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GENERALIZED STOCHASTIC BURGERS’ EQUATION WITH
NON-LIPSCHITZ DIFFUSION COEFFICIENT

VIVEK KUMAR AND ANKIK KUMAR GIRI*

ABSTRACT. In this article, we study the existence of weak solutions to the
one-dimensional generalized stochastic Burgers’ equation with polynomial
nonlinearity perturbed by space-time white noise with Dirichlet boundary
conditions and a-Hoélder continuous coefficient in noise term, where a €
[1/2,1). The existence of weak solutions is shown by solving an equivalent
martingale problem.

1. Introduction

The generalized stochastic Burgers’ equation is given as

2 2
8fgt’ 9 _ 9 ;;;Sz,x) + h(t,z, f(t,2)) + —ag(t’xa’j:(t’x)) + o(t,x,f(t,x))ia g;gg;x)
(1.1)
with following boundary conditions
f(£,0) = f(t,1) =0, t>0, (1.2)
and initial data
f@0,z) = fo(x), 0<z<1, (1.3)

2
where ngtia(i,w) is a white noise with respect to space and time both as in [33] and

h = h(t,z,7),9g = g(t,z,r), and 0 = o(t,z,r) are Borel-measurable functions on
RT x [0,1] x R. For g = 0, (1.1) becomes stochastic reaction-diffusion equation
e.g. [4, 16, 28, 33]. When h =0 =0 and g(t,z,7) = %, equation (1.1) gives the
classical Burgers’ equation, which basically shows the Newton’s second law and
describes the relationship between the changing momentum and force on fluids
elements and it is used as a simple version of the Navier-Stokes equation which
represents the hydrodynamical turbulent model, see [7, 8, 14, 20] and references
there in. Next, for h = 0,0 # 0, g(t,z,r) = g, equation (1.1) is known as stochas-
tic Burger’s equation, which is preferred as a better model over the deterministic
Burgers’ equation because it also describes the chaotic phenomena in the fluid,
see, e.g., [9, 11, 21, 23]. One dimensional form of the classical stochastic Burgers’
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equation has been intensively studied in the literature [1, 2, 6, 12, 13, 17, 26],
where existence and uniqueness of solutions were discussed under the various as-
sumption on the diffusion coefficients o. Here [2, 12, 13, 17] deal with o having
Lipschitz continuity while [5, 6, 26] have used non-Lipschitz diffusion coefficient o.
But if we include the polynomial nonlinearity in the equation, then this becomes
more complicated issue to study the existence and uniqueness of solutions. To the
best of our knowledge, there are very few results [18, 19, 25], which discuss the
stochastic Burgers’ equation with polynomial nonlinearity. In 1999, Gyongy [18]
has shown the existence and uniqueness of solutions for the class of a quasi linear
stochastic partial differential equation with polynomial nonlinearity having white
noise with respect to time only. Further, in 2006, Kim [25] has discussed about
the Cauchy problem for the stochastic Burger equation by considering the nonlin-
ear term with the polynomial growth on whole real line having white noise with
respect to time. In these two works, it is assumed that the diffusion coefficient o
is either a constant or a Lipschitz function with linear growth conditions. Later in
2013, the existence and uniqueness of the global solution for Stochastic Burgers’
equation with polynomial nonlinearity driven by additive Lévy process (a stochas-
tic process with jumps) is obtained by Hausenblas and Giri [19]. However, in the
present work we also deal with stochastic Burgers’ equation with polynomial type
nonlinearity but with the non-Lipschitz o.

The equations (1.1)-(1.3), with quadratic nonlinearity in g under the condition
that o is 3-Hélder continuous (non-Lipschitz) function, was studied by Kolkovska
[26] in 2002, where she has established the existence of weak solutions by showing
the tightness for a sequence of polygonal approximation for the equation and
then solving an equvivalent martingale problem. Further, in 2014, Boulanba and
Mellouk [6], extended the work of Kolkovska [26] in d-dimension (d > 2) with more
general noise.

The novelty of the present work is that it generalizes the work of [26] by ex-
tending the quadratic nonlinearity to a class of polynomial nonlinearity and using
more general diffusion coefficient o. This work also differs from the work of [18, 25],
where they have shown existence of weak solutions of stochastic Burgers’ equation
with polynomial nonlinearity having white noise with respect to time and Lips-
chitz continuity in the diffusion coefficient o, whereas the present work considers
the a-Holder continuity in the diffusion coefficient o, where o € [1/2, 1) along with
a space-time white noise.

In this article, we study the one dimensional stochastic Burger equation with
polynomial nonlinearity perturbed by a space-time white noise i.e.

of _Pf ofr W

L) = 200+ 3L ) + o) S (0) (14)
f(t,()) :f(t71) =0, te [OaT]a (15)
f(0,y) = foly), y€(0,1) (1.6)

where p > 2 is a fixed integer and 7" > 0. Here, the existence of weak solutions
to equations (1.4)-(1.6) is established. The proof is mainly motivated by the
technique used in Funaki [16].
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The structure of the paper is the following: In the coming section, we give the
rigorous formulation of the problem. In Section 3, the discretized form of (1.4)—
(1.6) is obtained, which gives a system of stochastic differential equations in finite
dimension. Further, the existence of unique strong solution to this system of sto-
chastic differential equation is established by showing the existence and pathwise
uniqueness of weak solution for the system, which is motivated by [16]. Next, in
Section 4, we have shown the tightness property of the family of approximating so-
lutions by satisfying the multi-dimensional Totoki Kolmogorov criterion. At last,
in Section 5, the existence of weak solutions of the original problem (1.4)—(1.6) is
shown by solving an equivalent martingale problem. With no loss of generality,
we suppose that A = 1.

2. Formulation of the Problem

Definition 2.1. Let (Q,F, (F;), P) be a stochastic basis with filtration (F;) =
{Ft,t € [0,T]}. Then the Brownian sheet W (t,z) = {W(t,z) : t € [0,T],x € R}
is defined as a continuous, (F;) adapted and centered Gaussian random field with
covariance

E(W(s,z)W(t,y)) = (s At)(z Ay)
in the sense of Walsh [33].

Remark 2.2. By the properties of W, it can be proved that white noise with respect
to the filtration (F3) is a martingale measure over ([0, T] x B[0, 1]), where 5[0, 1] is
bounded Borel subset of [0, 1], [24, 33]. Now, the equation (1.4) can be interpreted
in the weak sense by the following equation (2.1).

Definition 2.3. A continuous stochastic process {f(¢,z);¢t € [0,T],z € [0,1]},
which is (F;)-adapted, is said to be solution of equation (1.4) in a weak sense, if
for every ¢ € C?[0,1], such that ¢(0) = ¢(1) = 0, and a.s. for each ¢ € [0,7], and
x € [0, 1], we have

/fty )dy/olf((),y dy+//fsy y)dyds
[ s [ [ oo

(2.1)

Further, we assume following conditions on o. First condition is that the diffu-
sion coefficient o satisfies Holder’s continuity of order o € [1/2,1) on the interval
[0, 1] i.e. there exist a constant ¢ > 0 such that

lo(r1) —a(re)| < clry — 7| Y ry,re € [0,1], (2.2)
and second one is
a(0) =o(1) =0. (2.3)
Example 2.4. Let 0 : R — R such that

— i <r<Ili.
o(r) = r(l—r) if0< r <1 (2.4)
0 otherwise.
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Then, o satisfies conditions (2.2) and (2.3).

Note: Other examples of such functions can be seen in [6].

3. The Discretization Processes

Let M > 1 be a fixed integer and define the set {ﬁ,z =0,1,--- ,M}. On this
set, consider the descretized form of (1.4)—(1.6) as

dY (t,2;) = (Ap Y (t,25) + Var (YP(t,20)))dt + VMo (Y (8, 2:))dBi(t),  (3.1)
Y(t,x0) = Y (t,2ar) = 0, (3.2)
3.3)

Y(0,2;) = fo(zs), (3.
for every i = 1,2, ,M — 1 and ¢t > 0. Here z; := {37} and {B;(t) : i =
1,2,--- M — 1} is the system of Brownian motions, derived from the Brownian
sheet W (x,t) and it is defined as

E(Bi(t)):==0Vi=1,2,--- M,
" ]E(Bi(t)Bj(S)) - {?nin{t s} i;i?

while Vs and Aj; denote the approximation of the first and second order deriv-
ative respectively with respect to the variable x in the discrete sense and defined
as

1 1

ApY (t, ;) = T
M2
and
QUi+ ) — Qlt, o)
Var(QUt, ) = 1 7
M

foralli=1,2,--- , M —1.

1
By setting Y (¢, z; £ —

M) = Yi+1(t), we can write (3.1) as

dyi(t) = (M? e () = 20:(8) + yioa (8] + Mlyess (8 — v, (t)”]>dt

+ VMo (y;(t))dB;(t) (3.4)
Re-writing (3.4) in more compact form as

M-—1
dy;(t) = Z aijy; () + Bijy; ()P | dt + VMo (y;(t))dB;(t) (3.5)

with
yo(t) = y]\/[(t) =0 te [O,T], (36)
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and
vi(0) = fo(i/M), 1<i,j<M-1, (3.7)
where
M? itj=i+1,i—-1
a;j =1 —2M? ifj=i (3.8)
0 otherwise
and

M ifj=i+4+1

0 otherwise.
It is noticed that the drift and diffusion coefficients in the (3.5) do not satisfy the
Lipschitz continuity, which restrict us to apply the classical results on the existence

and uniqueness for the solution of (3.5). The following theorem is the main result
of this section.

Theorem 3.1. Let Y (0) = (yo(0),y1(0),--- ,yar(0)) € [0,1]MFL) be some given
initial random condition and (2.2) and (2.3) hold. Then for each T > 0 and any
integer M > 1, the system

M—-1

W) =y =0  VieloT], (3.11)
5:(0) = v (3.12)

where 1 = 1,2,--- M — 1, admits a unique strong solution
Y (t) = (yo(t), y1(t),- - ,yar(t)) € C([0, T, [0, 1M +1). (3.13)

Proof. We consider the following modified form of stochastic differential equations
(3.10)—(3.12)as

M—1
dy(t) = ( S awgus(t) + Bgy; <t>>>dt VK (y(0)dBi()  (3.14)
j=1

yo(t) =ym(t) =0 vtelo,T], (3.15)

yi(0) = vi, (3.16)
where i = 1,2,--- ,M —1, g:R — R is defined as g(z) = 2P1;_1<z<1} and K :
R — R is defined as K (z) = o(x)1{9<z<1} - Since, the coefficients of (3.14)—(3.16)
are continuous and satisfies the linear growth conditions, by the [15, Theorem 3.10,
Chapter 5], there exists a weak solution Y(¢) to (3.14)—(3.16).

Next, it is shown that for every weak solution Y (¢) = (yo(t),y1(¢), - ,yam(t))
of the (3.14)—(3.16), y;(t) € [0,1] for every ¢ = 0,--- , M and ¢t € [0,7]. In order
to prove this the following lemma [29] is required.
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Lemma 3.2. Let Z={Z(t), t> 0} be a real valued semi- martingale Suppose that
there exist a function p : [0,00) — [0,00) such that fo >ty @ = +00 for all € > 0,

and fo I{Zs>°}d< Z)s < oo for allt > 0 a.s. Then the local time of Z at zero, i.e.
LY(2), is zdentwally zero for all t a.s..

Let us apply the above Lemma 3.2 for the semi-martingale y; and take p(y;) =
Yi, then [ ﬁdu = 400 for all € >0, and

t t
Lwi(s)>0) Lyi(5)>0) 5 2
. d(yi)s =/ - Mo*(y;(s))ds < 0.
/0 p(yi(s)) o (i(s))
Therefore local time LY (y;) is zero. Again we use Lemma 3.2 and Tanaka’s formula

[30, Theorem 1.2 (Chapter IV)] for (y;(¢))” := max [0, —y;(¢)] and summing over
indicesi=1---,M — 1, we get

t M—1

M-1 M—1
S )™ == [ 37 Loz 3 @) + glas(s))s
- t rM—1 ];/[ 1

= _/0 [Z Liyi(s)<o Z aijy;(s }ds

i=1 j=1
M-—1

t
/ [Z Lyi(s)<0y Z Biig(y;(s }
t rM-1
S/ [ Y lyus<oy Z aij(yj(S))}dS
0 L=t j=1

M—-1

t M—-1
+/0 |:Z 1{ 1<y, (s)< Z Bzg y] :|d5

i=1

t rM—1 M—1
S/O [ D o<y Y Ofij(yj(s))_}ds
=1 j=1
t rM-1 M—1
+M/0 {Z 1 1<yi(s)<0} Z(yj(s))} ds
=1

j=1

< [ t [g@i(s))]d& (3.17)

Finally, Gronwall’s inequality gives

M-1

Z (yi(t))” =0,

i=1
ie. (yi(t))(ie(1,2,-.m—1}} is always non-negative for each ¢ € [0, T]. Again, solving
the equation (3.17) for (1 — y;(t))~, we can obtain y;(t) < 1 for every t € [0,T]
and 1 <¢:< M —1.
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Since, for y;(t) € [0, 1], the system (3.14) coincide with system (3.10), therefore,
the system (3.10) has a weak solution with trajectories lies in C ([0, 77, [0, 1]M+1) .

3.1. Pathwise uniqueness of the solution for the descretized equations.
In order to show the pathwise uniqueness of solutions to (3.10), suppose that
v = (... 7y§\})) and Y@ = (y{¥ ... ,yg\?) are two different weak solutions
of (3.10)-(3.12), with the same Brownian motion and same initial data.

Set v; := ygl) — yl@), i=1,2,---,M —1, and t € [0,T]. Then, we have

M-—1 t M-1 t
vilt) = g i / v;(s)ds + E:j 8, / W (s)? — 4 (s)P)ds

+/O \/M<a(yi(1)(s))—a(yf)(s)))dBi(s) i=1,2,- M —1.
(3.18)

The quadratic variation (V); of v;(t),

Vo= [ VAo - Vo (s)] as

satisfies

[ Vo (" (5)) ~ VEIo (4 ()]
0

v (s) — @ (s) Ly -y (0)>0 %
2
(o) = o6 ()
= M/ 1, o (2) ds.
0 yl(l)(s) _yl@)(s) {y;"/(s)—y; " (s)>0}

Since yfl), yf) € [0,1], implies that (yil) —yz@)) € [-1,1]. Further, using condition

K3
(2.2) and then simplifying, we have

2

ds

/t VAo (" (s) — VA )]
(1) (2)
0 yl(l)(s) _ yl@)(s) {y; 7 (s)—y; " (s)>0}

t (1) (2) 200—1
S M/o (yl (s) — v (5)) 1{y§1)(8)7y§2)(s)>0}d5 <2MT < co. (3.19)

Therefore, applying Lemma 3.2 to v;(t) = ygl) —ygz) with p(v;)=v;, we obtain that

local time L?(yil) — y£2)) =0foralli=1,2,---, M — 1. Using Tanaka’s formula
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for the continuous semi-martingale v;(t), we get

) 1= 3 g [ sen(o)ui(o)is

M—-1

! / sen(vi ()" (57 — 5P (s)7)ds

i / sen(vs(s) [o<y§”<s>> - a<y§2><s>>] 4B, (s)

where ¢ = 1,2,--- , M — 1. Using the fact that o;; and 3;; are bounded, summing
overalli=1,2,--- , M — 1, and taking the expectation, we obtain

(5 1001) (o [ o)

1,7=1

+E( Z Bis / sgn(vi(s)) (! (s)” yf)(s)p)ds)

i,j=1

For I, we have

+ M—1 M-1
nee [ 1u | (X eyl )
0 =1 j=1

t M—1

<4M’E /Zm )| ds. (3.21)

Since the values of solutions lie in interval [0, 1], therefore, for I5, we estimate

¢ M—1 M—1
B ;|vz-<s>|(zl|ﬂij|)
i= j=

t M—1

gQME/ Z | vi(s) | ds. (3.22)

Inserting (3.21) and (3.22) in to (3.20) and applying Gronwall’s inequality, we have

E(gm(m) 0,

i.e., the weak solutions are pathwise unique. Finally, by a standard theorem of
Yamada and Watanabe [34](or see [10, pages 8-9]), the existence of a unique strong
solution is obtained. (]
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4. Tightness of the Approximating Processes

In this section, we demonstrate the tightness of the family of the strong solu-
tions for system of stochastic differential equations (3.5)—(3.7). Let us denote the
polygon approximation of y;(t) by far(¢,y) which is defined as

furttog) = v (0B oy = g+ v (6 B2 ) (a1 - ), a)

where t € [0,7], y € [0,1] and [y] = 2 for i < y < &L, so that we have
Y (¢, 45) = vi(t) = fu (1, M) for every t € [0,T] and 0 <4 < M.
Suppose qus (t, LM, M), €1[0,7], 0 < 4,5 < M is the fundamental solution of
the discrete heat equation such that
Dot L) = A (1.2, L £>01<ij<M-1 (42)
8th 7M7M = Aamqm ’M7M U, 1517 . .
i
0,—,=— | = Mb;,;, 4.3
CIM( 7M7 M) J ( )
with boundary conditions
J J
t,0,— | = t,1,=— | =0 4.4
M<’,M> qM(77M> ( )

forallt €[0,7T],1<j<M-—1.
Then (3.5)—(3.7) can be re-written as

= zz_: M ( ’]\if AJ/I) )
/ %_: ( Mﬂg) Bis (s())"

/Aif%f( A?X%)o(yi(s))d&(s), 1<i<M-1,

where the last integral on the right hand side represents the sum of It6 stochastic
integrals. Let us define the re-scaled formulation of the Green function G to the
heat kernel ¢, in [0,1] by

Gm (t7ya ]‘\7/[> =qum (t % ]‘\74) (My — [My])

+ qum (t, % ]{4) ([My] +1— My). (4.5)
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Therefore the linear interpolation of the fa(t,y), for y € [47, S1) is

Z MGM< "M M) i(0)
/1 %:1 [qM (t_s Z;\}l j&) Bit)i (wi(s))? (My — [My))
MqM (t —S 164) Bij(yi(8)P(IMy] + 1 — My) |ds

1 M-1 . 3
+/0 ; VMG <t— s]\}]w o(yi(s))dBy(s), 1<i<M—1,

::f]&(t? y) + f]%/[(t’ y) + f]%4(t7 y)7 (46)

where {fll\/[}, for [ = 1,2,3, denote the first, second and third summation on the
right hand side respectively.

~.

Proposition 4.1. For every M > 1, the sequence {far(t,y) : t € [0,T|} is tight
in the space C([0,T], A), where A =C([0,1],[0,1]).

Proof. By the hypothesis (2.2), we have
o(fu(t,y)) < emin((fa(t,9) (1= fur(t,9))%), Vael[l/2, 1()- :
4.7

It can easily be seen from (4.1) that fas € [0, 1] and consequently it implies through
condition (4.7) that o is also bounded by some positive constant. Further, by using
the same technique as used in the proof of Lemma 2.2 and Proposition 2.1 in [16],
for every 0 < T < oo and p € N, we obtain that there exists K := K(u,T) such
that

Bl f(t2) — fiytay) P < K( =t P 4 o —y W?) (4.8)

for every z,y € [0,1] and ¢1,t5 € [0,7T], and p € N and

Jim sup | far(ty) — f(ty) |=0. (4.9)
=X (t,y)€[0,T]x[0,1]

Here, f represents the fundamental solution of
of  0*f
oy oy’
Also, f3,(,0) = f3,(t,1) =0 and

k ¢ k k+1 k k
I (t’M) :/0 |:CIM (t_S’M’M) Ye+1(8)P — qumr (t_S’M’M> yk(S)p] ds.

Since (4.2)—(4.4) imply that gps is the fundamental solution of heat kernel associ-
ated to Ay, we have

k k k E\?

(4.10)
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From Theorem 4.2 in [22], we obtain
k

k ¢ k
7 (uM)‘ <ot [ max |1 (s, M) iy <S7M)‘d8- (4.11)

Hence, from (4.8)-(4.9), and the polygonal form of f%,, we conclude that for any
finite T'> 0 and p € N, there exists K = K(T', 1) in such a way that

max
1<k<M

ENf3i(t2) = 3t )P < K (It = a2 + o — y/?) (4.12)

for every ti,t2 € [0,7], and 0 < z,y < 1, and M € N. Substituting esti-
mates (4.8), (4.9) and (4.12) into (4.6) and using the multidimensional Totoki-
Kolmogorov criterion [31, 32] on tightness we conclude that for every T' > 0,
far(t,z) € C([0,T], A)! and the sequence {far(¢,z), M € N} is tight. O

5. The Weak Solution

In Section 3, it is shown that the sequence fi; = {fam(t,y), M > 1} is tight
in C([0,T7], A) and hence by Prokhorov’s Theorem [3, page 59 (Chapter 1)], fu
is relatively compact in C([0,7], A), As a consequence there exist a convergent
subsequence f¥, = {f¥,(t,y), M > 1,k > 1} of fas in C([0,T], A), which converges
weakly to a stochastic process f in C([0,T],A). Applying the well known Skoro-
hod’s representation Theorem, we get another probability space (Q, F, (F;), P) and
a sequence of processes [ (t,y) and f(t,y) adapted to the filtration {7;} {se(0.771,
in such a way that f 2 fM(t,y), fg f and {fM(t,y)} converges to f almost
surely on compact subset of C([0,T], A) for any T' > 0 as M — oco. Also f satisfies
the given boundary conditions in (1.5). Next, by solving an equivalent martin-

gale problem to (1.4)—(1.6), we show that f(¢,y) is the required weak solution to
(1.4)—(1.6).

Proposition 5.1. For every ¢ € C2([0,1]) such that ¢(1) = ¢(0) = 0, we have
1 1
Mylt) = [ stasway = [ 50000y

—/Ot/olf(syy)czﬁ”(y)dyds+/Ot/01fp(s,y)¢'(y)dyds (5.1)

is a martingale with the quadratic variation

t 1
M), = [ [ s 5:2)

Proof. Using the Skorohod representation theorem after multiplying both the side
by L ¢(£) in (3.1) and summing over all k = 1,2,--- , M — 1, we get, for fixed

Le(o,T) x [0, 1], [0, 1]) and C([0,T], A) both have equal topologies (see [16, page 145])
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(el 510
k

A::lqs(]@);/ot \/Ma(fM (S,A’D)dm(s). (5.3)

Since the right-hand side on (5.3), each integral in the summation, is an It6 integral
and hence these are martingale also. Therefore, bew (t) is also a martingale.
Moreover, ¢? is also an integrable function, therefore

(MY 1)) = (2_3925 (5) 3 [ VAo (7 (557 )) dBk<s>>2
s = (58 (1) 2 [ (7 (v3)) ) o
T

< (o, T), (5.4)

where ¢(¢,t) is a finite constant free from M and depends only on ¢ and T.
Therefore, Mé/[(t) — My(t) as M — oo, where My(t) is given by (5.1). Now,
since the quadratic variation of .MM (t) is given by

0= (5o () o)
=A (M;l@&(&(%))& () e

therefore, we have

Jim (MY (1 / / $2(y)dyds = (Mo (1)). (5.6)



STOCHASTIC BURGERS’ EQUATION WITH NON-LIPSCHITZ COEFFICIENT 341

Now, the main result of the persent work, is as follows:

Theorem 5.2. Let fo:[0,1] — [0,1] be a continuous function and o satisfies the
conditions (2.2)-(2.3). Then f(t,x) is a weak solution of (1.4)-(1.6).

Proof. From Chapter 2 in Walsh [33], for the quadratic variation (M(t)), we can
find a martingale measure M(ds, dx) with quadratic variation

v(dz,dt) = o(f(t, x))dtds.

Now, as in Kono and Siga [27], we can establish a space-time white noise W,
independent of M(dx,ds) such that

// 1{f<w)¢{01}}¢() (ds,dx)
+/O /0 l{f(sw):{(),l}}d)(li)W(dS,da?) (5.7)

where W; corresponds to the space-time white noise W (ds, dzx) such that

)= / / o (f(5,2)) ()W (ds, dz) (5.8)

Therefore, from Proposition 5.1 and Definition 2.3, it is proved that f is the weak
solution to (1.4)-(1.6). This complete the proof of Theorem 5.2. O
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