ON GENERALIZED CESÀRO VECTOR VALUED SEQUENCE SPACE

Sumita Gulati

Abstract

In this paper, we define a generalized Cesàro vector valued sequence space $\operatorname{ces}_{(p)}(X, q)$ where $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ are bounded sequences of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N}$ and consider it equipped with Luxemburg norm. We investigate the space for completeness and also discuss its rotundity. We also extend some results of Petrot and Suantai.

Keywords: Generalized Cesàro vector valued sequence space, Modular, Luxemburg norm, Rotundity

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper \mathcal{N} and \mathbf{R} stand for set of natural numbers and real numbers respectively, $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ be bounded sequences of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N}$ and $\mathrm{M}=\sup _{k} p_{k}$ and $M^{\prime}=$ $\sup _{k} q_{k}$.

Let l_{o} be the space of all real sequences. For $1 \leq \mathrm{p}<\infty$, the Cesàro sequence space $c e s_{p}$ is defined by

$$
\operatorname{ces}_{p}=\left\{x=\left(x_{k}\right) \in l_{o}: \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}<\infty\right\}
$$

equipped with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}\right)^{\frac{1}{p}}
$$

and $\operatorname{ces}_{\infty=}=\left\{x=\left(x_{k}\right) \in l_{o}: \sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|<\infty\right\}$
equipped with the norm

$$
\|x\|_{\infty}=\sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|
$$

The Cesàro sequence spaces, $\operatorname{ces}_{p}(1 \leq p<\infty)$ and $\operatorname{ces}_{\infty}$ first appeared in 1968 in connection with the problem of Dutch Mathematical Society to find their duals. Some investigation of these spaces was done by J.S. Shue [1] in 1970. Then G.M. Leibowitz [2] and A.A. Jagers [3] proved that $\operatorname{ces}_{1}=\{0\}, \operatorname{ces}_{p}$ are separable reflexive Banach spaces for $1<\mathrm{p} \leq \infty$ and the l_{p} spaces are in ces $_{p}$
for $1<\mathrm{p} \leq \infty$. Several geometric properties of the Cesàro sequence spaces and generalized Cesàro sequence spaces were studied by many mathematicians [4-8]. Suantai [9] has introduced the generalized Cesàro sequence spaces ces(p).

Let $\mathrm{p}=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k} \geq$ $1 \forall k \in \mathcal{N}$, then the generalized Cesàro sequence spaces ces (p) is defined by

$$
\operatorname{ces}(p)=\left\{x=\left(x_{k}\right) \in l_{o}: \rho(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

where $\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p_{n}}$
equipped with the Luxemburg norm

$$
\|x\|=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

In the case when $p_{k}=p, 1 \leq p<\infty, \forall k \in \mathcal{N}$, the generalized Cesàro sequence space $\operatorname{ces}(\mathrm{p})$ is the Cesàro sequence space $c e s_{p}$ and the Luxemburg norm on $\operatorname{ces}(p)$ reduces to the usual norm on $c e s_{p}$.

Let (X,\|\|) be a Banach space and $\mathrm{p}=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k} \geq 1 \forall k \in \mathcal{N}$, Chareonsawan [10] defined Cesàro vector valued sequence space ces (X, p) by

$$
\operatorname{ces}(X, p)=\left\{x=\left(x_{k}\right) \subseteq X: \rho(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

where $\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}\right\|\right)^{p_{n}}$
equipped with the Luxemburg norm
$\|x\|=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}$.
Khan [11] in 2010 defined the generalized Cesàro sequence space for $1 \leq p<\infty$ and $\mathrm{q}=\left(q_{k}\right)$ be a bounded sequence of positive real numbers by

$$
\operatorname{ces}_{p}(q)=\left\{\mathrm{x}=\left(x_{k}\right) \in l_{o}:\|x\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left|q_{k} x_{k}\right|\right)^{p}\right)^{\frac{1}{p}}<\infty\right\}
$$

where $Q_{n}=\sum_{k=1}^{n} q_{k}, \mathrm{n} \in \mathcal{N}$. If $q_{k}=1 \forall k \in \mathcal{N}$, then $\operatorname{ces}_{p}(q)$ reduces to ces ${ }_{p}$.

In 2012, Mongkolkeha and Kumam [12] defined the generalized Cesàro sequence space for a bounded sequence $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N}$ by

$$
\operatorname{ces}_{(p)}(q)=\left\{\mathrm{x}=\left(x_{k}\right) \in l_{o}: \rho(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

where $\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left|q_{k} x_{k}\right|\right)^{p_{n}}$
with $Q_{n}=\sum_{k=1}^{n} q_{k}$ and consider $\operatorname{ces}_{(p)}(q)$ equipped with the Luxemburg norm

$$
\|x\|=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\} .
$$

For $p_{k}=p, 1 \leq p<\infty \forall k \in \mathcal{N}$, then $\operatorname{ces}_{(p)}(q)$ reduces to $\operatorname{ces}_{p}(q)$ and if $q_{k}=1 \forall k \in \mathcal{N}$ then $\operatorname{ces}_{(p)}(q)$ reduces to $\operatorname{ces}(\mathrm{p})$.

In this paper, we define the generalized Cesàro vector valued sequence space as follows:

Let (X,\| \|) be a Banach space and $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ be bounded sequences of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N}$.

The generalized Cesàro vector valued sequence space, $\operatorname{ces}_{(p)}(X, q)$ is defined by

$$
\operatorname{ces}_{(p)}(X, q)=\left\{\mathrm{x}=\left(x_{k}\right) \subseteq X: \rho(\lambda x)<\infty \text { for some } \lambda>0\right\}
$$

where $\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}}$
with $Q_{n}=\sum_{k=1}^{n} q_{k}$ and consider $\operatorname{ces}_{(p)}(X, q)$ equipped with the Luxemburg norm
$\|x\|=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}$.
For $\mathrm{X}=\mathbf{R}, \operatorname{ces}_{(p)}(X, q)$ reduces to then $\operatorname{ces}_{(p)}(q)$ and if $p_{k}=p, 1 \leq p<$ $\infty \forall k \in \mathcal{N}$ then $\operatorname{ces}_{(p)}(X, q)$ reduces to $\operatorname{ces}_{p}(q)$.

First we start with some definitions which we will need later on.
For a real vector space X a functional $\rho: X \rightarrow[0, \infty]$ is called a modular if it satisfies the following conditions:
(i) $\rho(x)=0$ if and only if $\mathrm{x}=0$;
(ii) $\rho(\alpha x)=\rho(x) \forall$ scalars α with $|\alpha|=1$;
(iii) $\rho(\alpha x+\beta y) \leq \rho(x)+\rho(y) \forall x, y \in X$ and $\forall \alpha, \beta \geq 0$ with $\alpha+\beta=1$.

The modular ρ is called convex if
(iv) $\rho(\alpha x+\beta y) \leq \alpha \rho(x)+\beta \rho(y) \forall x, y \in X$ and $\forall \alpha, \beta \geq 0$ with $\alpha+$ $\beta=1$.

For any modular ρ on X , the space

$$
X_{\rho}=\{\mathrm{x} \in X: \rho(\lambda x)<\infty \text { for some } \lambda>0\}
$$

is called the modular space. Orlicz [13] proved that if ρ is a convex modular, then function

$$
\|x\|=\inf \left\{\lambda>0: \rho\left(\frac{x}{\lambda}\right) \leq 1\right\}
$$

is a norm on X_{ρ}, which is called the Luxemburg norm.
For a real Banach $\operatorname{space}(X,\| \|)$, let $\mathrm{B}(\mathrm{X})$ and $\mathrm{S}(\mathrm{X})$ be the closed unit ball and the unit sphere of X respectively i.e. $\mathrm{B}(\mathrm{X})=\{x \in X:\|x\| \leq 1\}$ and $\mathrm{S}(\mathrm{X})=$ $\{x \in X:\|x\|=1\}$.

A point $x \in S(X)$ is an extreme point of $\mathrm{B}(\mathrm{X})$ if for any $\mathrm{y}, \mathrm{z} \in B(X)$, the equality $2 \mathrm{x}=\mathrm{y}+\mathrm{z}$ implies $\mathrm{y}=\mathrm{z}$. The set of all extreme points of X is denoted by $\operatorname{Ext}(\mathrm{X})$.

A Banach space X is said to be rotund (R), if every point of $S(X)$ is an extreme point of $\mathrm{B}(\mathrm{X})$.

In other words, if X is rotund (R) then $\mathrm{S}(\mathrm{X}) \subseteq E x t B(X)$.

2. MAIN RESULTS

In this section we first study some basic properties of modular on $\operatorname{ces}_{(p)}(X, q)$ and its relation with Luxemburg norm. We then show that $\operatorname{ces}_{(p)}(X, q)$ is a Banach space. Finally, we discuss rotundity on $\operatorname{ces}_{(p)}(X, q)$.

Proposition 2.1: The functional ρ on the space $\operatorname{ces}_{(p)}(X, q)$ is a convex modular.

Proof: For $\mathrm{x}=\left(x_{k}\right) \in \operatorname{ces}_{(p)}(X, q)$, it is obvious that $\rho(x)=0$ if and only if $\mathrm{x}=0$ and $\rho(\alpha x)=\rho(x)$ for scalar α with $|\alpha|=1$. Let $\alpha \geq 0, \beta \geq 0$ be such that $\alpha+\beta=1$ and $\mathrm{x}=\left(x_{k}\right), \mathrm{y}=\left(y_{k}\right) \in \operatorname{ces}_{(p)}(X, q)$, then,

$$
\begin{aligned}
& \rho(\alpha x+\beta y)=\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(\alpha x_{k}+\beta y_{k}\right)\right\|\right)^{p_{n}} \\
& \leq \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(\alpha x_{k}\right)\right\|+\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(\beta y_{k}\right)\right\|\right)^{p_{n}} \\
&=\sum_{n=1}^{\infty}\left(\alpha \frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|+\beta \frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}} \\
& \leq \alpha \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}}+\beta \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}}
\end{aligned}
$$

(By the convexity of the function
$\left.t \rightarrow|t|^{p_{k}} \forall k \in \mathcal{N}\right)$

$$
=\alpha \rho(x)+\beta \rho(y) .
$$

This completes the proof.
In next result we study some properties of the modular ρ on $\operatorname{ces}_{(p)}(X, q)$.

Proposition 2.2: For $\mathrm{x}=\left(x_{k}\right) \in \operatorname{ces}_{(p)}(X, q)$, the modular ρ on $\operatorname{ces}_{(p)}(X, q)$ satisfies the following properties:
if $0<\mathrm{a}<1$, then $a^{M} \rho\left(\frac{x}{a}\right) \leq \rho(x)$.
(i) if $0<\mathrm{a}<1$, then $\rho(a x) \leq a \rho(x) \leq \rho(x)$.
(ii) if a ≥ 1, then $\rho(x) \leq a^{M} \rho\left(\frac{x}{a}\right)$
(iii) if a ≥ 1, then $\rho(x) \leq a \rho(x) \leq \rho(a x)$.

Proof: (i) Let $0<a<1$, then we have

$$
\begin{aligned}
& \rho(x)= \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
&= \sum_{n=1}^{\infty}\left(\frac{a}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
&=\sum_{n=1}^{\infty} a^{p_{n}}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
& \geq a^{M} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
&=a^{M} \rho\left(\frac{X}{a}\right) .
\end{aligned}
$$

(ii) Let $0<\mathrm{a}<1$, then we have,

$$
\begin{aligned}
& \rho(a x)=\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(a x_{k}\right)\right\|\right)^{p_{n}} \\
&= \sum_{n=1}^{\infty} a^{p_{n}}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
& \leq a \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
&=a \rho(x) \leq \rho(x) .
\end{aligned}
$$

(iii) Let $a \geq 1$, then we have,

$$
\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}}
$$

$$
\begin{gathered}
=\sum_{n=1}^{\infty}\left(\frac{a}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
=\sum_{n=1}^{\infty} a^{p_{n}}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
\leq a^{M} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} \frac{x_{k}}{a}\right\|\right)^{p_{n}} \\
=a^{M} \rho\left(\frac{X}{a}\right)
\end{gathered}
$$

(iv) Let $a \geq 1$, then we have,

$$
\begin{aligned}
\rho(a x) & =\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(a x_{k}\right)\right\|\right)^{p_{n}} \\
& =\sum_{n=1}^{\infty} a^{p_{n}}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
& \geq a \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
& =a \rho(x) \geq \rho(x) .
\end{aligned}
$$

This completes the proof.
In the next proposition we discuss some relations between the modular ρ and the Luxemburg norm on $\operatorname{ces}_{(p)}(X, q)$.

Proposition 2.3: For any $x=\left(x_{k}\right) \in \operatorname{ces}_{(p)}(X, q)$, we have
(i) if $\|x\|<1$, then $\rho(x) \leq\|x\|$,
(ii) if $\|x\|>1$, then $\rho(x) \geq\|x\|$,
(iii) $\|x\|=1$ if and only if $\rho(x)=1$,
(iv) $\|x\|<1$ if and only if $\rho(x)<1$,
(v) $\quad\|x\|>1$ if and only if $\rho(x)>1$,
(vi) if $0<a<1$ and $\|x\|>a$, then $\rho(x)>a^{M}$, and
(vii) if $a \geq 1$ and $\|x\|<a$, then $\rho(x)<a^{M}$.

Proof: (i) Let $\varepsilon>0$ be such that $0<\varepsilon<1-\|x\|$ so, $\|x\|+\varepsilon<1$. By definition of $\|\|$, there exists $\lambda>0$ such that $\| x\|+\varepsilon>\lambda>\| x \|$ and $\rho\left(\frac{x}{\lambda}\right) \leq$ 1. Now by (iv) and (ii) of proposition (2.2), we have,

$$
\begin{aligned}
\rho(x) & \leq \rho\left(\left(\frac{\|x\|+\varepsilon}{\lambda}\right) x\right) \\
& \leq(\|x\|+\varepsilon) \rho\left(\frac{x}{\lambda}\right) \\
& \leq\|x\|+\varepsilon
\end{aligned}
$$

Hence $\quad \rho(x) \leq\|x\|+\varepsilon \forall \varepsilon \in(0,1-\|x\|)$. Put $\quad \mathrm{A}=\quad\{\|x\|+\varepsilon: \varepsilon \in$ $(0,1-\|x\|)\}$, then $\|x\|=\inf A$. Since $\rho(x)$ is a lower bound of $\mathrm{A}, \rho(x) \leq\|x\|$.
(ii) Let ε be any real number such that $0<\varepsilon<\frac{\|x\|-1}{\|x\|}$, so, $1<(1-\varepsilon)\|x\|<$ $\|x\|$. Then by definition of $\|\|$, and (ii) of proposition (2.2), we have,

$$
1<\rho\left(\frac{x}{(1-\varepsilon)\|x\|}\right) \leq \frac{1}{(1-\varepsilon)\|x\|} \rho(x)
$$

Hence $(1-\varepsilon)\|x\|<\rho(x) \forall \varepsilon \in\left(0, \frac{\|x\|-1}{\|x\|}\right)$. Put $\mathrm{A}=\{(1-\varepsilon)\|x\|: 0<\varepsilon<$ $\left.\frac{\|x\|-1}{\|x\|}\right\}$, then $\|x\|=\sup A$. Since $\rho(x)$ is an upper bound of $\mathrm{A},\|x\| \leq \rho(x)$.
(iii) First suppose that, $\|x\|=1$. Let $\varepsilon>0$ be given, then by definition of $\|\|$, there exists $\lambda>0$ such that $\| x\|+\varepsilon>\lambda>\| x \|$ and $\rho\left(\frac{x}{\lambda}\right) \leq 1$ i.e. $1+\varepsilon>\lambda>\|x\|=1$ and $\rho\left(\frac{x}{\lambda}\right) \leq 1$. Since $\lambda>1$, by (iv) of proposition (2.2),

$$
\rho(x) \leq \lambda^{M} \rho\left(\frac{x}{\lambda}\right) \leq \lambda^{M} \leq(1+\varepsilon)^{M}
$$

Hence $(\rho(x))^{\frac{1}{M}} \leq 1+\varepsilon \forall \varepsilon>0$. This implies $\rho(x) \leq 1$. If $\rho(x)<1$, we choose a real number $a \in(0,1)$ such that $\rho(x)<a^{M}<1$, then by (i) of proposition (2.2), $\rho\left(\frac{x}{a}\right) \leq \frac{1}{a^{M}} \rho(x)<1$. By definition of $\|\|$, then, $\| x \| \leq a$. But $a<1$, so $\|x\|<1$ which is a contradiction. Therefore, $\rho(x)=1$.

Conversely, let $\rho(x)=1$, then by definition of $\|\|\| x\| \leq$,1 . If $\|x\|<1$, then by (i), $\rho(x) \leq\|x\|<1$, which is a contradiction. Thus $\|x\|=1$.
(iv) First suppose that $\|x\|<1$, then by (i), $\rho(x) \leq\|x\|<1$. Conversely, let $\rho(x)<1$. Let if possible $\|x\| \geq 1$. If $\|x\|=1$ then by (iii) $\rho(x)=1$, which is a contradiction. If $\|x\|>1$, then by (ii) $\rho(x) \geq\|x\|>1$, again a contradiction. Hence $\|x\|<1$.
(v) First suppose that $\|x\|>1$, then by (ii), $\rho(x) \geq\|x\|>1$. Conversely, let $\rho(x)>1$. Let if possible $\|x\| \leq 1$. If $\|x\|=1$ then by (iii) $\rho(x)=1$, which is a contradiction and if $\|x\|<1$, then by (iv) $\rho(x)<1$, which is again a contradiction. Hence $\|x\|>1$.
(vi) Suppose $0<a<1$ and $\|x\|>a$, then $\left\|\frac{x}{a}\right\|>1$. Then by (v), $\rho\left(\frac{x}{a}\right)>$ 1. This implies $a^{M} \rho\left(\frac{x}{a}\right)>a^{M}$. By (i) of proposition (2.2), $\rho(x)>a^{M}$.
(vii) Suppose $a \geq 1$ and $\|x\|<a$, then $\left\|\frac{x}{a}\right\|<1$. Then by (iv), $\rho\left(\frac{x}{a}\right)<1$. This implies $a^{M} \rho\left(\frac{x}{a}\right)<a^{M}$. By (iii) of proposition (2.2), $\rho(x)<a^{M}$. This completes the proof.

Proposition 2.4: Let $\left(x_{n}\right)$ be a sequence in $\operatorname{ces}_{(p)}(X, q)$,

$$
\begin{align*}
& \text { if }\left\|x_{n}\right\| \rightarrow 1 \text { as } n \rightarrow \infty \text {, then } \rho\left(x_{n}\right) \rightarrow 1 \text { as } n \rightarrow \infty, \tag{i}\\
& \text { if } \rho\left(x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty \text {, then }\left\|x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{ii}
\end{align*}
$$

Proof: (i) Suppose $\left\|x_{n}\right\| \rightarrow 1$ as $n \rightarrow \infty$. Let $\varepsilon \in(0,1)$ then there exists $\mathrm{N} \in \mathcal{N}$ such that $1-\varepsilon<\left\|x_{n}\right\|<1+\varepsilon \forall n \geq N$. By (vi) and (vii) of proposition (2.3), we have, $(1-\varepsilon)^{M}<\rho\left(x_{n}\right)<(1+\varepsilon)^{M} \forall n \geq N$. This implies $\left(\rho\left(x_{n}\right)\right)^{\frac{1}{M}} \rightarrow 1$ as $n \rightarrow \infty$ i.e. $\rho\left(x_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
(ii) Suppose $\rho\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let if possible $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Then there exists some $\varepsilon \in(0,1)$ such that $\left\|x_{n}\right\|>\varepsilon \forall n \in \mathcal{N}$. By (vi) of proposition (2.3), $\rho\left(x_{n}\right)>\varepsilon^{M} \forall n \in \mathcal{N}$. This implies $\rho\left(x_{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$ which is a contradiction. Hence $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Next we show that $\operatorname{ces}_{(p)}(X, q)$ is a Banach space under the Luxemburg norm.

Theorem 2.5: $\operatorname{ces}_{(p)}(X, q)$ is a Banach space.
Proof: Let $\left(x_{m}\right)_{m=1}^{\infty}$ be any Cauchy sequence in $\operatorname{ces}_{(p)}(X, q)$ where $x_{m}=\left(x_{k}^{(m)}\right)_{k=1}^{\infty}$, then for each $\varepsilon>0$ there exists a positive integer N such that $\left\|x_{m}-x_{r}\right\|<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m, r \geq N$.

This implies by (i) of proposition (2.3)

$$
\rho\left(x_{m}-x_{r}\right)<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m, r \geq N
$$

i.e.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}}<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m, r \geq N \tag{1}
\end{equation*}
$$

Let us write $\eta(x)$ for the sequence of Cesàro means defined by the given sequence $\mathrm{x}=\left(x_{m}\right)_{m=1}^{\infty}$ then $\eta(x)_{m}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$.

Now for $\mathrm{m}, \mathrm{r} \geq N$ and $\mathrm{n} \in \mathcal{N}$, consider

$$
\begin{align*}
&\left\|\eta\left(x_{m}\right)_{n}-\eta\left(x_{r}\right)_{n}\right\|^{p_{n}}=\left\|\frac{1}{n} \sum_{k=1}^{n} x_{k}^{(m)}-\frac{1}{n} \sum_{k=1}^{n} x_{k}^{(r)}\right\|^{p_{n}} \\
&=\left\|\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}^{(m)}-x_{k}^{(r)}\right)\right\|^{p_{n}} \\
& \leq\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}^{(m)}-x_{k}^{(r)}\right\|\right)^{p_{n}} \\
& \leq\left(\frac{1}{n} \sum_{k=1}^{n} q_{k}\left\|x_{k}^{(m)}-x_{k}^{(r)}\right\|\right)^{p_{n}} \\
&=\left(\frac{1}{n} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}} \\
& \leq\left(\frac{M^{\prime}}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}} \\
&=\left(M^{\prime}\right)^{p_{n}}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}} \\
& \leq\left(M^{\prime}\right)^{M}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}} \ldots(2) \tag{2}
\end{align*}
$$

By inequalities (1) and (2), we have

$$
\sum_{n=1}^{\infty}\left\|\eta\left(x_{m}\right)_{n}-\eta\left(x_{r}\right)_{n}\right\|^{p_{n}} \leq\left(M^{\prime}\right)^{M}\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m, r \geq N
$$

Hence

$$
\sum_{n=1}^{\infty}\left\|\eta\left(x_{m}\right)_{n}-\eta\left(x_{r}\right)_{n}\right\|^{p_{n}} \leq \varepsilon^{M} \forall m, r \geq N
$$

By proposition (3.2.5) of [10], we then have

$$
\left\|\eta\left(x_{m}\right)-\eta\left(x_{r}\right)\right\|_{l(X, p)}<\varepsilon \forall m, r \geq N .
$$

Hence $\left(\eta\left(x_{m}\right)\right)$ is a Cauchy sequence in $l(X, p)$, the Nakano vector valued sequence space. Since $l(X, p)$ is complete, there is an element $\mathrm{x}=\left(x_{k}\right)$ in $l(X, p)$ such that
$\left\|\eta\left(x_{m}\right)-x\right\|_{l(X, p)} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.
Further convergence in $l(X, p)$ is component wise, so that,

$$
x_{k}=\lim _{m \rightarrow \infty} \eta\left(x_{m}\right)_{k}={ }_{m \rightarrow \infty} \lim _{k} \frac{1}{k} \sum_{i=1}^{k} x_{i}^{(m)} \text { for each } \mathrm{k} .
$$

For $\mathrm{k}=1, \lim _{m \rightarrow \infty} x_{1}^{(m)}=x_{1}$. Similarly, for $\mathrm{k}=2, x_{2}=\lim _{m \rightarrow \infty} \frac{1}{2}\left(x_{1}^{(m)}+x_{2}^{(m)}\right)$. This implies $\lim _{m \rightarrow \infty} x_{2}^{(m)}=2 x_{2}-x_{1}$. Continuing in this way, for each $\mathrm{k}, \lim _{m \rightarrow \infty} x_{k}^{(m)}$ exists and is equal to $\mathrm{k} x_{k}-(k-1) x_{k-1}$ where, we set $x_{0}=0$.

Define a sequence,
$\mathrm{y}=\left(y_{k}\right)$ such that $y_{k}=\mathrm{k} x_{k}-(k-1) x_{k-1}$.
Then,

$$
\lim _{m \rightarrow \infty} x_{k}^{(m)}=y_{k} \text { for each } \mathrm{k} .
$$

Now for any $\mathrm{t} \in \mathcal{N}$,
$\sum_{n=1}^{t}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}\right\|\right)^{p_{n}} \leq \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}\right\|\right)^{p_{n}}=\mathrm{S} \quad($ say $)<$ ∞ as $x_{m} \in \operatorname{ces}_{(p)}(X, q)$.

Hence
$\sum_{n=1}^{t}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}\right\|\right)^{p_{n}} \leq \mathrm{S} ; \mathrm{t}=1,2,3, \ldots$
Letting $m \rightarrow \infty$, we have
$\sum_{n=1}^{t}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}} \leq \mathrm{S} ; \mathrm{t}=1,2,3, \ldots$
Since t is arbitrary, $\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}} \leq \mathrm{S}<\infty$. This implies $y=\left(y_{k}\right) \in \operatorname{ces}_{(p)}(X, q)$.

Now from (1), we have,

$$
\sum_{n=1}^{t}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} x_{k}^{(r)}\right\|\right)^{p_{n}}<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m, r \geq N \text { and } t=1,2,3, \ldots
$$

Letting $r \rightarrow \infty$, we get
$\sum_{n=1}^{t}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} y_{k}\right\|\right)^{p_{n}}<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m \geq N$ and $t=1,2,3, \ldots$
Since above inequality is true for each $t \in \mathcal{N}$,

$$
\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}^{(m)}-q_{k} y_{k}\right\|\right)^{p_{n}}<\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m \geq N
$$

This implies $\rho\left(x_{m}-y\right) \leq\left(\frac{\varepsilon}{M^{\prime}}\right)^{M} \forall m \geq N$.
By (vi) of proposition (2.3), we have $\left\|x_{m}-y\right\|<\frac{\varepsilon}{M^{\prime}} \forall m \geq N$. This implies $x_{m} \rightarrow y$ in $\operatorname{ces}_{(p)}(X, q)$.

This completes the proof.
Corollary 2.6: For $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N} \operatorname{ces}_{(p)}(q)$ is a Banach space.

Next we prove that $\operatorname{ces}_{(p)}(X, q)$ is rotund.
Theorem 2.7: $\operatorname{ces}_{(p)}(X, q)$ is rotund(R$)$.
Proof: We show that $\mathrm{S}\left(\operatorname{ces}_{(p)}(X, q)\right) \subseteq \operatorname{Ext} \mathrm{B}\left(\operatorname{ces}_{(p)}(X, q)\right)$. Let $x=\left(x_{k}\right) \in$ $S\left(\operatorname{ces}_{(p)}(X, q)\right), y=\left(y_{k}\right)$ and $z=\left(z_{k}\right) \in B\left(\operatorname{ces}_{(p)}(X, q)\right)$ such that $2 \mathrm{x}=\mathrm{y}+\mathrm{z}$. We prove that $\mathrm{y}=\mathrm{z}$.

Since $=\left(x_{k}\right) \in S\left(\operatorname{ces}_{(p)}(X, q)\right),\|x\|=1$. By (iii) of proposition (2.3), $\rho(x)=1$.

Now

$$
\begin{aligned}
1=\rho(x) & =\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} x_{k}\right\|\right)^{p_{n}} \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k}\left(\frac{y_{k}+z_{k}}{2}\right)\right\|\right)^{p_{n}} \\
& =\sum_{n=1}^{\infty}\left(\frac{\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}+q_{k} z_{k}\right\|}{2}\right)^{p_{n}} \\
& \leq \sum_{n=1}^{\infty}\left(\frac{\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|+\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|}{2}\right)^{p_{n}} \\
& \leq \frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}}+\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|\right)^{p_{n}} \\
& =\frac{1}{2} \rho(y)+\frac{1}{2} \rho(z) \\
& \leq \frac{1}{2} .1+\frac{1}{2} .1=1 .
\end{aligned}
$$

Therefore, $\rho(x)=\rho\left(\frac{y+z}{2}\right)=\frac{1}{2} \rho(y)+\frac{1}{2} \rho(z)$.

Suppose $y \neq z$.
Let i $\in \mathcal{N}$ be the smallest positive integer such that $\frac{1}{Q_{i}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\| \neq$ $\frac{1}{Q_{i}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|$.

Since the function $\mathrm{t} \rightarrow|t|^{p_{n}}$ is strictly convex for $\mathrm{n} \in \mathcal{N}$, we have,
$\left(\frac{\frac{1}{Q_{i}} \sum_{k=1}^{i}\left\|q_{k} y_{k}\right\|+\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|}{2}\right)^{p_{i}}<$
$\frac{1}{2}\left(\frac{1}{Q_{i}} \sum_{k=1}^{i}\left\|q_{k} y_{k}\right\|\right)^{p_{i}}+\frac{1}{2}\left(\frac{1}{Q_{i}} \sum_{k=1}^{i}\left\|q_{k} z_{k}\right\|\right)^{p_{i}}$.
So, it follows,

$$
\begin{gathered}
1=\sum_{n=1}^{\infty}\left(\frac{\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|+\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|}{2}\right)^{p_{n}} \\
<\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} y_{k}\right\|\right)^{p_{n}}+\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{Q_{n}} \sum_{k=1}^{n}\left\|q_{k} z_{k}\right\|\right)^{p_{n}} \\
=\frac{1}{2} \rho(y)+\frac{1}{2} \rho(z) \leq \frac{1}{2} \cdot 1+\frac{1}{2} \cdot 1=1
\end{gathered}
$$

which is a contradiction. Hence $y=z$.
This completes the proof.
Corollary 2.8: For $\mathrm{p}=\left(p_{k}\right)$ and $\mathrm{q}=\left(q_{k}\right)$ of positive real numbers with $p_{k} \geq 1$ and $q_{k} \geq 1 \forall k \in \mathcal{N} \operatorname{ces}_{(p)}(q)$ is a rotund(R).

REFERENCES

[1] Shiue, JS: On the Cesàro sequence spaces, Tamkang J. Math. 1, 19-25(1970).
[2] Leibowitz, GM: A note on the Cesàro sequence spaces, Tamkang J. Math. 2, 151-157(1971).
[3] Jagers, AA: A Note on Cesàro Sequence Spaces, Nieuw Archief Voor Wiskunde, XXII (3), 113-124 (1974).
[4] Lee, PY: Cesàro Sequence Spaces, Math. Chronicle, New Zealand, 13, 2945(1984).
[5] Cui, Y, Hudzik, H: Some geometric properties related to fixed point theory in Cesàro spaces, Collect. Math. 50 (3), 277-288 (1999) .
[6] Cui, Y, Jie, L, Płuciennik, R: Local uniform nonsquareness in Cesàro sequence spaces, Comment. Math. 27, 47-58 (1997).
[7] Cui, Y, Hudzik, H: Packing constant for Cesàro sequence spaces, Non linear Anal. 47, 2695-2702 (2001).
[8] Cui, Y, Meng, C, Płuciennik, R: Banach-Saks property and property (β) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24, 201-210 (2000).
[9] Suantai, S: On some convexity properties of generalized Cesàro sequence spaces, Georgian Math. J. 10(1), 193-200(2003).
[10] Chareonsawan, P: Some geometric properties of Cesàro sequence spaces, A Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
[11] Khan, VA: Some geometric properties of a generalised Cesàro sequence space, Acta Math. Univ. Comenianae Vol. LXXIX, 1, 1-8(2010).
[12] Mongkolkeha, C, Kumam, P: On H-property and uniform Opial property of generalised cesàro sequence spaces, J. Inequal. Appl. 76, 1-9 (2012).
[13] Orlicz, W: A note on Modular Spaces, I. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9, 157-162 (1961).

Sumita Gulati
Department of Mathematics, S. A. Jain (PG) College, Ambala City-134002,
Haryana, India
E-mail: sumitabansal2223@gmail.com

