
International Journal of Control Theory and Applications351

A Survey on Response Time Analysis Using Linux Kernel Completely
Fair Scheduler for Data Intensive Tasks

Rucha Shankar Jamalea, Sunita Dhotreb and Pooja Tanaji Patilc
aM.Tech, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, Pune, India. Email: rjrucha98@gmail.com
bAssociate Professor, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, Pune, India. Email: ssdhotre@
bvucoep.edu.in
cM.Tech, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, Pune, India. Email: poojapatil2829@gmail.
com

Abstract: Nowadays, pocket sized mobile devices with updated mobile operating system are used over a huge range.
They provide numerous facilities and features which eventually ease our day to day requirements. However, while
providing these variant attributes one major problem is Battery limitation.
This paper surveys earlier discussed solutions on mobile device’s battery capacity as well as it also gives a short
cogitation of analysis of response time of battery oriented mobile devices with the help of Linux Kernel Completely
Fair Scheduler (CFS) and Dynamic Voltage & Frequency Scaling (DVFS) techniques.
Keywords: Mobile Devices, Battery Limitation, Response Time, Completely Fair Scheduler (CFS), Dynamic Voltage
& Frequency Scaling (DVFS).

InTRoDUCTIon1.
IBM’s BlueGene[1] and many other fastest supercomputers have Linux as their main operating system.
Linux has also ported to various handheld devices such as Apple’s iPod and iPhone. Main platforms such as
smartphones, tablets, smartTVs, Android, Firefox OS, Mer, and Tizen use Linux platforms[2]. However, these
portable devices have limited power capacity and while running multiple tasks at a time battery limitations
arises.

Modern Mobile Operating systems[3] possess more features compared to the old cellular handheld phones.
However, more features require more battery consumption. Unfortunately, battery lifetime[4] of modern mobile
devices is fragile.

Modern mobile devices are observing huge growth regarding efficiency, performance, and multitasking to
meet the user needs. Due to this many electronic consumers are motivated to transform their system regarding
products quality of experience. Hence in overall, there should be an appropriate balance between modern

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 9 • Number 44 • 2016

Rucha Shankar Jamale, Sunita Dhotre and Pooja Tanaji Patil

International Journal of Control Theory and Applications 352

technology implementations and battery limitations[3][4]. A failure to this may lead significant degrade in the
quality of experience.

Process scheduling [5][26] is a vital part of Multiprogramming operating systems. This kind of operating
systems [5] permits multiple processes loaded into the executable memory at a time; these full process shares
the CPU using time multiplexing.

The Linux scheduler [6][7] is a priority based scheduler which schedules tasks based upon their static
and dynamic priorities. Linux uses dynamically allocated process priorities for nonreal time processes. The
earlier versions of Linux[8], Linux pre 2.5 and Linux pre 2.5-2.6.23 used Multilevel feedback queue and O(1)
scheduler respectively, while the later versions of Linux post 2.6.23 use Completely Fair Scheduler. The basic
idea of CFS[7][8][9] is its even balance (fairness) in providing processor time to the processor.It means a fair
amount of the processor is given to the processes. CFS represents this balance in fairness via the per-task wait
runtime (nanosecond-unit) value.

Various open source communities use Linux as their principal operating system. Due to increasing Linux
users, Linux kernels[27][28] CPU schedulers are enhanced with better performance and effectivity.

RELATED WoRK2.
In this paper R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T. Kyong [10] proposed Response time, performance
estimation scheme for smartphones by applying Dynamic Voltage & Frequency Scaling (DVFS)[11]scheme at
CPU and CFS at Linux kernel.

DVFS techniques influence smartphone’s overall time performance since DVFS works at CPU and change
in operational frequency at CPU indirectly affects access speed and responsiveness for task execution. While
CFS also has a significant impact on task execution at Linux Kernel level.

The proposed scheme here is implemented on LG Optimus G smartphone Currently, all androids use CFS
at Linux kernel level because CFS is default scheduler of Linux.CFS works under fairness mechanism. Also,
CFS can apply priority mechanism on different task operations through nice value control. All the above leads
to a significant influence on the response time of applications under execution.

Therefore the proposed system works as a response time estimator to analyze above effects under different
load conditions.

A. CFS
Completely Fair Scheduler[7][8][9][29] deals with Ideal multi-tasking CPU which means CPU with 100% power
and can execute each task at an equal speed, in parallel, each at 1/nr_running speed. The CFS tries to eliminate
unfairness from the system. In a system, CFS keeps track of fair share of the CPU which is allocated to every
process. Hence, CFS runs an equitable clock at a fraction of real CPU clock speed.

CFS is the default scheduler of Linux kernel; recently all Android smartphone use CFS scheduler. The
ultimate goal of CFS is to provide the fair amount to all the tasks proportional to their weights. In CFS algorithm
weight of each task is decided by each tasks nice value, when the nice value of a certain task is decreased by
one, then the weight of the task is increased by 1.25 times.

CFS is a virtual runtime scheduler. The CFS algorithm uses Red-Black Tree, in this tree the tasks are sorted
in a tree form from left to right according to the increasing order of their respective virtual run times. Meanwhile,
CFS executes its task initiating from left most leaf moving towards the right.

A Survey on Response Time Analysis Using Linux Kernel Completely Fair Scheduler for Data Intensive Tasks

International Journal of Control Theory and Applications353

B. DVFS Techniques
DVFS techniques[12][13] are widely applied in smartphones to reduce power consumption by changing CPU
core frequency and system voltage, and eventually, this results in variance in response time in smartphones
while executing a certain application.

DVFS schemes include different governors [14] like Ondemand governor, Performance governor,
Conservative Governor, Powersave Governor and Interactive governor.

Ondemand governor [15] is the default governor of maximum Android-based smartphones. Ondemand
governor was introduced in the Linux Kernel 2.6.10. Depending on the processor utilization it dynamically
changes the processor frequency. The use of the processor is checked, and if the value exceeds the threshold,
this governor set the frequency to the highest available value. If the utilization is less than the threshold, the
governor steps down the frequency. The range of frequencies can be controlled by the governor and also the rate
of checking the utilization of the system.

The proposed system [10] works on Optimus G Smartphone. The working here is particularly explained
with respect to different load situations apparently, run in the background which helped to analyze Response
Time Estimation and Response Time Performance.

The two most important terms which helped the result computation are Instantaneous event unit and Time
measurement unit. Hence the proposed system effectively captured the variation in response time during a change
in CPU frequency and applications running background.

C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun [16] explained in their paper that two
schedulers are used for scheduling technique firstly O(1) and secondly CFS. O(1) scheduler was used for earlier
versions of Linux kernel later it get replaced with CFS.

The main function of CFS is to maintain fairness between the executing processes. Moreover, at a particular
extent, this characteristic of CFS is redeemed all over. However, fairness of CFS is not proved practically. Hence
this paper has a centralize approach towards the scientifical demonstration of CFS and O(1) by resulting factual
solutions with genuine computations.

O(1) scheduler[8] is an improvement over Linux foremost Scheduler O(n). O(1) had a significant refinement
in Java virtual machines concerning in handling sizeable executing threads. In O(1) each processor has a run
queue, and each run queue keeps track of all runnable tasks and programs analog with the CPU using two arrays
Active array and Expired array. It is a priority based scheduler.

CFS [7] is the default scheduler of Linux Kernel. Its main function is to have a fair share amongst all the
processor. Therefore it takes equal time for all processes; it is also responsible for CPU utilization and resource
allocation. The main idea behind CFS is its working which is purely based on priority and timeslice mechanism.
In CFS highest timeslice is received by a process having the highest priority. In CFS process management is
done by using Red-Black Tree. Red Black Tree is a binary search tree and also known for its self balancing
technique. Comparison of both the schedulers is carried out by Interactivity and Fairness test. This assessment
proved that CFS has a benefit of fair CPU bandwidth distribution and interactivity performance. This is clarified
by the enactment of execution of each task which is allocated with a fairly divided time slice. CFS is also prior
in terms of an algorithm for evaluations of interactive tasks.

In this paper, J. Wei, E. Juarez, M. J. Garrido, and F. Pescador [17] implemented Energy based fair
queuing (EFQ) scheduling algorithm. EFQ is used for maximizing the user experience in battery limited
mobile systems. EFQ relies on energy oriented scheduling algorithms which support balanced energy usage

Rucha Shankar Jamale, Sunita Dhotre and Pooja Tanaji Patil

International Journal of Control Theory and Applications 354

and effectual time restraint compliance. This paper shows how exactly EFQ is more flexible than Linux
scheduler.

This article improves the working of EFQ and plays a vital role by maximizing the user experience in
battery oriented mobile devices. The main work here deals with contributing traditional fair queuing algorithm
regarding energy domain. The analysis is done by the help of test bench tool which is created based on Linux
scheduler to verify the proposed algorithm here. Due to this new testbench EFQ properties are analyzed in an
appropriate manner with ease and no flaws. Also, EFQ scheduler here is compared with Linux default scheduler
to show its advantage on enhancing user experience in battery limited mobile devices.

In this paper, J. Wei, R. Ren, E. Juarez, and F. Pescador [18] explained the implementation of Energy base
Fair Queuing (EFQ) Linux based scheduling algorithm. EFQ is an improvement over traditional fair queuing
algorithm. The main characteristic of EFQ is proportional power share into the system.

This paper concentrates on improving the implementation of EFQ algorithm with the help of testbench
Pthread in several ways.

1. MiBench an open source benchmark suite is also used to program the task under test. Three tasks are
programmed here interactive, batch and real time and these tasks are tested under EFQ scheduling
algorithm.

2. Hardware metering measures the power consumption of selected benchmarks and the obtained outputs
in terms of energy values is given as an input to Pthread based testbench

3. The total power consumption also includes energy used by I/O operations so that the overall systems
power sharing ability can be achieved to some greater extent.

4. The Linux Nice value table which maps the tasks priority wise in collaboration with its Kernels load
weight; is redefined with the precise allocation of power share.

The respective paper follows several related work. The Venn diagram for References used in this paper is
as shown in Figure 1 below:

Figure 1: Venn diagram for References

PRoPoSED SCHEME3.
Previously many research are done with Energy efficiency [19], Energy contingent, Energy fidelity but considering
Operating System domain to deploy battery constraints are very scarce.

A Survey on Response Time Analysis Using Linux Kernel Completely Fair Scheduler for Data Intensive Tasks

International Journal of Control Theory and Applications355

Devices are getting smaller in size with more amenities; hence it is crucial to maintaining a balance between
battery capacity and different modern features of the portable devices, even more in handheld portable devices.
The power management schemes were introduced to challenge battery limitation, and they have more impact
on memory, CPU, Network Bandwidth and Performance.

The power management [20] scheme mainly focuses on two aspects Dynamic Power Management (DPM)
and Dynamic Voltage and Frequency Scaling (DVFS). The DPM deals with executing the high workload at a
maximum CPU speed while remaining workload at low power mode. The DVFS deals with executing processes
at a low performance setting in terms of voltage and frequency.

The main motive is to design a scheduler driven DVFS scheme. To achieve this, already existing DVFS
techniques are loaded into Linux Kernel module as shown in Figure 2 This aspect helps to reduce extra power
usage by setting lowest value for processors frequency and voltage.

DVFS have its own set of different governors. Governors have a more controlled way for changing the
CPU frequency.

Figure 2: Proposed System Architecture

The proposed system focuses on estimation of response time [21][22] analysis by designing scheduler
driven DVFS scheme. Response Time Analysis of Linux Kernel Completely Fair Scheduler for Data Intensive
Task is carried out by analysis of frequency change by the help of DVFS properties invoking in Linux kernel
with the help of Data Intensive Task. To optimize the user experience the Completion time or Response time of
a Process is the main focus of the work. For the given frequency limits the utility of CPU Scheduling Algorithm
will be explored.

Frequency analysis is done by the help of Data-intensive task. Data-intensive tasks are used to describe
applications that are I/O bound or with a need to process large volumes of data. This kind of claims most of
their processing time[23][24][25] to I/O and movement and manipulation of data. Data-intensive platforms use
parallel computing approach combining multiple processors and disks to large computing clusters connected
using high-speed communications switches and networks.

Rucha Shankar Jamale, Sunita Dhotre and Pooja Tanaji Patil

International Journal of Control Theory and Applications 356

The response time analysis determines the schedulability of real-time systems on a fixed priority basis.
The main objective of this study is to identify the points of interest with respect to frequency change within the
Linux kernel for the response-time analysis.

ConCLUSIon4.
Modern handheld devices have several advanced inbuilt features due to this, devices possess common battery
limitation problem. Above paper reviewed various solutions to overcome this problem. One of the solutions is
proposed in this paper with respect to Operating System track which is to invoke DVFS techniques in Linux
scheduler CFS in collaboration with frequency change. This aspect directly works on kernel level approach.

Acknowledgment
The authors would like to thank all the Bharati Vidyapeeth College of Engineering staff members for their
valuable inputs and support.

REFEREnCES
A. Gara [1] et. al., “Overview of the Blue Gene/L system architecture, ” in IBM Journal of Research and Development, Vol.
49, No. 2.3, pp. 195-212, March 2005.

F. Lin and W. Ye, “Operating System Battle in the Ecosystem of Smartphone Industry, ” [2] 2009 International Symposium
on Information Engineering and Electronic Commerce, Ternopil, 2009, pp. 617-621.

Peter Loscocco, N. S. A. “Integrating flexible support for security policies into the Linux operating system.” [3] Proceedings
of the FREENIX Track: 2001 USENIX Annual Technical Conference. Boston: USENIX Association. 2001.

Cuervo, Eduardo, et. al., “MAUI: making smartphones last longer with code offload.” [4] Proceedings of the 8th international
conference on Mobile systems, applications, and services. ACM, 2010.

Jensen, E. Douglas, C. Douglas Locke, and Hideyuki Tokuda. “A Time-Driven Scheduling Model for Real-Time Operating [5]
Systems.” RTSS. Vol. 85. 1985.

Wong, Chee Siang, et. al., “Towards achieving fairness in the Linux scheduler.” [6] ACM SIGOPS Operating Systems Review
42.5 (2008): 34-43.

Pabla, Chandandeep Singh. “Completely fair scheduler.” [7] Linux Journal 2009.184 (2009).

Wang, Shen, et. al., “Fairness and interactivity of three CPU schedulers in Linux.” [8] Embedded and Real-Time Computing
Systems and Applications, 2009. RTCSA’09. 15th IEEE International Conference on. IEEE, 2009.

Kumar, Avinesh. “Multiprocessing with the completely fair scheduler.” [9] IBM developerWorks (2008).

R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T. Kyong, “Response time performance estimation in smartphones applying [10]
dynamic voltage & frequency scaling and completely fair scheduler, ” Proc. Int. Symp. Consum. Electron. ISCE, Vol. 2,
No. 2, pp. 1–2, 2014.

Le Sueur, Etienne, and Gernot Heiser. “Dynamic voltage and frequency scaling: The laws of diminishing returns.” [11] Proceedings
of the 2010 international conference on Power aware computing and systems. 2010.

Choi, Kihwan, Ramakrishna Soma, and Massoud Pedram. “Dynamic voltage and frequency scaling based on workload [12]
decomposition.” Proceedings of the 2004 international symposium on Low power electronics and design. ACM, 2004.

Dhiman, Gaurav, and Tajana Simunic Rosing. “Dynamic voltage frequency scaling for multi-tasking systems using online [13]
learning.” Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium on. IEEE, 2007.

D.Brodowski, “CPUFreq Governors, ” [14] https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt, Nov. 2013.

A Survey on Response Time Analysis Using Linux Kernel Completely Fair Scheduler for Data Intensive Tasks

International Journal of Control Theory and Applications357

Pallipadi, Venkatesh, and Alexey Starikovskiy. “The ondemand governor.” [15] Proceedings of the Linux Symposium. Vol. 2.
No. 00216. sn, 2006.

C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun, “Fairness and interactive performance of O(1) and CFS [16]
Linux kernel schedulers, ” Proc. - Int. Symp. Inf. Technol. 2008, ITSim, Vol. 3, No. 1, 2008.

J. Wei, E. Juarez, M. J. Garrido, and F. Pescador, “Maximizing the user experience with energy-based fair sharing in battery [17]
limited mobile systems, ” IEEE Trans. Consum. Electron., Vol. 59, No. 3, pp. 690–698, 2013.

J. Wei, R. Ren, E. Juarez, and F. Pescador, “A linux implementation of the energy-based fair queuing scheduling algorithm [18]
for battery-limited mobile systems, ” IEEE Trans. Consum. Electron., Vol. 60, No. 2, pp. 267–275, 2014.

Paul, Kolin, and Tapas Kumar Kundu. “Android on mobile devices: An energy perspective.” [19] Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on. IEEE, 2010.

Carroll, Aaron, and Gernot Heiser. “An Analysis of Power Consumption in a Smartphone.” [20] USENIX annual technical
conference. Vol. 14. 2010.

Barabanov, Michael. [21] A linux-based real-time operating system. Diss. New Mexico Institute of Mining and Technology,
1997.

Dilipkumar, Vora Shivani, M. Tech, and S. S. Dhotre. “Runtime CPU Scheduler Customization Framework for Real Time [22]
Operating System.”

Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. “A Modified O (1) Algorithm for Real Time Task in Operating [23]
System.”

Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. “A Study of Modified O (1) Algorithm for Real Time Task in Operating [24]
System.” Sinhgad Institute of Management and Computer Application NCI2TM (2014).

Karande, Poonam, S. P. Dhotre, and Suhas Patil. “Task management for heterogeneous multi-core scheduling.” [25] Int. J.
Comput. Sci. Inf. Technol 5.1 (2014): 636-639.

Silberschatz, Abraham, et. al., [26] Operating system concepts. Vol. 4. Reading: Addison-wesley, 1998.

Bovet, Daniel P., and Marco Cesati. [27] Understanding the Linux Kernel: from I/O ports to process management. “ O’Reilly
Media, Inc.”, 2005.

R. Love, “Linux Kernel Development, ” 2nd Edition, Noval Press, ISBN 0-672-32720-1, 2005.[28]

I.Molnar, “Modular Scheduler Core and Completely Fair Scheduler [CFS], ” [29] http://lwn.net/Articles/230501.

