these, the inequality (3.5) can be rewritten as
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(3.6)

provided the quantity in square brackets is positive. Observing that

1
XX

XXXGX
0 ���

����
�����

��� �
�

1X)XG( tr0 ������� �
�

where ��  and ��  are the smallest and largest characteristic root of the matrix G
and using it in (3.6),we notice that the inequality is satisfied for symmetrical
leptokurtic distribution of disturbances so long as

� �� � � ��
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(3.7)

Similarly when the distribution of errors is symmetrical platykurtic (i.e. 01 ��
and 02 �� ) then 0��  holds for all (n -p)� 2. If (n -p)=1 then 0��  provided
1+ 2� >0. Therefore in this case (3.6) holds so long as

� � � �
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For normally distributed disturbances, the condition on k reduces to

2  p                  ;  
2)-p-(n

2)-(p
 

)w1(

)w1(2
k0

2

1 �
�
�

�� (3.9)

It is interesting to note that when 21  ww � , i.e., the weight to goodness of fit
in the loss function is smaller than that given to the ordinary least squares estimator,
then the range of dominance of �

~
 over b in all (3.6)-(3.9) is larger than that of �̂

over b and when 21  ww �  the range of dominance of �
~

 over b is smaller than that
of �̂  over b. This is in accordance to the fact that the OLS estimator takes in to
account the goodness of fit while Stein-rule estimation takes into account precision
of estimation only. Interestingly, when 1w = 2w , (3.9) reduces to

2  p                  ;  
2)-p-(n

2)-(p
 2    k0 ��� (3.10)

which is the usual condition of dominance of Stein-rule estimator over OLS. Hence
in this case the range of k where a weighted average estimator dominates OLS
under balanced loss is same as the range of k where Stein-rule estimator dominates
the OLS estimator.

APPENDIX

To obtain the expressions small � asymptotic approximations, we rewrite model
(2.1) as

)v(u      ;     vXy ������ (A.1)

where the elements of v are independently and identically distributed with finite

moments at least up to order )(O 4� .We also notice from (2.10) that

� �
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Using (2.6), (2.8) and (A.1) we can write

� � � �
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Since � is small, we can expand the quantity in square brackets in increasing
powers of �. Retaining terms up to order O(�3), we get

3
3

2
2

1)
~

(X ������������ (A.4)

where

vPX 1 ��
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� X.vP'v
X'X'

)w1(k
X

2

��3
vM .vP'v

X'X

)w1(k
2X'

2

��
�

�

Using the above expression in (A.1), we get the result in the theorem.
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