
113 International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

A Component-Based Model for Software Reusability

G. Manivasagama M. Anand Kumarb and B. Bharathic

aResearch Scholar, Department of Computer Science, Karpagam University, Coimbatore, Tamilnadu, India
E-mail: mani.mca.g@gmail.com
bAssociate Professor, Department of Information Technology, Karapagam University, Coimbatore, Tamilnadu, India
E-mail: anand2kumarm@gmail.com
cAssistant Professor, Department of Information Technology, Karapagam University, Coimbatore,Tamilnadu,
E-mail: India drop2bharathi@gmail.com

Abstract: Component-based model used to develop and combine the product components which make easy for the
software reusability with high quality and simple cost effective for testing . Component based software development
approach makes use of already surviving software components to create new application developments. One of the
most vital activities in the reuse based process is the selection of suitable components. The software development
cost and time simultaneously reduced the paper investigates the existing model and proposes a new model to further
improvement software quality with the cost reduction
Keywords: Component-based model, Reusability, Software quality.

1. INTRODUCTION
The main idea of the component-based model is building the systems from the already existing components.
The model has several benefi ts: to improve effi ciency, enhance the ability to reuse components and maintain
the complexity, reducing the overall time and to fi nd how much time need to develop software, decreasing of
production costs through software reuse, enhancing the quality of system, reducing maintenance costs, increase
of development so that the advantages for the Component-based development is reducing the development
time and cost and improving the software quality and maintainability.

Component assessment is the core of the component selection process. Component quality models have
put forward to decide upon a measure against the prospect components. It can be analyzed and then compare
with other components. Component-based model reduces the development time and cost and improves the
software quality and maintainability.

The component-based software engineering process consists of the following six phases:
1. Requirements Analysis,
2. Design

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10 • Number 31 • 2017

114International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

3. Component identifi cation and Customization

4. System Integration

5. System Testing

6. Software Maintenance

1.1. Requirements Analysis
In Requirements Analysis phase all the component requirements like functional, and non-functional are collected
and are analyzed and specifi ed based on a well-defi ned methodology such as UML. The result of this phase is a
component specifi cation document.

1.2. Design
In Design phase engineers design components, based on the component requirements specifi cation from the
previous phase. The component design includes three tasks. The fi rst task is to conduct component design for
the functional logic and data objects and make trade-off decisions on technologies and operation environments.
The second task is to follow a selected component model and to work on component realization by providing
data exchange mechanisms for component communication and interactions. The fi nal task is to defi ne consistent
approaches to support component packaging and to deployment. The outcome of the phase is the Design
Specifi cation Document.

1.3. Component identifi cation and Customization (Coding)
It is mentioned in the earlier sections that reusability and reusable components form the backbone of the CBSD
process. In the phase suitable components are identifi ed and are customized. A specifying new component
is done in the previous phases. Implementation of the components is performed using a specifi c technology
and programming language. It is based on the design and targeted operating environments. The focus is to
compose and assemble components that have to develop separately, and even independently. The Component
identifi cation, customization and integration are the crucial activities in the life cycle of Component Based
systems. It includes two main parts:

1. Evaluation of each candidate components is based on the functional and quality requirements that
will be used to assess the component.

2. Customization of the candidate components is to be modifi ed before being integrated into a new
Component Based software systems.

1.4. System- Integration
It is possible for a component to be implemented for more than one operating environment. Each implemented
component depends on a specifi c technology set and targeted operating environment. Each component that is
identifi ed and customized are integrated together to meet the specifi cations. Integration is to makes key decisions
and provide communication and coordination among various components of a target software system.

1.5. System-Testing
System testing is conducted by separate testing team, Follows Black Box testing techniques depends on Software
Cost. Build level testing to It validate internal processing and depends on external interface processing.

115 International Journal of Control Theory and Applications

A Component-Based Model for Software Reusability

2. RELATED WORK
Based on above mentioned model several process model are as follows

2.1. Waterfall model
The Waterfall Model was fi rst created by Royce in 1970. Its linear model is different phase and are inter
connected so that result of one phase becomes subsequently input values for the next phase. The Waterfall
Model is mostly used by software engineers and becomes the important prevalent software life cycle model.

The model is initially developed to identify the phases inside the software development as a linear series
of actions which must be existed before the next is commenced.

Drawback
1. Main drawback of Waterfall Model is infl exible division of phase. Today requirements are changing

quickly in all the phase and overlaps.

2. In the Waterfall Model output are verifi ed in the last stage.

Therefore Waterfall Model is effi cient for such a situation and are fi nely defi ned.

2.2. Incremental Model
To overcome the drawback of the Waterfall Model a cycle model called as Incremental Model was introduced
by in the Incremental Model the characteristics of linear model and continuous characteristic of prototype
life cycle model, are joined. In the incremental model partial implementation of systems construct build after
improving the execution require functionality achieve.

Challenges : It is time consuming process. The user of the systems involve the whole process.

2.3. Evolutionary model
Evolutionary prototypes provide the incremental software development, so that software systems may be
gradually developed and tested. It allows the major bugs to be exposed and corrected early, which means that
they are often cheaper to plan , without any idea to manage sequences, this process cannot be generate into
uncontrollable hacking.

2.4. Prototyping model
Normally customer of the software system initially contains broader requirement of the systems. In the study a
immediate prototype can be build. Prototyping provides constructive feedback to the designers and the potential
customers. The system needs can be solved and refi ned early during the software development. The prototype
is corrected by the users and improves his needs.

2.5. Spiral Model
The Spiral Model was fi rst introduced by Boehm, is an development software life cycle model. In the spiral
life cycle model various kinds of phase are represented as a spiral rather than the series of behaviour. The
Spiral Model makes the software development more fl exible and propose, mainly to the accuracy of the
software development through prototyping. In the Spiral Model the software is developed in a sequence of
incremental release. The Spiral Model is separated into a number of regions; typically these are between
three to six.

116International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

2.6. V. Model

In the V model the process begins with a usual way by the requirements engineering and specifi cation, followed
by system specifi cation.

In a Non-Component-Based approach the process would continue with the unit design, implementation
and test. Instead of performing the time and efforts consuming choose appropriate components and integrate
them in the system.

2.7. Y. Model

Mainly top-down or bottom-up strategy of software production is not quite appropriate. The Y model preaches
atop-down or bottom-up fashion for software development.Thesoftware engineer meet have the knowledge
about the application domain. The knowledge naturally determines the prevailing strategy of the software
development.

2.8. A Model

The A shape Model developed to support the parallelism and evolutionary design of the application and test
plans.

2.9. Agile

Agile development model is a type of Incremental Model. The Software is developed in the incremental
and rapid cycles. It results in the small incremental releases with each release building on the previous
functionality. Each release is thoroughly tested to ensure the software quality and it is maintained. It is used
for critical time applications. Extreme Programming (XP) is currently one of the most well known agile
development life cycle model.

Pros:
1. Flexibility to make changes to the requirements

2. Testing is integrated from the beginning to the end

3. Speedup to market

4. Improved Risk Management

Cons:
1. Projects can run longer than the anticipated

2. Requires high level commitment of time and energy from the developers

Challenges : The model does not provide a notation or a set of constraints to increase reusability.

3. DISCUSSION

3.1. Is there any Benefi ts of Software Reusability?

88% of the article agrees that there are many benefi ts of software reusability. By reviewing them, it seems that
the authors agreed that the major benefi ts are the following:

117 International Journal of Control Theory and Applications

A Component-Based Model for Software Reusability

Increase productivity : Software reusability improves the productivity by using the existing software
products the smaller ones are creating from scratch.

 According to Singh [4], the concept of reusing the available software components consideras a key feature
in developing productivity.

Minimize cost : The rate of developing software from scratch can be store by identifying and extracting.
The reusable components from the already developed and existing systems or legacy systems [2].

Improve quality : A good software reuse assists the increase of reliability and quality [1].
According to [24] the improve software quality uses any software over time contains lot of errors which

were not discernible when it was created. Therefore, a software product reused many times will contain low
bugs and defects than the newly created software.

Increase dependability : Increase dependability will decrease the time of the software development since
it reduces the development failures [16]. Reused software must be tried and tested in the working systems. It
should be more reliable than new software [6].

Accelerate development : Reusing software can be an accurate system production because the both
development and validation time will be reduced [16]. According to [17] Reusing the software to create a new
software product can reach the market on the time for satisfying the customer requirements.

Generalized software components can reduce the time of product construction and delivery of the software.
Reduce process risk : If software exists, there is a low uncertainty in the costs of decreasing software

the in the costs of development. It is an important factor for the project management as it reduces the margin
of error in the project cost estimation. It is specifi cally true when relatively large software components such as
sub-systems are reused [16].

According to [17] Risk is reduced in developing a new software when reusable components already
encompass the desired functionality and have the standard of interfaces to facilitate integration.

3.2. Is the Study List the Different Levels of Software Reusability?

From the literature survey it was identifi ed that 71% of the articles proposed the explicitly or implicitly of
different reusability levels in the software life cycle. Reuse is separated into following levels

Specifi cation reuse : Understanding the building of the software development is one of the most tedious
aspects of software development, because sometimes customers do not really know their needs, so capitalizing
the previously used abstract artefacts like requirement specifi cation document may open the mind of software
customers to more functionality that could have been overlooked. The reuse of specifi cation is considered as a
higher level of reuse [6]

Design reuse: The design processes is the most engineering disciplines based on the reuse of the existing
systems or components. Software reusability is more specifi cally refers to the design features of a software
element (or collection of software elements) that enhances its suitability for reuse [16].

This type of reuse is required when a system needs to be reported in an entirely different software or
hardware environment [6].

Code reuse: In Computer Science and Software Engineering the reusability is the likelihood a segment
of source code that can be used again to add new functionalities with a slight or no modifi cation [16]. The
reusability of a piece of code does not mean that it should be able to copy and paste the same code in several
places within the application. In fact, it exactly means the opposite meaning.

118International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

A piece of reusable code means the same code can be reused in different places without overwriting [17].
The reusable code can be an object code, data objects, source code, or standard subroutines [6].

Application system reuse : An increasing number of organizations are using software just as all inclusive
applications, as in the past, but also a component parts of larger applications. In the fresh role, acquired software
must integrate with the other software functionality [16].

The Reuse of Application system is considered as a special case of software reuse. The complete system
is reused by implementing through various range of operating systems and computers [6].

Test reuse: Reusable components are normally accompanied by the high quality documentation and
previously developed tests plans and cases.

4. STUDY OF QUALITY REVIEW ASSESSMENT

 The quality assessments are based on a checklist of factors/questions that needs to be evaluated in each study.
For assessing studies, the following questions are defi ned:

RE1: Does the study mention the software reusability approaches?
RE2: Does the study present any benefi ts to the software reusability?
RE3: Is the study list out the different levels of the software reusability?
RE4: Does the study report any barriers to software the reusability?
RE5: Does study the propose any maturity model for the reuse?
RE6: Does study propose any attributes which affect the reuse?
It is evaluated bellow:
RE1: Y (Yes) the study proposed some software reusability approaches. P (Partially) the study mentioned

one or more approaches, but did not describe it. N (No) the study did not propose any approaches.
RE2: Y, study mentioned more than one benefi ts of software reusability clearly. P, benefi ts are implicit.

N, study does not mention any benefi t.
RE3: Y, study defi ned some levels of software reusability. P, reusability levels are implicit. N, study did

not present any levels.
RE4: Y, study mentioned some barriers of reusability explicitly. P, reusability barriers are implicitly

reported. N, study did not report any barriers.
RE5: Y, study proposed some maturity models for reuse. P, study mentioned one or more maturity model,

but did not describe it. N, study did not propose any maturity model.
RE6: Y, study mentioned attributes which affect the reuse explicitly. P, attributes are implicit. N, study did

not mention any attribute These data were extracted from each paper:
1. Title and year of publication

2. Author(s) information

3. Research issues

4. Main topic

5. The full source and references.

119 International Journal of Control Theory and Applications

A Component-Based Model for Software Reusability

5. SELECTED STUDIES FOR REVIEW

Table 1

S1 Minimal information for
reusable scientifi c software

C. Hong Looks at the concept of software
reusability from the perspective of the
software engineer and the researcher

2014

S2 Reusability in Component
Based Software Development

- A Review

S. Thakral,
S. Sagar and Vinay

A literature review of various software
reusability concepts is presented

2014

S3 Software Reuse in Practice R. Keswani,
S. Joshi,
A. Jatain

Summarized software reuse research
and discussed major research

contributions.

2014

S4 Impact of Quality Attributes
on Software Reusability and

Metrics to assess these
Attributes

C. Monga,
A. Jatain,
D. Gaur

Studied various attributes or factors
that affect the reusability of software.

The most common factors are
identifi ed and their impact is analyzed.

2014

S5 Taxonomy, Defi nition,
Approaches, Benefi ts,

Reusability Levels, Factors
and adaptation of Software

Reusability: A Review of the
Research Literature

Y. Y. Ibraheem,
A. M.

Abualkishik and
M. Z.

Mohd Yussof,

Provided a systematic review of the
concept of reusability, identifying the

defi nition, Approaches, Benefi ts,
Reusability Levels, Factors and

adaptation of Software Reusability
2014

S6 Feature Prioritization for
Analyzing and Enhancing

Software Reusability

Md. Iftekharul
A. Efat,

Md. S. Siddik,
M.Shoyaib,

S. M. Khaled

An analysis of the various
attributes from the organization,

development and complexity
perspective, an optimized group of

properties are proposed

2014

S7 A Framework for Assessing
the Software Reusability using

Fuzzy Logic Approach for
Aspect Oriented Software

P. K. Singh, O. P
Sangwan, A. P. Singh,

A. Pratap

Explored the various metric that affects
the reusability of aspect oriented

software and
Estimate it using fuzzy logic approach.

2015

Study and Quality Review Evaluation of the Study
Table 2

SOURCE RE 1 RE 2 RE 3 RE 4 RE 5 RE 6

S1 N Y N N Y P

S2 P Y Y Y N Y

S3 N Y P Y N N

S4 P N N N N Y

S5 Y Y Y P N Y

S6 Y Y P N N Y

S7 Y Y N N N Y

120International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

Figure 1: Study of Quality assessment review results per question and type of assessment response

 Fig. 1 shows the coverage of every quality review assessment (RE) in the included studies. It shows that RE1,
RE2, RE3 and RE6 were covered in a rate higher than 80% by Yes and partially answered. That means that 80%
of the studies cover the approaches, benefi ts, levels and attributes of software reusability. On the contrary, RE4
and RE5 were covered in a rate higher than 50% by No. Which means the few works examined the barriers of
reusability (RE4), which can motivate the organizations to adopt software reusability approaches? Moreover,
the studies about maturity models to software reusability are limited, which highlights the need to explore this
domain in order to help organizations auditing his maturity reuse levels.

6. PROPOSED MODEL
The life cycle of components based software consists of three stages

1. The Design phase, the components are selected by the repository or designed, defi ned and constructed

2. The Integration phase, the component are integrate with others component

3. The run-time phase, the component binaries are instantiated and executed in the running system.

A software component life cycle model should defi ne the following questions
4. What are sequence components composition followed?
5. Why these sequences are needed?
6. How to compose the components?
Over the past three decades, several component based software development methodologies have

appeared. Such methodologies address some or all phases of the software life cycle ranging from requirements
to maintenance.

These methodologies have often been developed in responses to the new ideas about how to cope with the
inherent complexity of software systems.

7. CONCLUSION
Although software reusability can signifi cantly improve the productivity and quality of a software product, it
is considered as a diffi cult task especially for legacy software. In this study, we presented a literature review of
the most up-to-date research work published on software reusability. This review of various software reusability
concepts offers a good understanding of reusability for accelerating the adoption of reusability in software
development.

121 International Journal of Control Theory and Applications

A Component-Based Model for Software Reusability

The Study found study that few works examined as a barriers of reusability, which can motivate
organizations to adapt software reusability approaches. Also the studies about maturity models of software
reuse are limited, so exploring this domain for helping organizations to audit his maturity reuse levels, can be
a subject of a future work.

The Problem with the existing models is based on the requirement to prepare a Prototype and to get the
acceptance from the user and implement it But in the proposed system there are a lot of existing prototypes for
all software’s while the requirement is collected these prototypes are shown to the user and get the acceptance
and implemented Different modules have different design and implementations. So concurrent design for
various models leads to the effective fi nish project in time.

REFRENCES
[1] N. S. Gill, S. Sikka, “Inheritance Hierarchy Based Reuse & Reusability Metrics in OOSD”, International Journal on

Computer Science and Engineering (IJCSE), Vol. 3, n. 6, 201, pp. 2300-2309.

[2] B. William, Frakes and Kyo Kang, “Software Reuse Research: Status and Future”, IEEE T ransactions on software
engineering, Vol. 31, n. 7, 2005.

[3] B. Jalendar, A. Govardhan and R. Emchand, “Desiging code level reusable software components”, International Journal of
Software Engineering & Applications, Vol. 3, n. 1, January 2012, pp. 219-229.

[4] Y. Singh, P. K. Bhatia, O. Sangwan1, “software reusability assessment using soft computing techniques”, ACM SIGSOFT
Software Engineering Notes, Vol. 36, n. 1, January 2011, pp. 1-7.

[5] K. Kaur, N. Mohan and Dr. P. S. Sandhu, “Reusability of Software Components using J48 Decision Tree”, Proceedings of
the International Conference on Artifi cial Intelligence and Embedded Systems, 2012, pp.69-71.

[6] Y. Y. Ibraheem, A. M. Abualkishik and M. Z. Mohd Yussof, Taxonomy, “Defi nition, Approaches, Benefi ts, Reusability
Levels, Factors and adaptation of Software Reusability: A Review of the Research Literature”, Journal of Applied Sciences,
Vol. 14, n. 20, 2014, pp. 2396-2421.

[7] B. Kitchenham, S. Charters, “Guidelines for performing systematic literature reviews in software engineering”, EBSE,
2007.

[8] E. S. Almeida, A. Alvaro, and D. Lucrédio, V. C. Garcia, and, S. R. L. Meira, “RiSE Project: Towards a Robust Framework
for Software Reus”, Proceedings of the In IEEE International Conference on Information Reuse and Integration (IRI),
2004, pp. 48–53.

[9] O. P. Rotaru, M. Dobre, “Reusability Metrics for Software Components”, Proceedings of the the 3rd ACS/IEEE International
Conference, 2005, pp. 24.

[10] J. Finnigan, J.Blanchette, “A Forward-Looking Software Reuse Strategy”, Proceedings of the IEEE Aerospace Conference,
2007, pp. 1-9.

[11] V. Garcia, D. Lucrédio, A. Alvaro, “Towards a Maturity Model for a Reuse Incremental Adoption”, Proceedings of
Simpósio Brasileiro de Componentes, Arquitetura e Reutilização de Software (SBCARS), 2007, pp. 61-74.

[12] F. McCarey, M.O. Cinneide and N. Kushmerick, “Knowledge reuse for software reuse”, Web Intelligence and Agent
Systems, Vol. 6, n. 1, 2008, pp. 59-81.

[13] R. Kamalraj, B.G Geetha, G. Singaravel, “Reducing efforts on software project management using software package
reusability”, Proceedings of the IEE Advance Computing Conference, 2009, pp. 1624-1627.

[14] A.Sharma, P.S. Grover and R. Kumar, “Reusability assessment for software components”, ACM SIGSOFT Software
Engineering Notes, Vol. 34, n. 2, 2009, pp. 1-6.

[15] M. Dinsoreanu, I. Ignat, “A Value Analysis Model for Measuring Software Reuse”, Proceedings of the Second International
Conference IEE of Applications of Digital Information and Web Technologies(ICADIWT’09), 2009, pp. 846- 848.

[16] P.S. Sandhu, P. Kakkar, S. Sharma, “A survey on software reusability”, Proceedings of the Second International Conference
IEE of Applications of Mechanical and Electrical Technology (ICMET), 2010, pp. 769-773

122International Journal of Control Theory and Applications

G. Manivasagama, M. Anand Kumar and B. Bharathi

[17] G. Singaravel, V. Palanisamy, A. Krishnan, “Overview analysis of reusability metrics in software development for risk
reduction”, Proceedings of the International Conference IEE of Innovative Computing Technologies (ICICT), 2010,
pp. 1-5.

[18] K.S Jasmine, R. Vasantha, “A New Capability Maturity Model For Reuse Based Software Development process”, IACSIT
International Journal of Engineering and Technology, Vol. 2, n. 1, February 2010, pp. 112-116.

[19] W. Spoelstra, M. Iacob, M. Sinderen, “Software Reuse in Agile Development Organizations - A Conceptual Management
Tool”, Proceedings of the 2011 ACM Symposium on Applied Computing, 2011, pp. 315-322.

[20] B.Jalender, A. Govardhan,R. Emchand, “Designing code level reusable software components”, International Journal of
Software Engineering & Applications (IJSEA), Vol. 3, n. 1, January 2012, pp. 219-229.

[21] B. Koteska, G. Velinov, “Component-Based Development: A Unifi ed Model Of Reusability Metrics”, Proceedings of ICT
Innovations 2012: Secure and Intelligent Systems, 2013, pp. 335.

[22] C. Hong, “Minimal information for reusable scientifi c software”, Proceedings of the 2nd Workshop on Working towards
Sustainable Scientifi c Software: Practice and Experience, 2014.

[23] S. Thakral, S. Sagar and Vinay, “Reusability in Component Based Software Development – A Review”, World Applied
Sciences Journal, Vol. 31, n. 12, 2014, pp. 2068-2072.

[24] R. Keswani, S. Joshi, A. Jatain, “Software Reuse in Practice”, Proceedings of the IEEE International Conference on
Advanced Computing & Communication Technologies (ACCT), 2014,pp. 159-162.

[25] C. Monga, A. Jatain, D. Gaur, “Impact of Quality Attributes on Software Reusability and Metrics to assess these Attributes”,
Proceedings of the IEEE International on Advance Computing Conference (IACC), 2014, pp. 1430-1434.

