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Abstract: In this paper we present a theory of quasi-uniformities on topological spaces to
fuzzy topological space in the style of weil that is called fuzzy weil quasi uniform space.
In particular, we show every fuzzy topological space is fuzzy weil quasiuniformizable.
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INTRODUCTION

Fuzzy uniformity was studied by four authors: B. Huton, R. Lowen, U. Höhle and A. K.
Katsara, while U. Höhle [3, 4] and R. Lowen [10] starting point took a certain counterpart
of the filter approach to based on uniform covers [Tukey [16]]. B. Hutton [5] and A. K.
Katsara [8] presented an equivalent notion of fuzzy uniformity in terms of certain families
of maps from the LX into itself. Recently, other authors continued this concept as an approach
to fuzzy L-uniform space.

The contents of this paper are summarized as follows:

In the first section we recall some preliminary ideas. In Section 2, we present a theory
of fuzzy quasi uniform space via entourage in the style of weil that is called fuzzy weil
uniform space and we show that every fuzzy topological space is weil quasi-uniformizable.

1. PRELIMINARIES

Definition 1.1 [7]: Let L be a frame. Recall [7] that the coproduct of the frame L by itself

1 2
L Lu uL L L L��� � ���

can be constructed as follows:

Take the Cartesian product L � L with the usual order A down Set A of L � L is a C-
ideal if ({x} � S � A � (x, �S) � A) and (S � {y} � A � (�S, y) � A). Put L � L as the
frame of all C-ideals of L � L. Observe that the case S = � implies that every C-ideal
contains the set IO := � {(1, 0)} � � {(0, 1)}. Obviously, each � {(x, y)} � IO is a C-ideal.
It is denoted by x � y. Finally put uL

1(x) = x � 1 and uL
2( y) = 1 � y.

The following clear facts are useful.
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• For every A � L � L, A = �{x � y/(x, y) � A} and so every element of L � L is
join-generated by some family of elements x � y.

• IO � x � y � z � w implies x � z and y � w.

For any frame homomorphism f : L � M, we write f � f : L � L � M � M for the frame
homomorphism given by ( f � f ) . u

L
i = uM

i � f (i = 1, 2). Obviously, ( f � f )(��(x� � y�) = ��(
f (x�) � f ( y�)).

Given A, B in the lattice D(L � L) of all down-sets L � L we denoted by k(A) = ��{B �
L � L/A � B} the C-ideal generated by A and by AoB the C-ideal generated by A � B = {(x, y)
� L � L/�z � L\{0} : (x, z) � A, (z, y) � B}, that is, �{x � y/�z � L\{0} : (x, z) � A, (z, y) � B}.

Lemma 1.2 [11]: For any A, B � D(L � L) � k(A) ok (B) = AoB.

Definitions 1.3 [11]: For A � L and x, y � L we define A is called a cover of L if
� A = 1

st (x, A) = �{y � L/( y, y) � A, y � x � 0}.

Definition 1.4 [11]: For e : L � L, � � L, � is e-small if � < e(�) whenever � � � � 0.

Definition 1.5 [9]: Let X be a nonempty ordinary set, L be a frame with an order-
reversing involution’, � � LX, � is called a L-fuzzy topology on X, and (LX, �) is called
an L-fuzzy topological space, if � satisfies the following three conditions:

(LFT1) 0
–
, 1

–
 � �

(LFT2) �� � �, �� � �

(LFT3) ��, � � �, � � � � �

Every element in � is called an open set in LX.

Definition 1.6 [9]: Let X be a nonempty ordinary set, L be a frame, i, c : L
X � LX

mappings on LX, i is called an interior operator on LX, if it fulfills the following conditions:

(IO1) i(1
–
) = 1

–

(IO2) �A � LX, i (A) � A

(IO3) �A, B � LX, i(A � B) = i(A) � i(B)

(IO4) �A � LX, i(i(A)) = i(A).

For an interior operator i on LX, define the L-fuzzy topology generated by i as
� = {A � LX : i(A) = A} and i(A) = Int (A).

c is called a closure operator on LX, if it fulfills the following condition,

(C01) c(0
–
) = 0

–

(C02) �A � LX, A � c(A)
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(C03) �A, B � LX, c (A � B) = c(A) � c(B)

(C04) �A � LX, c(c(A)) = c(A).

For a closure operator c on LX, define the L-fuzzy topology generated by c as
� = {A � LX; c(A�) = A�} and c (A) = cl(A).

2. FUZZY WEIL QUASI UNIFORM SPACE

Since LX is a frame [5] 0
–
 and 1

–
 denote the least and the greatest element in LX we can define

weil entourage on LX.

Definition 2.1: E � LX � LX is weil entourage of LX if and only if {� � LX/(�, �) � E}
is a cover of LX. That is �{� � LX/(�, �) � E} = 1

–
.

The collection wEn(LX) of all weil entourage of LX may be partially ordered by inclusion.

Definition 2.2: We define the composition of fuzzy weil entourage as follows:

EoF = �{ f � g/�h � LX
 \ 0

–
, ( f, h) � E, (h, g) � F}

the inverse of a fuzzy weil entourage E has the natural definition E –1 = {(g, f )/( f, g) � E}.

We also consider a new partial order in LX, induced by a family �  of fuzzy weil
entourages:

g �
�
 f (g is �-strongly below f ) if there is E � � such that Eo(g � g) � f � f.

When � is symmetric (E � � implies E –1 � �) this is equivalent to saying there is E � �
such that ( f � f )oE � g � g.

Proposition 2.3: Let E be a fuzzy weil entourage. Then

(a) for any f � LX, f � st( f, E)

(b) E n � E n + 1 for every natural n.

(c) For any down set A of LX � LX, A � (EoA) �  (AoE).

(d) for any f � LX, st (st ( f, F), F) � st ( f, F
2).

Proof: (a) Consider f � LX, we have

f = f � �{g � LX | (g, g) � E} = �{ f � g | (g, g) � E, f � g � 0} � st ( f, E)

(b) It suces to prove that E � E2 consider ( f, g) � E. By (a) g � st (g, E). It is trivial
f � st (g, E) � ( f � g)oE � E2. Consequently, (f, g) � E2.

(c) Let ( f, g) � A. The case f = 0 or g = 0 are trivial. If f, g � 0, since f = �{ f � e/(e, e)
� E, f � e � 0} and for any (e, e) � E with f � e � 0, (e, g) � EoA, we have, by
definition of G-ideal, that ( f, g) � EoA. Similarly A � AoE.
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(d) we observe st (st (�, F), F) � st(�, F2)

st (st (�, F ), F) = �{� � LX/((�, �) � F, � � st (�, F ) � 0
–

}

Consider � � LX with (�, �) � F and � � st(�, F) � 0
–

. Then there is � � LX such that
(�, �) � F, (� � �) � 0

–
 and (� � �) � 0

–
, therefore (�, � � �) � F and (� � �, �) � F thus

(�, �) � F2, similarly (�, �) � F2. Also (�, �), (�, �) � F2. But F2 is a C-ideal so
(� � �, � � �) � F2. In conclusion (� � �, � � �) � F2 and (� � �) � � � � � 0

–
 hence

� � st (�, F2) and st (st (�, F ), F) � st (�, F2).

Definition 2.4: Let X be a nonempty set and � � wEnt (L
X) we say (X, �) is a fuzzy weil

quasi uniformity on X if it satisfies the following conditions:

(FWQE1) � is a filter of (w Ent(LX), �)

(F w QE2) For each E � � there is F � � such that FoF � E.

The pair (X, � ) is said to be a fuzzy weil quasi-uniform space.

A fuzzy weil quasi uniform space (X, �) is called a fuzzy weil uniform space if it
satisfies

(FWE3) for any E � �, E –1 is also in �.

It is useful to note that the symmetric fuzzy weil entourages E of � form a basis for �.
Infact, if E � � then E–1 � � so E � E –1 is a symmetric fuzzy weil entourage of � contained
in E.

Definition 2.5: Let (X, �), (X �, ��) be two fuzzy weil uniform space. A mapping f : X � X �
is said to be uniformly homomorphic such that ( f

�
  � f

�
 )(E) � �� whenever E � �, f

�
 : LX �

LX � , f
�

(�)(y) = �f (x) = y � (x) we will denote by F weil-UNIF the category whose objects are
fuzzy weil uniform spaces and morphisms are uniformly homomorphism mappings.

Now we define the Fuzzy topology generated by a Fuzzy weil quasi uniformity.

Theorem 2.6: Let (X, �) be a fuzzy weil quasi uniform space, mapping i : L
X � LX

be defined as follows:

�A � LX i (A) = �{C � LX |�E � �, st(C, E) � A}

then i is an interior operator on LX.

Proof: (I01) Since st(C, E) � 1 for every E � � so i (1
–
) = 1

–
.

(I02) i (A) = �{C � LX|�E � �, st (C, E) � A} since C � st (C, E) for all C � LX then
i(A) � A.
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(I03) We need to prove i(A) � i(B) � i(A � B) for arbitrary A, B � LX. Infact, since
for arbitrary E, F � � and arbitrary A, B, C, D � LX such that st(C, E) � A and
st(D, F) � B, we have st(C � D, E � F) � st(C, E) � st (D, F) � A � B so
i(A) � i(B) = �{C � D | C, D � LX, �E, F � �, st (C, E) � A, st(D, E) � B} �
�{C � D | C, D � LX, �E, F � � st (C � D, E � F) � A � B} = i(A � B).

(I04) By (I02) we have i (i(A)) � i(A). We want to show that i(A) � i(i(A))C � LX,
E � �, st (C, E) � A by (FWQE2) we have �F � �, FoF � E then st (C, FoF) <
st(C, E) by Proposition 2.3(d) st (st(C, F), F ) < st (C, FoF) � A then st(C, F)
� i(A) then C � i (i(A)) so

i(A) = �{C � LX | �E � � st(C, E) � A} � i(i(A)).

Definition 2.7: Let � be an F weil quasi uniformity on X the interior operator defined
in [2.5] is called the interior operator on LX generated by F weil quasi uniformity �. The
L-fuzzy topology generated by the fuzzy weil quasi-uniformity �, denoted by �(�), (LX, �(� ))
is called the L-fts corresponding to (LX, � ).

Theorem 2.8: Let (LX, �) be an fuzzy weil quasi-uniform spaces, mapping c : L
X � LX

be defined as

�A � LX, c(A) = �{st (A, E ) | E � �}

then c is a closure operator on LX.

Proof: (C01) Since for every E � � st(0
–

, E ) = 0
–

 so c (0
–

) = 0
–

.

(C02) Since A � st(A, E) for every E � � then A � c(A).

(C03) We need only to prove c(A � B) � c(A) � c(B) for arbitrary A, B � LX. It is
trivial.

st(A � B, E1 � E2) � st(A, E1) � st(B, E2) suppose e � LX such that e � c(A) � c(B)
then e � c(A), e � c(B) then there exist E, F � � such that e � st(A, E), e � st(B, F)
then e � st(A � B, E � F), e � c(A � B) so c(A � B) � c(A) � c(B).

(C04) For every A � LX we have st(st (C, F), F)) < st(C, FoF). For every A � LX,
E � �, c(A) = �{st(A, E) | E � �}. By (FWQE2) there exist F � � such that
FoF �  E c(c(A)) � �{st(st (A, F), F) | F � �} � �{st(A, FoF) | F � �} �
�{st(A, E), E � �} = c(A) and by (C02) c(A) � c(c(A)) so c(c(A)) = c(A).

Definition 2.9: Let � be an fuzzy weil quasi-uniformity on X. The closure operator defined
in (2.8) is called the closure operator on LX generated by the fuzzy weil uniformity �.

Theorems (2.6), (2.8) shows that every L-fuzzy quasi uniformity can generates an
L-fuzzy topology, but the unexpected result is that its reverse is also true.
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Theorem 2.9: Let (LX, �) be an L-fts, then there exists an fuzzy weil quasi uniformity
� on X such that � = �(� ).

Proof: For every U � �, define a self mapping fU on LX as follows:

�A � LX, fU(A) = 

1

0

0 0

A U

U A U

A

�
�

��
� ��

It is easy to find that fU is value increasing,

fU(�A) = �A � ��fU(A), fU ofU = fU .

Let D = { f |�� � [�] < w, f � �U � ��fU} then for all g, f � � there exist h � � such that
h � g � f (1) take � � [�]<w such that f � �U � ��fU = �U � �( fU ofU) since for every V � �
fV ofV � (�U � ��fU) 0 (�U � ��fU) so take g = �U � ��fU we ahve g � � and gog � f (2)

Now we define E = �{��� �/��� Uf} such that Uf be the cover of all f-small elements
of LX and denote �� = {E � LX � LX/E = �� � Uf � � �}.

(FQW1) It is obviously satisfied by (1).

(FQW2) Let Ee � �� we can take f � � such that f 3 � e. By Lemma 1.4, we have Ef oEf

= (�� � Uf � � �) o (�� � Uf � � �). Let (a, c) � Ef oEf then (a, b) � (�, �) and
(b, c) � (�, �) where �, � � Uf then a < � < st(�, Ef ), c < B < st (�, Ef ) we
prove st(�, Ef ) is e-small.

Let � � st(�, Ef) � 0
–

, (�, �) � Ef with � � � � 0
–

 and � � � � 0
–

 then �, � is f-smallness
then � < f (�), � < f (�) then � < f 2(�). Therefore, for every (��, ��) � Ef such that �� ��� � 0

–

we have �� � f (�) < f 3(�) � e(�). Then st(�, Ef ) is e-small then st(�, Ef ) � st(�, Ef ) � Ee so
(a, c) � Ee.

This theorem can be restated as “every L-fts is fuzzy weil quasi-uniformizable”.
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