
I J C T A, 9(14) 2016, pp. 6647-6652
© International Science Press

A Mediator based Dynamic Server Load
Balancing Approach using SDN
Ashwati Nair1, Binya mol M. G.2 and Nima S. Nair3

ABSTRACT

In the modern era, Network Management is becoming so complex with several networking devices like switches,
routers and middle boxes for manipulating network traffic for different purposes. Software Defined Networks is a
new archetype that meets the ossifying needs of the network. It separates the control plane from the data plane of
forwarding devices by introducing a controller that brings the idea of programmable network. This paper suggests
a dynamic load balancing scheme for a server farm using the concepts from SDN. The proposed work introduces
two mediators’ named Load mediator and Channel mediator, which will control the server load by updating the
Load status table in the controller systematically. The proposed method has been implemented and compared with
popular load balancing schemes like Round Robin and Random algorithms.

Keywords: SDN, Load Mediator, Channel Mediator, Load Status Table, Flow Table.

1. INTRODUCTION

Software defined networking is an expedient network technology which serve network operators more
control of the network infrastructure. SDN technology splits the control plane logic from the data plane, by
moving networking control functions from forwarding devices to a logically centralized controller, so that
the networking function can be performed by software. The SDN centralized controller presents enormous
opportunity for network operators to re-factor the control plane and to enhance the performance of
applications [8]. In SDN architecture Openflow enables the controller to communicate with network devices
[13]. It is a switching protocol based on SDN conception [9].

The OpenFlow switch divides the function into two; the switch consists of data portion, although
routing decisions are shifted to a separate controller. The OpenFlow protocol helps to communicate via the
switch and the controller. It contains a flow table contents that incorporates a set of packet field to match,
and an action. If the packet received by the switch does not match with the flow entry are send to the
controller. The controller then makes a decision to handle this packet. Either it can drop the packet or it can
add a flow entry which helps the switch to forward similar packets in the future [11].

Beyond with the advance of network, servers have to serve more and more services for the increasing
number of visits, the load has an intense development. It requires a lot of money to prove the ability of
servers, and it does not achieve well [3]. Load balancing can be considered as a preferred way to solve this
problem. This method distributes the work load equally among all the present nodes in the given environment,
such that it assures no node in the system is over loaded or sits idle for any instant of time [5]. The server
cannot manage so many visits. One way to elucidate this problem is by improving server performance.
Another way to solve this problem is Load balancing. Load balancing uses multiple servers to proffer
different services to the users. The server shares the work load and works better than the high performance

1 PG Student, 2 PG Student, 3 Assistant Professor
Department of Computer Science & IT, Amrita School of Arts and Sciences, Kochi, Amrita Vishwa Vidyapeetham (Amrita University), India
E-mails: 1aashwatinair3@gmail.com, 2mgbinnyamol@gmail.com, 3nimasnair@gmail.com



6648 Ashwati Nair, Binya mol M. G. and Nima S. Nair

one with heavy load. So load balancing technology has become a major technology to built high load
websites [3]. Different load balancing schemes are used such as static load balancing and dynamic load
balancing. In static load balancing the node performance is determined during the execution time [7].
Where as in dynamic load balancing it makes changes to the distribution of work among work stations at
run-time [2].

2. RELATED WORK

Load balancing is one of the most challenging problems in computer networks. So far many research works
have been introduced and solved server latency problem, scalability, throughput, response time with efficient
server CPU and memory utilization. A dynamic load balancing approach for cloud infrastructure proposed
an intense load calculation of virtual machine in a data center. Whenever virtual machine load reaches its
threshold value, an agent named Load agent initiate search for a candidate virtual machine from other data
centers. This method reduces service time by keeping information of candidate beforehand [10].

Another approach suggests an improvement of load balancing in software defined networks through
load variance-based synchronization. The experiment explored the controller state synchronization problem
in SDN based load balancing. They suggested two LVS based schemes to overcome the forwarding-loop
problem and decreases controller synchronization overhead as compared with the traditional PS-based
load balancing [8]. A modified round robin algorithm for DNS load balancing provides best services with
large number of distributed servers connected uniformly. Drawback of this approach is that it works better
only in distributed environment [4]. A server cluster dynamic load balancing method based on OpenFlow
technology has been developed to solve load balancing problem based on network virtualization in data
center [1]. Another method suggests a Dynamic server load balancing algorithm using OpenFlow and
sflow effectively distribute traffic among server clusters. Wildcard rules are installed in the switch to assemble
traffic of server replica, and decisions are based on real time traffic statics via the sflow protocol [6].

3. PROPOSED SYSTEM

In this paper we proposes a method named “A Mediator Based Dynamic Server Load balancing approach
Using SDN” by introducing two mediators called Load Mediator and Channel Mediator. Since load balancing
in SDN requires searching for under loaded servers. Here the two mediators suit the purpose and fulfill it
appropriately, without putting additional burden on the network. These two mediators are, programmed as
two modules. One part is installed inside the controller and the other part is coded in the servers of the
server farm. The role of Load mediator is to update the Load Status Table periodically according to the
current server status. By using the help of these two mediators, server load balancing is achieved with
minimum response time and maximum efficiency. Description of various components used in this algorithm
is as follows.

3.1. Load Mediator (LM)

It maintains server status in Load Status Table inside the controller. The main role of this mediator is to
calculate each server status using the information provided by the channel mediator.

3.2. Channel mediator (CM)

It is a part of a code installed in the controller and each servers of the server farm. This will determine each
server status. Whenever the controller invokes a request to the server farm, the Channel mediator code
inside the servers will remit the load status to the controller in every 30 seconds. The Channel mediator
code has been set up in two parts. One part resides in the controller and the other part in the server as a
memory resident program.



A Mediator based Dynamic Server Load Balancing Approach using SDN 6649

The proposed method introduces a component named Load mediator (LM) which resides in the controller
that specifies the server status in the load status table. Load status table contains server id (Sid), Memory
utilization (�), CPU utilization (�), Health value (�), and load status as normal or overloaded. This table
will be periodically updated by the channel mediator in every 30 seconds to congregate information from
the server. The Channel mediator performs two functions. One function performs inside the controller and
the other one resides in the server farm.

Figure 1: Detailed view of the Architecture

When the channel mediator code in the controller invokes an internal channel mediator function in the
server, it will gather server status information from each server and send them back to the controller. There
after the load mediator will update the load status table according to the server status collected by the
channel mediator code. Load mediator sorts the load status table and identifies the least loaded server. Then
the controller updates the flow table entry in the OpenFlow switch, so that any request arrives at the switch
will be forwarded to the least loaded server. Thus the server load balancing is performed. The detailed view
of proposed mechanism is shown in figure 1. Load mediator maintains the load status of various servers
available in the server farm. The major task of channel mediator is to gather current load status of each
server in terms of available memory (�), CPU utilization (�), and finally it estimates the health value (�) of
each server, which is directly proportional to the RAM size of the server. The calculated values are stored
in the load status table using the following equation.

� � � ��available total used (1)

100
�

� � �
�
available

total
(2)

The health value (�) % will give each server status in the server farm. In this context 30 % is taken as a
threshold value, and if this health value is greater than 30%, the server status is said to be normal. And if the
health value (�) is less than or equal to 30 % then the server is overloaded, and load balancing has to be
performed.



6650 Ashwati Nair, Binya mol M. G. and Nima S. Nair

When the client sends a request for the server, the switch will check the matching content in the flow
table. This flow table is already updated by the controller. If the flow entry matches with the incoming
packet header, the request is directed to the least loaded server. Else the switch communicates with the
controller, and the Channel mediator code in the controller invokes the channel mediator code in the server.

Table 1
Load Status Table

Server ID Memory utilization(�) CPU utilization(�) Health value(�) Load status

s
1

�
1

�
1

�
1

Normal

s
2

�
2

�
2

�
2

Over loaded

.. .. .. .. ..

s
n

�
n

�
n

�
n

Normal

Figure 2: Network topology

4. IMPLEMENTATION

To experiment with the proposed system we used Mininet network emulator [11], and POX controller.
Then we created a network topology using miniedit.py which introduces a controller, OpenFlow switch,
servers and host as shown in the fig.2. POX controllers are programmed using Python language [12]. For
the server setup, the given three hosts are converted to web servers by running HTTPd service in all these
servers. We created a program module named Channel_Serv.py and installed servers. This module will be
invoked by the Channel_Pox.py which is coded in POX controller. The Channel_Serv program will send
the current status of the servers to the controller and update the Load Status Table. The other module called
LoadMediator.py will sort the table and find out which is the least loaded server. It will also update the
Flow Table so that the clients are automatically routed to the least loaded server. Using this scenario, the
performance of the proposed algorithm has been observed in three cases. For testing and comparing the
performance of our algorithm, we used the traditional Random and Round Robin algorithms. In Random
algorithm, the incoming requests from the client to the switch are forwarded to the controller. The controller
randomly selects a server from the server farm and responds to the client. The controller updates the flow
entry and sends to the switch. Whereas in Round Robin algorithm, the controller sequentially select the
server, and respond to the client till the end of one cycle and repeats the process in certain order [6]. The
proposed algorithm reduces the response time and throughput as compared with the traditional load balancing



A Mediator based Dynamic Server Load Balancing Approach using SDN 6651

algorithms. Figure.3 depicts the graphical representation of the minimum response time and request arrival
rate/sec of three load balancing schemes. The X-axis shows request arrival rate/sec and Y-axis represents
minimum response time/sec. Here Random and Round Robin algorithm shows 25 seconds and 23 seconds
of response time. At low rate, request can be served fast in Random and Round Robin algorithm. Whereas,
when the request increases the proposed method gives 17 seconds of response time. Since the OpenFlow
switch is updated periodically within every 30 seconds by the controller in advance, the response time
lagging is significantly reduced in our method. By this way, the other packets followed by the process can
be served quickly.

Figure 4 shows the graphical representation of Number of request and throughput of three load balancing
algorithm. In Random it shows 230 KB/seconds throughput and in Round Robin the throughput is 250KB/
seconds. Mediator based algorithm shows 350 KB/seconds of throughput. This proves that the mediator
based load balancing method results better throughput than Random and Round Robin method.

Figure 3: Comparison of response time Figure 4: Comparison of Throughput

5. CONCLUSION AND FUTURE SCOPE

In this paper, we proposed a dynamic load balancing method two mediators named Load mediator and
Channel mediator. The two mediators will control the server load, by updating the Load status table in the
controller systematically. Beyond that, the algorithm shows better response time and throughput as compared
with the traditional Random and Round Robin algorithm. The proposed method has been implemented and
has given satisfactory result. In the future work, we are planning to implement this method in a real time
campus network. Also we are planning to integrate this module to a cloud computing environment.

REFERENCES
[1] WenboChen, ZhihaoShang, XinningTian , Hui Li, “Dynamic Server Cluster Load Balancing in Virtualization Environment

with OpenFlow”, International Journal of Distributed Sensor Networks, Volume 2015, Issue 8, Jan 2015.

[2] Sameena Naaz,” To Develop and Analyze a Fuzzy Based Algorithm for Load balancing in a Distributed Environment”,
Shodhganga : A Reservoir of Indian Theses @INFLIBNET” Oct 2014

[3] FanZhang, JinyaoYan, BoLiu, HaiyanMa, “SDN based load balancing and its performance”, Proceedings of the Fourth
International Conference on Multimedia Technology (ICMT),March 2015.

[4] Senthil Ganesh N ,Ranjani S ,” Dynamic load balancing using software de fined networks”- International journal of
Computer Applications (IJCA), International Conference on Current Trends in Advanced Computing (ICCTAC), Issue 2,
2015.

[5] Geethu Gopinath P P, Shriram K Vasudevan, “An in-depth analysis and study of Load balancing techniques in the cloud
computing environment”, International Journal of Computer Science and Engineering, Volume 50, Issue 1, May 2015.



6652 Ashwati Nair, Binya mol M. G. and Nima S. Nair

[6] Qingwei Du, Huaidong Zhuang, “OpenFlow-Based Dynamic Server Cluster Load Balancing with Measurement Support”,
Journal of Communications, Volume 10, Issue 8, 2015.

[7] Avneet ‘Gutz’ Bagga, Network Geek (www.quora.com) 2014.

[8] ZehuaGuo, MuSu, YangXu, ZheminDuan, LuoWang, ShufengHui, H. JonathanChao, “Improving the Performance of
Load balancing in Software defined networks through Load Variance-based Synchronization”, Elsevier, volume 68, August
2014.

[9] Srinivas Govindraj, Arun Kumar, Jayaraman, Nitin Khanna, Kaushik Ravi Prakash, “OpenFlow: Load balancing in Enterprise
networks using Floodlight controller” , May2014.

[10] Aarti Singh, Dimple Juneja, Manisha Malhotra, “Autonomous Agent Based Load balancing Algorithm in Cloud Computing”,
Elsevier,Volume 45, March 2015.

[11] Mininet.http://www.mininet.org/

[12] www.searchsdn.techtarget.com

[13] A Lara, A. Kolasani, B. Ramamurthy, “Network Innovation using Open Flow: A Survey”-IEEE Communications surveys
and Tutorials, Volume 16, Issue1, 2014.




