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Fault Classifi cation and Location of an UPFC-
Compensated Transmission Line using 
Extreme Learning Machine
M. Karthikeyan* and R. Rengaraj**

Abstract : Distance protection of transmission lines, including unifi ed power fl ow controller (UPFC), has 
been a challenging task. This article presents a novel approach for the protection of UPFC-compensated line 
using extreme learning machine (ELM). The proposed method is able to classify and locate the fault in an 
UPFC-compensated power transmission line. The samples of three-phase line currents for half cycle duration 
are used to complete this task. The robustness of the proposed method has been tested with 18560 fault 
cases with variation in parameters on a 300-km, 735-kV line with UPFC placed in the midpoint of the line. 
The proposed method is simple, reliable, effective and accurate in fault classifi cation and location of UPFC 
compensated transmission line.
Keywords : UPFC, Discrete wavelet transform, Extreme learning machine.

1. INTRODUCTION

The power transfer capability of existing transmission lines can be improved by using fl exible ac 
transmission system (FACTS) devices. FACTS devices can be used to alter power system parameters to 
control power fl ow. With FACTS technology, such as static synchronous compensators (STATCOMs) and 
unifi ed power fl ow controllers (UPFCs), bus voltages, line impedances and phase angles in the power system 
can be fl exibly and rapidly regulated. The FACTS devices have the capability of increasing transmission 
capabilities, decreasing the generation cost and improving the security and stability of power system 
[1]. During fault, the presence of compensating devices affects steady-state and transient components of 
current and voltage signals that create problems with relay functionality [2- 3].

A comprehensive survey of literature indicates that different attempts have been made for fault 
recognition algorithms. The Kalman fi ltering approach has its limitation, as fault resistance cannot be 
modeled and furthermore it requires a number of different fi lters to accomplish this task [4]. The artifi cial 
neural network-based pattern recognition procedures have found wide applications for classifi cation and 
location of faults in transmission line [5]. It needs large training sets and the learning process is usually 
consuming time. Transmission line protection using numerical methods such as wavelet transform (WT), 
S-transform and TT-transform have been attempted [6–8]. Support vector machines (SVMs) have been 
applied in power system protection [9-11] because of their high capability in classifi cation problems. 
All these attempts were trying to classify the fault and identify the faulted section in a transmission line 
compensated by series capacitor or compensated by thyristor-controlled series compensators protected by 
metal-oxide varistor.
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   The UPFC, which has been recognized as one of the best featured FACTS devices, is capable of 
providing simultaneous active and reactive power fl ow control as well as voltage magnitude control. 
The UPFC is a combination of STATCOM and static synchronous series compensator (SSSC), which 
are connected via a common DC link to allow bidirectional fl ow of real power between series output 
terminals of SSSC and the shunt terminals of the STATCOM [1]. Current and voltage signals have been 
used to determine the fault location [12]. For fault occurring behind the series capacitor (as observed from 
relaying point), the voltage across the series capacitor is estimated, which is subsequently subtracted from 
the voltage drop in the line. On the other hand, for faults occurring before the capacitor (as observed from 
relaying point), the voltage measured by the relay represents the voltage drop in the line, and hence, this 
voltage is used to calculate the voltage phasor. Although this method is conceptually simple, it requires the 
knowledge of fault zone (whether before or after the capacitor). However the proposed method uses only 
the current samples to classify and locate the fault.

2. PROPOSED METHOD FOR FAULT CLASSIFICATION AND LOCATION

The proposed method uses fault current signal samples after the fault inception at the relay location. 
Discrete wavelet transform (DWT) is used to extract the attributes from the sampled version of the three 
line currents. For this purpose, samples for the duration of only half cycle have been used.  The detailed 
coeffi cients of the three phase currents are extracted by DWT and these coeffi cients are provided at the 
input to ELM, which classifi es and locates the fault. The output of the fault classifi er is the fault type. 
The output of the fault locator is the distance in kilometer from the relay location. The fl ow chart of the 
proposed method is shown in Fig. 1.

Samples of l , l and l
a b c

DWT of l , l and l
a b c

ELM Fault Classifer ELM Fault Locator

Fault Classifer Fault Location

Figure 1: Flowchart for the proposed method

3. WAVELET TRANSFORM

Wavelet transform (WT) is a signal processing tool that performs time localization of different frequency 
components of a given signal. Therefore, by using wavelet transform, both time and frequency resolutions 
of the given current signal are accomplished. WT performs this task by using some unique analyzing 
functions called mother wavelets. The unique property of the mother wavelet is that for high-frequency 
components, the time intervals would be short, whereas for low-frequency components, the time intervals 
would be longer.  The defi nition of Continuous wavelet transform (CWT) for a given fault current signal 
i(t) with respect to mother wavelet (t) is,

 CWT(a, b) = 
1 ( ) t bi t dt
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where, a is the scale factor and b is the translation factor. Discrete wavelet transform can be written as 

 DWTT(m, n) = 
1 ( )
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where, a and b parameters in (2) are changed to be the functions of integers m, n and k, which is an integer 
variable and it refers to a sample number in the input fault current signal. Generally, DWT  is implemented 
through multi resolution analysis (MRA). A schematic diagram of MRA is shown in Figure 2.
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Figure 2: Schematic diagram of MRA

In the fi rst stage, the original fault current signal i(t) is decomposed into two halves of frequency 
components by using high-pass fi lter (HPF) and low-pass fi lter (LPF). In the second stage, the output 
of the LPF is sent again to another set of HPF and LPF to further decompose the current signal into two 
halves of frequency components. This process is repeated till the desired level of decomposition of the 
original current signal is achieved. If the sampling frequency of the original signal is fs, then as per the 
sampling theorem, the highest frequency component that the signal could contain is fs /2. Hence, in the 
fi rst level, the band of frequencies between fs/2 and fs /4 would be captured. In the second level, the band 
of frequencies between fs /4 and fs /8 would be captured and so on [13]. 

WT is useful in analyzing the transient phenomena associated with transmission line faults. This 
technique can be used effectively for realizing nonstationary fault current signals comprising of high 
and low-frequency components, through the use of a variable window length of the fault current signal. 
The ability of the WT to focus on short-time intervals for high-frequency components and long-time 
intervals for low-frequency components improves the analysis of transient signals. For this reason, wavelet 
decomposition is ideal for studying transient signals and obtaining better current characterization and a 
more reliable discrimination is achieved. 

A. Selection of mother wavelet

The choice of mother wavelet plays a major role in the characterization of the current signal under study. 
The mother wavelet, whose characteristics matches closely with the signal under consideration, would 
be the best choice. The mother wavelet should have enough number of vanishing moments to represent 
the salient features of the disturbances. The mother wavelet should provide sharp cut-off frequencies to 
reduce the amount of leakage energy to the adjacent resolution levels. The mother wavelet should obtain 
higher total energy of the same feature of the same signal. The minimum description length (MDL) data 
criterion is applied to select the optimum wavelet function. Since Daubechies wavelet functions have the 
smallest MDL indices, it has been selected as the mother wavelet in this work [14]. Based on extensive 
simulation studies carried out, Daubechies8 (db8) wavelet is chosen in this case.
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B. Selection of decomposition level

A higher decomposition level is used in order not to miss the features of current signal. Once a mother 
wavelet is selected the data independent selection (DIS) method is considered to determine the optimal 
levels of decomposition [15]. The number of decomposition levels (nLS) is given by

 nLS = 
( )log

floor
log2

sf / fæ ö÷ç ÷ç ÷ç ÷çè ø
 (3)

where fl oor() means to take integral part of the calculation result. f s is the sampling frequency and f is the 
fundamental frequency of the current signal.

4. EXTREME LEARNING MACHINE

In a single layer feedforward network (SLFN), it is possible to fi x the weights between input neurons and 
hidden neurons. The weights between hidden neurons and output neurons can be adjusted. On the basis 
of this, Guang-Bin Huang et al. (2006) proposed a new learning algorithm referred to as extreme learning 
machine (ELM). ELM randomly chooses and fi xes the weights between input neurons and hidden neurons 
based on some continuous probability density function and then analytically determines the weights 
between hidden neurons and output neurons of the SLFN.

A. Approximation problem of SLFNs

For N samples N
1{( )}k k kx ,t ,=  where xk = [xk1, xk2, ....,xkn]

T and tk = [tk1, tk2, ..., tkn]
T  a standard SLFN with N

~
 

hidden neurons and activation function g(x) is mathematically modeled as:
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1
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where, wi =[wi1, wi2, ..., win]
T is the weight vector connecting the ith hidden neuron and the input neurons, 

i = [i1, i2, ..., in]
T is the weight vector connecting the ith hidden neuron and the output neurons, 

Ok = [Ok1, Ok2, ..., Okn]
T is the output vector of the SLFN and bi  is the threshold of the ith hidden neuron. 

wi . xk  denotes the inner product of wi  and xk. These N equations can be written compactly as: 
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Here, H is called the hidden layer output matrix.
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B. ELM learning algorithm

The number of hidden neurons required to achieve a good generalization performance is much less. The 
resulting training error might not approach to zero but can be minimized by solving the following problem:
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 ELM randomly assigns and fi xes the input weights wi and biases bi based on some continuous 
probability distribution function in the case of learning a structured function, only leaving output weights 
i to be adjusted according to: 

2min H T .


-

The above problem is linear system optimization problem. Its unique least-squares solution with 
minimum norm is given by 

 ̂  = †H T  (11)
where, †H  is the Moore-Penrose generalized inverse of matrix H. The solution produced by ELM 
in Equation(11) not only achieves the minimum square training error but also the best generalization 
performance on novel patterns.

C. ELM Algorithm

Given a training set N {( ) R R 1 N}n m
i i i ix ,t | x , t ,i ,..., ,= Î Î =  activation function g(x), and hidden node 

number L, the algorithm is represented by the following steps:
Step 1:  Randomly assign input weight wi  and bias bi, i = 1,...L
Step 2:  Calculate the hidden layer output matrix H.
Step 3:  Calculate the output weight 
 ̂  = †H T ,

where T = [t1, ... tN]T. (11)
 ELM can perform direct classifi cation for multi-category problems in a fast and effi cient manner. Many 

non-linear activation functions can be used in ELM, like sigmoid, sine, hard limit, radial basis functions, 
and complex activation functions. The activation functions used in ELM may be non differentiable or even 
discontinuous [16-18].

5. TEST SYSTEM

The proposed method has been tested on a 735-kV, 50-Hz power system  consisting of two sources 
representing two area (Area1, Area2) connected by a tie line (T.L.1, T.L.2) of 300 km with UPFC placed 
at the middle of the line. The transmission line model chosen for this work is of distributed type. The test 
system is shown in Fig. 3. It also contains two transformers (Trans1, Trans2), Loads (L1, L2, L3, L4, L5). B1, 
B2, B3, B4, B5 are the bus to which the components of the test systems are connected.  The test system data 
are listed in Appendix. The Simulation model is developed using MATLAB-SIMULINK environment. 
The simulation frequency is 1.25 kHz based on simulation studies.
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Figure 3: One line diagram of the test system

6. SIMULATION RESULTS

Sample waveforms of three phase currents for a single line to ground fault before and after UPFC is shown 
in Fig.4 and Fig.6. Approximation and details of the faulted phase A current is shown in Fig.5 and Fig.7.
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Figure 4: Three phase current waveforms during single line to ground fault before UPFC

7. FAULT CLASSIFICATION

To study the effectiveness of the proposed method under different system conditions, different combinations 
of source impedances (ZS1 & ZS2) have been considered. For fault classifi cation, the fault simulation studies 
have been performed under wide variation of fault resistance (Rf ), fault location (E), fault inception 
angle(FLA), and load angle(). The parameter values that have been chosen for training are shown in 
Table 1. The training patterns are generated for ten different types of fault (A-G, B-G, C-G, A-B, B-C, 
A-C, A-B-G, B-C-G, A-C-G and A-B-C) on the transmission line with 3 source impedances, 2 locations, 
2 fault resistances, 2 fault inception angles and 2 load angles. Thus a total of 10 × 3 × 2 × 2 × 2 × 2 = 480 
cases have been generated for training. The duration of the fault has been assumed to be fi ve cycles.
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Figure 5: Wavelet coeffi cients of phase A during single line to ground fault before UPFC
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Figure 6: Three phase current waveforms during single line to ground fault after UPFC

To test the effectiveness of the proposed method, the fault simulation studies have been performed 
under wide variation of system parameters. The parameter values that have been chosen for testing are 
shown in Table II. The testing patterns are generated for ten different types of fault on the transmission 
line with 5 source impedances, 4 locations, 4 fault resistances, 4 fault inception angles and 3 load angles. 
Thus, a total of 10 × 5 × 4 × 4 × 4 × 3 = 9600 cases have been generated for testing.

In this article, ELM is used as a pattern classifi er. ELM supports the multi-class classifi cation. The 
half cycle fault current samples after pre-processing using DWT are taken as input to the classifi er. The 
training and test patterns are normalized to [-1 1]. For accurate fault classifi cation, the classifi er is trained 
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with 480 fault cases as described above. After the classifi er is trained, its performance has been tested with 
9600 fault cases, which are not part of training set.
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Figure 7:  Wavelet coeffi cients of phase A during single line to ground fault after UPFC

Table 1
Cases Considred  for  Dataset Generation

Case
No.

No of 
fault 
cases

Training Parameters

ZS1 (%) ZS2  (%) E R f FLA 

1. 160 100 100 40%, 
80%
of

Line 
Length

50Ω, 
100Ω

0º,
90º

10º,
30º

2. 160 75 75

3. 160 125 125

Total training data cases = 160 x 3 = 480

Table 2
 Cases Considered  for Testing  Dataset Generation

Case
No.

No of 
fault 
cases

Testing Parameters

ZS1 (%) ZS2 (%) E Rf FIA 

1. 1920 100 100
30%, 
45%, 
60%, 
75% 

of Line 
Length

1, 
50, 
150, 
200

36º, 
72º, 
108º, 
120º

10º, 30º,  
60º

2. 1920 100 75

3. 1920 75 100

4. 1920 100 125

5. 1920 100 100

Total testing data cases = 1920 x 5 = 9600
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8. FAULT LOCATION

The training patterns are generated by simulating the four types of fault (LG, LL, LLG and LLL) at 
different locations (starting from 5 km with increment of 10 km) on the transmission line from the relay 
location. Overall, the training patterns are generated for each type of fault on the transmission line over 
28 different locations with 2 fault resistances, 2 source impedances, 2 load angles, and 2 fault inception 
angles. For each type of fault, the number of training patterns is 28 × 2 × 2 × 2 × 2 = 448 patterns. 

The testing patterns are generated for each type of fault on the transmission line over 28 locations 
with 10 fault resistances, 2 source impedances, 2 fault inception angles and 2 load angles. For each type of 
fault, the number of testing pattern for fault location is 28 × 10 × 2 × 2 × 2 = 2240 patterns. Thus, a total 
of 4 x 2240 = 8960 cases have been generated for testing. The parameter values that have been chosen for 
training and testing are shown in Table 3.

Table 3
Paremeters Considered  for  Training  and  Testing  Dataset  Generation

Parameters Training Testing

Fault location 05, 15, 25, 35, …, 295km 10, 20, 30, 40, …, 290 km

Fault resistance 1, 10 1 – 200

Fault Inception angle 0º, 90º 0º – 120º

Load angle 10º, 30 º 20º – 60º

Source Impedance  100%, 125% 40% –125%

The structure of fault locator consists of four regression blocks as shown in Figure 8. The pre-processed 
fault current signals are used to train ELM fault locators. The training and test patterns are normalized to 
[-1 1] and given as input to the fault locator modules. In this case, the target value of each pattern is the 
distance from relay locations. 

 The criterion for evaluating the performance of the fault locator is defi ned as

 % error = 
Fault locator output Actual fault location

100
Total length of the line

-
´  (2)
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Fault
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Figure 8: Block diagram representation of the fault locator for estimation of fault distance from relay location
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A. Parameter selection of ELM

Based on the studies carried out, the sigmoid activation function has been used for training and testing 
of ELM classifi er. For ELM classifi er, the numbers of hidden neurons are gradually increased by 1 and 
optimal number of hidden neurons for ELM classifi er is then selected based on training accuracy. The 
number of hidden neurons for fault classifi er is 28. For ELM fault locator, the numbers of hidden neurons 
are gradually increased by 1 till the root mean square error (RMSE) is less than 0.01. The number of 
hidden neurons for LG, LL, LLG, LLL fault locators is 12, 18, 15, and 19 respectively. 

9. RESULTS AND DISCUSSION

The classifi cation results during testing are shown in Table 4. The diagonal elements represent correctly 
classifi ed faults. Off-diagonal elements represent the misclassifi cation.  A few misclassifi ed test patterns 
of WT-ELM is shown in Table 5. As observed from Table 6, the overall accuracy for fault classifi cation 
with WT-ELM is 97.47% 

Table  4
Classifi cation  Results  of  WT-ELM

Type of fault
WT-ELM

LG LL LLG LLL

LG 2820 – 60 –

LL – 2847 18 15

LLG 54 46 2780 –

LLL – 40 10 910

Table  5
Samples  of  Misclassifi ed Test Cases of WT-ELM

Type of Fault ZS1 (%) ZS2 (%) E (%) R f FIA  Classifi er Output 

LG 75 100 30 200 72° 60° LLG

LL 100 125 75 150 108° 30° LLG

LLG 100 75 60 1  36° 10° LG

LLL 100 100 45 1  72° 60° LL

Table 6
Fault  Classifi er  Accuracy

Type of fault Samples tested
WT-ELM

True classifi cation % Accuracy

LG 2880 2820 97.92

LL 2880 2847 98.85

LLG 2880 2780 96.53

LLL 960 910 94.79

Total 9600 9357 97.47

% error distribution for ELM fault locators are given in Table 7.  As observed from Table 7, ELM fault 
locators predicted the fault location with less than 0.5% error for 7155 test samples (80% of test data).
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Table 7

% Error Distribution  for  ELM Fault  Locatos

% error 
Range

Number of test samples
Total test
samplesELM-LG fault

locator
ELM-LL fault

locator
ELM-LLG fault

locator
ELM-LLL fault

locator

0.0-0.1 831 247 641 303 2022
0.1-0.2 389 244 472 436 1541
0.2-0.3 363 498 401 456 1718
0.3-0.4 230 367 252 307 1156
0.4-0.5 165 246 161 146 718
0.5-0.6 100 197 99 150 546
0.6-0.7 48 121 76 113 358
0.7-0.8 57 139 62 107 365
0.8-0.9 39 111 48 114 312
0.9-1.0 18 70 28 108 224

  The minimum, maximum, mean error and standard deviation for different ELM locators are given 
in Table 8.  As observed from Table 8, the mean error and standard deviation of ELM locators are less. 

Table 8
Fault  Location  Error  of  ELM Fault  Locators

Type of fault Min. Error Max. Error Mean Error Standard deviation

LG 4.0929e-006 0.9848 0.2304 0.2030

LL 3.1330e-004 0.9909 0.3830 0.2433

LLG 1.8239e-005 0.9975 0.2569 0.2217

LLL 0.0013 0.9916 0.3608 0.2505

10. CONCLUSION

In this paper, a method to classify and locate fault in an UPFC-compensated transmission line using 
extreme learning machine has been proposed. The detailed coeffi cients of the three phase currents are 
extracted by DWT and these coeffi cients are provided at the input to ELM, which classifi es and locates 
the fault. The proposed method is tested with parameters that are not included as part of training. The 
effectiveness of the proposed method is tested using 18560 test cases. The overall fault classifi cation 
accuracy is 97.47% using ELM. The fault locator error is less than 1% for all the four types of fault for 
ELM fault locators and it predicted the fault location with less than 0.5% error for 7155 test samples (80% 
of test data). The mean error and standard deviation of the ELM fault locator is less. Hence, it is observed 
that the proposed method using ELM is accurate and robust to parameter variations for the protection of 
transmission line, including UPFC.
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